
Subject & Code: Irrigation Engg. (17502)

Page No: 01 /23

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	(A)	Attempt any <u>THREE:</u>		12 M
	(a)	Define i. Rainfall ii. Run off iii. Rainfall intensity iv. Yield		
		Ans.		
		i. Rainfall –	1 1 1	
		Rainfall is the depth in mm or cm of water that would stand on the surface of the earth provided it ware not lost by autopartice	1 M	
		the surface of the earth provided it were not lost by evaporation or absorption or any other manner.		
		ii. Run off –		
		The amount of water which flows over the surface of the	1 M	
		earth after considering all losses is called as runoff		
		iii. Rainfall intensity-		
		A maximum rainfall during a short period measured in mm/ hr is called rainfall intensity.	1 M	
		iv. Yield-		
		Yield of drainage basin is defined as, the total quantity of water available from a catchment area at the outlet in the	1 M	
		period of one year.		4 M
	(b)	Explain four factors affecting runoff.		
		Ans.		
		Following are the different factors which affect runoff :-		
		1)Rainfall characteristics :		
		a. More the rainfall, runoff will be more.		
		b. More the intensity of rainfall, More will be the runoff.		
		2) Topography:	1	
		a. It depends upon smoothness and roughness of the surface	mark	
		b. Steep slopes – Heavy runoff will reach the valley quickly,	each	
		reducing losses gives more runoff.	(any	
		c. catchment is mountainous, more will be runoff	four)	
		d. catchment is in windward direction, more will be runoff		

Subject & Code: Irrigation Engg. (17502)

Page No: 02/23

Que.	Sub.	Model Answers	Marks	Total Marka
No.	Que. (b)	3) shape and size of established		Marks
Q.1	(D)	3) shape and size of catchment –		
		a. Catchment area – Larger the area, more runoff b. Fan shaped catchment gives greater runoff		
		4) Characteristics of catchment :		
		a. Rocky strata – heavy runoff		
		b. Compactive strata - heavy runoff		
		c. Sandy strata – reduced runoff		
		d. if more area of catchment is cultivated ,surface runoff will		
		be less.		
		e. Presence of vegetation covers reduces the runoff during		
		smaller storm.		
		5) Meterological characteristics :-		
		a. Low temperature – greater runoff		
		b. High temperature – less runoff		
		6) Geological characteristics :-		
		a. pervious soil – reduces runoff		4 M
		b. porous and fissure rock – very low surface runoff		4 IVI
		b. porous and fissure fock – very low sufface fution		
	(c)	Calculate yield and maximum flood discharge from catchment 60		
		km ² , having average annual rainfall 760mm by using Inglish		
		formula.		
		Ans.		
		Given,		
		$A = 60 \text{ km}^2$		
		Rainfall = 760 mm		
		To find-		
		Yield = ?		
		Max. flood discharge- ?		
		Solution-		
		By using Inglish Formula		
		$a = \frac{123A}{1}$	1 M	
		$Q = \frac{1}{\sqrt{A+10.4}}$		
		$Q = \frac{123 \times 60}{\sqrt{60 + 10.4}}$		
			1 M	
		$Q = 879.57 \text{ m}^3/\text{sec}$		
		Average annual rainfall= 760 mm < 200cm		
		So, The area is non ghat area	1 M	
		$R = \frac{P(P - 17.78)}{254}$	I IVI	
		$R = \frac{76(76 - 17.78)}{254}$		
		<i>R</i> – <u>254</u>		
		R = 17.42 cm		
		$Yield = R \times C.A$		
		Yield =17.42 cm x 60 km ² =17.42 x 10^{-2} x (60 x 10^{6}) / 10^{4} Ha.m		4 M
			1 M	• • • •
		Yield = 1045.92Ha.m		

Subject & Code: Irrigation Engg. (17502)

Page No: 03/23

Que. No.	Sub. Que.			Model An	swers					Marks	Tota Mark
Q.1	(d)	What is crop seas their respective p Ans. Crop season- It i its sowing to that In Maharashtra the	eriods s seasonal p of its harves	period in v	vhich cro	op take	s from	the inst		1 M	
		For the rest of comansoon Crop seasons ado	ountry, The	re are the	ree crop				er and		
		Sr.				P	eriod				
		no.	Season		Fro	m		То		3 M	
		1	Kharif		15 J	une		14 oct			
		2	Rabi		15			14 feb			
		3	Hot weathe	er	15			14 June			4 M
		-	Eight month		15 J			14 feb			
		5	Annual		15 J			14 June			
	(B)	Attempt any <u>One</u>	_	ual mainf	all of	o ooto	hmont	from	n tha		0 10
	(B) (a)	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta	verage annu using Arith (Ha) 10 60 dependable	nmetic me 00 150 00 550 yield f	ean meth 200 650 rom ab	nod and 75 580	1 Theis 125 620	sons po 400 700	lygon		
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai Average annual rai	verageannu using(Ha)10(Ha)60dependableke runoff comparisoninfall = $\sum P/N$ infall = (600)ainfall = 610	nmetic metic 00 150 00 550 yield fi oefficient 0 +550+650	200 650 rom ab 0.45.	nod and 75 580 bove ca	1 Theis 125 620 atchme	sons po 400 700	lygon	1 M 1 M	
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai	verageannu using(Ha)10(Ha)10(Ha)60dependabledependableke runoff comparisoninfall = $\sum P/N$ infall = $\sum P/N$ infall = (600)ainfall = (600)ainfall = (5A1)150x550 + 3	200 150 20 550 20 550 20 550 2	200 650 rom ab 0.45. 0+580+6	nod and 75 580 oove ca 20+700 80 + 12	1 Theis: 125 620 atchme 0)/6 25x620	sons po 400 700 nt at	lygon 60%		
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai Average annual rai Average annual rai Average annual rai P = $(100 \times 600 + 100)$ P = 641.42 mm	verageannu using(Ha)10(Ha)10(Ha)10(Ha)10(Ha)60dependable100ke runoff comethod-infall = (600ainfall = (600ainfall = (600ainfall = (600ainfall = (500100 + 15100 + 15	Immetic me 00 150 00 550 yield fi oefficient $4 + 550 + 650$ 6.66 mm P) / $\sum A$ 200x650 50 + 200	200 650 rom ab 0.45. 0+580+6	nod and 75 580 oove ca 20+700 80 + 12	1 Theis: 125 620 atchme 0)/6 25x620	sons po 400 700 nt at	lygon 60%	1 M	
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai Average annual rai Average annual rai P = $(100 \times 600 + 100 \times 100 $	verageannu using(Ha)10(Ha)10(Ha)60dependabledependableke runoff comparisoninfall = $\sum P/N$ infall = $\sum P/N$ infall = (600)ainfall = (600)ainfall = ($\sum A$)150x550 + $\sum 100 + 15$ at descending	nmetic me 00 150 00 550 yield fi oefficient V +550+650 6.66 mm P) / $\sum A$ 200x650 50 + 200 ng order-	200 650 rom ab 0.45. 0+580+6 + 75x58 + 75 +	75 580 5000 cc 20+700 $30 + 12$ $125 + 4$	1 Theis: 125 620 atchme 0)/6 25x620 400	sons po 400 700 nt at + 400:	lygon 60%	1 M 1 M	
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai Average annual rai Average annual rai Average annual rai P = $(100 \times 600 + 100 \times 100$	verageannu using(Ha)10(Ha)10(Ha)60dependableke runoff comparisoninfall = $\sum P/N$ infall = (600) ainfall = (600) ainfall = (500) ainfall = (500) 150x550 + $\frac{1}{2}$ 100 + 15at descending(Ha)40	D0 150 00 550 00 550 yield fi 0efficient $A + 550 + 650$ 6.66 mm P) / $\sum A$ 200x650 50 + 200 ag order- 00 200	200 650 rom ab 0.45. + 75x58 + 75 + 125	75 580 580 5000 cc 20+700 $30 + 12$ $125 + 4$ 100	1 Theis: 125 620 atchme 0)/6 25x620 400 75	sons po 400 700 nt at + 400: 150	lygon 60%	1 M 1 M	6 M
	` '	Calculate the av following data by method Area of polygon Rainfall in mm Also calculate of dependability. Ta Ans. Arithmetic mean Average annual rai Average annual rai Average annual rai P = $(100 \times 600 + 100 \times 100 $	verageannu using(Ha)10(Ha)10(Ha)10(dependableke runoff comparisoninfall = $\sum P/N$ infall = $\sum P/N$ infall = (600) ainfall = (600) ainfall = (500) (Ha)40(Ha)4070	nmetic me 00 150 00 550 yield fi oefficient V +550+650 6.66 mm P) / $\sum A$ 200x650 50 + 200 ng order- 00 200 00 650	ean meth 200 650 rom ab 0.45. 0+580+6 +75x58 +75x58 +75 + 125 620	75 580 5000 cc 20+700 $30 + 12$ $125 + 4$ 100 600	1 Theis: 125 620 atchme 0)/6 25x620 400 75 580	400 700 700 nt at 0 + 400: 150 550	lygon 60%	1 M 1 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Que. No.	Sub. Que.		Ν	Iodel A	nswers				Marks	Total Marks
Q.1	(a)	Yield = CA x Runof	f							WILLING
V .1	(u)	Yield = 1050×0.45		$10^{-3} = 2$	88.225 H	ła.m			1 M	6 M
	(b)	Fix the control le	vels D	SL. FI	RI. HF	L and	TBL 1	from the		
		following data		,						
		i. Effective stor	rage red	wired =	= 3000 H	[a.m				
		ii. Carry over a		-			%			
		iii. Dead storage								
		Contour RL (m)	580	582	584	610	612	614		
		Storage (Mm ³)	3.0	4.5	6.0	30	40		<u>614</u> 50	
		Assume flood lift as								
		Ans.								
		Gross storage = dead	storage	+ live s	storage					
		Live storage= eff. St	orage +t	ank loss	ses +carr	y over a	llowanc	e		
		Live storage= 3000+	(25/100)x3000						
		Live storage= 3750	Ha.m =	37.5 M	l.m ³				1 M	
		Gross storage = $10/100$ x gross storage + 37.5 0.9 Gross storage = 37.5								
		Gross storage = 37.							1 M	
		$FRL = 612 + \frac{(614 - 1)}{10}$	- 612)(41.66 -	- 40)					
			(50 –	· 40)					1 1	
		FRL =612.332 m							1 M	
		Dead storage =10/10			ge = 10/1	00 x 41.	66 = 4.1	166 M.m ³		
		$DSL = 580 + \frac{(582 - 56)}{2}$	80)(4.166	-3.0)						
			(4.5-3)						1 M	
		DSL = 581.55 m $HFL = FRL + flood 1$;ft							
		HFL = 612.332 + 1.5	1111							
		HFL = 613.832 m							1 M	
		TBL = HFL + Free B	Roard							
		TBL = 613.832 + 2.5								
		TBL = 616.332 m	, ,							
		1DL = 010.332 m							1 M	6 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	Que.	Attempt any FOUR :		
Q.2	(a)	Attempt any FOUR : Explain the various engineering surveys to be conducted for an irrigation project. Enlist data to be collected for the same. Ans. Engineering surveys – In this type of surveys or investigations, various types of survey e.g. plane table survey, traverse survey aerial and photographic survey etc. are carried out. The aim of this type of survey is to prepare a contoured map or topographic map. The contour map will furnish the following necessary information- Water spread Arrangement of lines of communication Capacity of reservoir Suitable dam site Site for waste weir and outlets Area elevation curve Storage elevation curve Map of the area to indicate the land property to be surveyed Data to be collected for Irrigation project- Size of catchment (area in Km²) Area under cultivation, under forest and under habitation Type of soil Existing ponds and size , their capacities River sites in that area. Flood levels if available from past record if any Slope of hills Contour survey of reservoir basin Gauging of rivers Availability of materials of construction 	2 M 1/2 M Each (any four)	16 M
	(b)	 11. Sedimentation problem 12. Trial pits and boring at dam site 13. Soil survey for commanded area 14. Details of land being submerged and rehabilitation problems Describe four factors affecting the rate of silting with suggestive control measures. Ans. Factors affecting silting are- 1. Catchment area- Fan shaped catchment, the amount of deposition of finer soil fractions will be more as compared to fern shaped catchment 2. Slope of country- If slope is steep , more particles are deposited through runoff as velocity is more which carries silt and clay particles with it and high velocity may erode soil more 3. Beginning of storing water in reservoir- Most of the silt is usually washed down by first heavy storms. 4. Nature of surface soil- If the soil is loose then silting is more as more particles will move along with runoff. 	^{1/2} mark each (any four)	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No: 06/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	(b)	 5. Rainfall characteristics- Rate of silting is depends on the nature of rainfall and is intensity Sedimentation in reservoirs can be controlled by following methods- The catchment area is less errodable Constructing check dams across the streams contributing water to the reservoir Providing contour trenches on the steep and hilly slopes of tcatchment Designing the reservoir properly causing the escape of silty water. Dredging the silt from reservoir 	^{1/2} mark each (any four)	4 M
	(c)	List the eight types of repairs and maintenance works for an earthen dam. Ans. Following are the repairs and maintenance work for an earthen dam- 1. Maintenance of pitching 2. Checking of upstream slope 3. Checking of downstream slope	1/2	
		 4. Checking of Berms 5. Repairing of Turfings 6. Maintenance of rock toe 7. Maintenance of drain 8. Checking of top of dam including parapet wall 	^{1/2} marks each	4 M

-

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No: 07/23

Que. No.	Sub. Que.		Model Answers		Marks	Total Marks
Q.2	d)	names to comp Ans.	thing toe Plane of maximum shear Clay as fill	in thick) and the sing the single the sing the single th	2 marks for labelin g 2 marks for neat sketch	4 M
	e)	-	ts of comparison between eart foundation, seepage, construct Earthen dam They can be founded on any soil	. .		
		Seepage	There is more seepage through the body of the dam and it's foundation compared to gravity dam 1.For its construction skilled labours are not required 2.Construction cost of earthen dam is less 3.For earth dams the diversion of flow during construction is costly	Comparatively there is less seepage in case of gravity dam 1.For its construction skilled labours are required 2.Construction cost	1 Marks each	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No: 08/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	(f)	Define – spillway and write two functions of spillway. Also draw neat cross section of ogee spillway and bar type spillway. Ans.		
		 <u>Spillway</u>- It is an arrangement provided at the crest of dam to expel the excess water rises above the full reservoir level. <u>Functions of spillway</u>- 	1 M	
		1. To effectively dispose off the surplus quantity of water from upstream to downstream side of the reservoir.	1 M	
		Ogee spillway-	1 M	
		Bar type spillway- F.R.L. F.R.L. F.R.L. G.L. 1.2 m Masonry 1.3 Foundation concrete	1 M	4 M

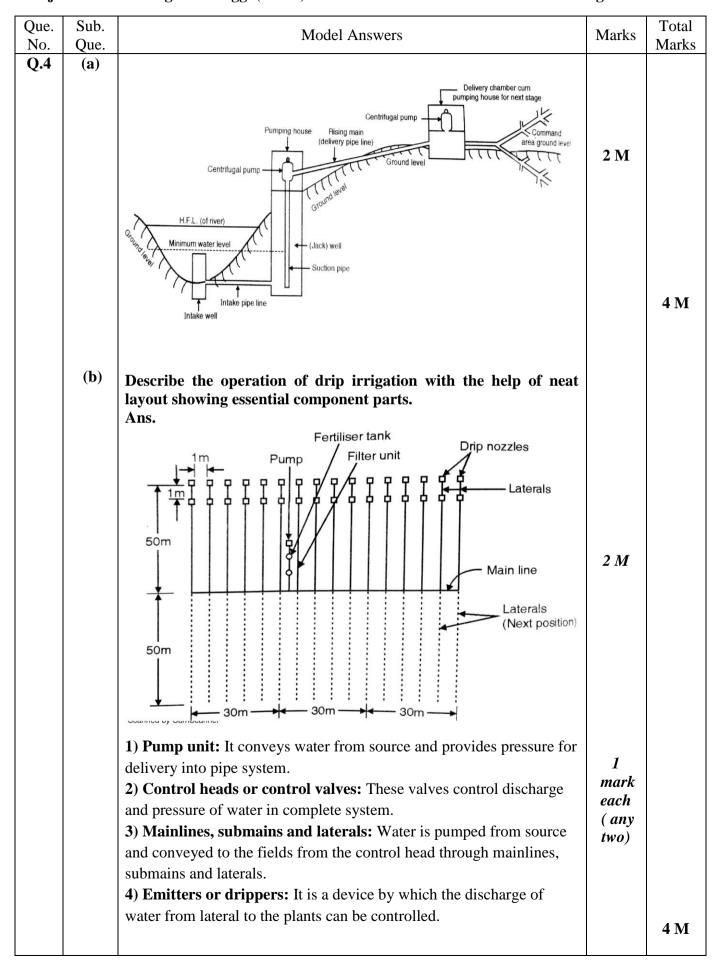
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

No.	Sub. Que.		Model	Answers	Marks	Total Marks
Q.3	(a)	-	any FOUR iate between theoretica	al and practical profile of gravity		16 M
		Sr.	Elementary profile	Practical profile		
			ovision of free board is of provided.	Provision of free board is provided.		
		2 Ro	bad way at top is not ossible.	1	1	
		m	or reservoir empty ndition it will provide aximum possible ability.	For reservoir empty condition tension is developed at toe and hence some masonry is provided on u/s side.	mark each	
		4				4 M
	(b)	dams. Ans.	the importance of drain	nage gallery and joints in gravity		
		1) Fo 2) To 3) It 4) It	or inspection of dam from	through the body of dam. ay gate. observation devices.	1 mark each (any two)	
		1) Co 2) Co da 3) Co co	onstruction joints are pr m. ontraction joints helps to ncrete and temperature v	d for opposing contraction stresses. rovided for ease in construction of o reduce tensile stresses formed in variations. ontraction and prevent cracks in the	1 mark each (any two)	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No: 10/23


Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	(c)	 Explain working of radial gate with the help of neat sketch showing names to component parts of it. Ans. A radial gate has a curved water supporting face made of steel. It is properly braced by a steel framework which is pivoted on horizontal shafts. The gate can rotate about fixed horizontal axis. Hoisting cables are attached to the gate and lead to winches on hoisting platform. The gate is pulled up by using cables and water is released through the gate. It is used for big spans varying from 4 m to 15 m height 3 m to 10 m 	2 M 2 M	4 M
	(d)	<section-header><text></text></section-header>	2 M	

Que.	Sub.	Model Apswers	Morke	Total
No.	Que.	Model Answers	Marks	Marks
Q.3	(d)	River Bed River Bed CIS OF OPEN BANDHARA i.e. K. T. Weiz	2 M	4 M
		SECTION		
	(e)	Write the need and suitability of site for construction of		
		percolation tanks.		
		Ans.		
		1) The percolation tanks are constructed where soil is porous and		
		it is not possible to construct the big retaining structures.		
		2) In percolation tank water percolate through soil pores and joins		
		the ground water which increases water level in wells on		
		downstream side.	1	
		3) Thus percolation tanks are suitable where there are more	mark	
		number of wells and bore wells.	each (any	
		4) Useful in areas where other water retaining structures cannot	four)	
		be constructed.		
		5) The bed of tank should be pervious so that water will percolate		
		and join ground water.		
		6) The site at which bunds are constructed should have sufficient		
		discharge.		4 M
		7) The side of stream should be steep		- 11
Q.4		Attempt any THREE		12 M
Y.4	(a)	Explain the functioning of lift irrigation scheme with the help of		
	(4)	layout showing components of it.		
		Ans.		
		1) Intake well: A channel is constructed for diverting the flow of		
		water to inlet chamber.		
		2) Inlet chamber: It avoids silts and debris to enter into jack well.	1/2	
		3) Jack well: It is provided to facilitates location of an engine house	mark	
		above high flood level and allows pumping during floods.	each	
		4) Inlet pipe: To convey water from inlet chamber to jack well and	(any	
		inlet pipe is provided with proper gradient.	four)	
		5) Delivery chamber: The water from rising main is collected in		
		delivery chamber and then it is allowed to flow in field ditches.		

Subject & Code: Irrigation Engg. (17502)

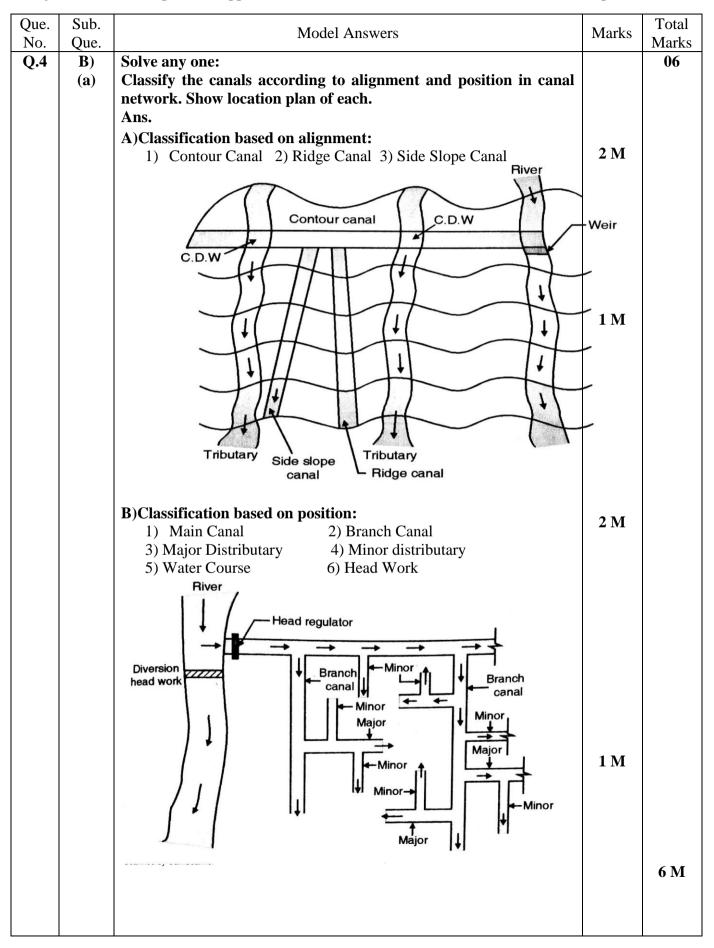
Page No. 13/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	(c)	Draw the layout of diversion head work and write functions of following components of it: i) Head regulator ii) Divide wall iii) Fish ladder iv) Scouring sluice		
		Ans.		
		 i) <u>Head regulator:</u> 1. It regulate the supply of water entering in canal. 2. It controls the entry of silt into canal 3. it prevents the river flood entering the canal 	^{1/2} mark each (any one)	
		 ii)Divide wall: 1.To separate flow from the scouring weir which is at lower level than proper weir 2. To separate the silting packet from scouring sluices 3. To prevent formation of cross currents to avoid domain effects 4. To cut off the main portion of the river and provide a comparatively quite packet in front of the canal head regulator resulting in deposition of silt in the pocket and enter clear water in canal 	^{1/2} mark each (any one)	
		 iii) <u>Fish ladder:</u> 1. To provide free movement of fishes 2. To help the survival of the fishes 	¹ / ₂ mark each (any one)	
		 iv) <u>Scouring Sluice:</u> 1. Deposited silt and soil are scoured through the scouring sluice 	^{1/2} mark each (any one)	
		Head regulator Main canal Vide wall Fish ladder Weir Under sluices D/S Under sluices	2 M	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No: 14/23


Que. No.	Sub. Que.		Model Ansv	wers	Marks	Total Marks
Q.4	(d)	Different Ans.	iate between weir and barra	age (any four points).		
		Sr. No.	Weir	Barrage		
		01	Initial cost is low	Initial cost of barrage is high.		
		02	Area of submergence is more	Area of submergence is less	1	
		03	The raising and lowering of shutter is not convenient	The raising and lowering of shutter is convenient	mark each (any	
		04	The control over flood is not possible	There is good control over flood	four)	
		05	It is difficult to inspect and repair	These provides better facilities for inspection and repair		
		06	Roadway is not possible across river	Roadway can be provided across the river		
		07	Storage of water is done by crest and very little by gate	In barrage most of water storage is done by shutter and very less by crest		4 M

Subject & Code: Irrigation Engg. (17502)

Page No. 15/23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Que. Sub No. Que	NIODEL Answers	Marks	Total Marks
Q.4 (B) (b)		2 M	
	UIS BAPPAGE GATE DIS DIS ON PLAN GATE OPERATING SYSTEM	1 M	
	Martin Martin BARRAGE FOUNDATION FOUNDATION ELEVATION Considered.) Kine And Sila	3 M	6 M

Subject & Code: Irrigation Engg. (17502)

e.).	Sub. Que.			Model Answers			Marks	Tot Mar
5. 5	Que.	Attem	pt any TWO.					10 Nia
	a)		he design discharge		0	0	1	
		Sr.	Name of Cr	-	rea	Duty		
		No.			ted (ha)	(ha/Cumec)		
		1	Paddy (KH)		00	600		
		$\frac{2}{3}$	Wheat (Rabi)		50	1200		
		4	Groundnut (KH Gram (Rabi)		00 00	<u>800</u> 1700		
		4	· · · ·		50	700		
		5	Vegetables (Rab)))	50	/00		
		Assun	ne :					
			ase period as per sea	ason				
			ransit losses – 15 %					
		iii) T	ime Factor – 7 / 12					
		iv) C	apacity Factor – 0.8	}				
		Ans.						
		(1) Tal	king base period as fo	ollows –				
		Sr.	Name of Crop	Base period	Area	Duty	1	
		No.	Name of Crop	(B in Days)	Irrigated	•		
		110.		(D III Days)	(A in ha)	,		
		1	Paddy (KH)	123	200	600		
		2	Wheat (Rabi)	122	350	1200		
		3	Groundnut (KH)	123	600	800		
		4	Gram (Rabi)	122	400	1700		
		5	Vegetables (Rabi)	122	350	700		
		(2) Dis	scharge for crops –			·		
			$\frac{A_1}{D_1} = \frac{200}{600} = 0.333cun$				1 M	
			$\frac{A_2}{D_2} = \frac{350}{1200} = 0.292cu$				1 M	
		$Q_3 = -\frac{1}{2}$	$\frac{A_3}{D_3} = \frac{600}{800} = 0.750cum$	nec(KH)			1 M	
		$Q_4 = -$	$\frac{A_4}{D_4} = \frac{400}{1700} = 0.235c$	umec(Rabi)			1 M	
		$Q_5 = \frac{1}{2}$	$\frac{A_5}{D_5} = \frac{350}{700} = 0.500cu$	mec(Rabi)			1 M	
		1	Rabi = 0.292 + 0.235				1 M	
		\mathcal{L}_{reqd} .	<i>Kharif</i> = $0.333 + 0.7$	50 - 1.005Cume	i l			
			$= Q_{regd}$ Kharif $= 1.08$					

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No. 18/23

Que. Sub No. Que	NIODEL Answers	Marks	Total Marks
<u>0. Que</u> <u>2.5</u>	Design Discharge =Qmax Time Factor X Capacity Factor X Transit Losses	1 M	Warks
	$Q = \frac{1.083}{\left(\frac{7}{12}\right)X0.8X\left(\frac{100-15}{100}\right)} = 2.730cumec$		
	Design Discharge = 2.730 Cumec	1 M	8 M
b)	Describe the types of failures of earthen dams & remedial measures.		
Ans		2 M	
	(a) Rollez Action Wave Action		
	 (2) Seepage Failure : It may be caused by – a) Piping or Undermining : Due to continuous seepage, flow through the body of the dam & through the sub-soil below the dam. The d/s side gets eroded or washed out & a hollow pipe like groove is formed which extends gradually towards the u/s through the base of the dam. This phenomenon is known as piping or undermining. It weakens the dam & ultimately causes the failure of the dam. 		

Subject & Code: Irrigation Engg. (17502)

Que. No.	Sub. Que.			Model Answer	rs		Marks	Total Marks
<u>Q.5</u>	b)	sloughin base of t the toe of dam coll (3) Struct a) Slidin the dam on depres	<u>ctural Failure :</u> ng of side slopes : slides down to for essing gradually &	voir runs full, fo aturated. Due to a crumbling grac Sometimes it is rm some steeper	found that the tope.	ime, the d/s eepage water tely the base of side slope of he dam goes	2 M	Marks
		b) Dama body of c) Dama craw, fis holes the	of the dam. age by Earthquake the dam . It may e age by burrowing a sh, snake, squirrel rough the foundati al measures to av	eventually collar animals : Some etc. causes dam on & body of th	ose. burrowing and age to the dam he dam.	imals like 1 by digging	2 M	
		1) Contra) Prob) Proc) Proc) Pro2) Contra) Prob) Pro3) Contra) Prob) Proc) Proc) Pro	col of seepage thro ovide Hearting in t ovide casing over to ovision of horizont col of seepage thro ovide cutoff trench ovide concrete cut col of seepage in g ovide rock toe on c ovide pitching on to ovide turfing on d/ ovide berms at 8 to	ugh embankmen he central portion the hearting. al drainage blar ough foundation under hearting off wall eneral d/s face at toe. u/s slope. s slope.	<u>nt</u> on of dam. ıket zone.		2 M (Any two)	8 M
	c)		& draw line ske ollowing four situ		of cross drain	age works		
		Case I II	Nallah Bed Level (RL in m) 100,00 108.00	Nallah HFL (RL in m) 106.00 110.00	Canal Bed Level (RL in m) 107.00 105.00	FSL of Canal (RL in m) 110.00 107.00		
		III IV	100.00 100.00	104.00 104.00	102.00 100.00	104.00 102.00		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Que. Sub No. Que	Model Answers	Marks	Total Marks
Q.5 c)	Ans. For mentioned condition following type of cross drainage works are suitable – $\frac{Road}{Canal} = 100m$	2 M	
	(Case I) Road HEL=11Dm Nallah Bed level= 108m Est=107m Canal Bed Level= Los Mallevel= Road Road HEL=11Dm Bed level= 108m Est=107m	2 M	
	SUPERPASSAGE C Case II) HFL=104m P T Canal Bed Level=102m Nallah Bed Level=100m SYPHON AQUEDUCT (Case III)	2 M	

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	IVIOUEI Alisweis	warks	Marks
Q.5	c)	Nallah V Ceest Wall Canal Bed Level = 100m LEVEL CROSSING (case III)	2 M	8 M
Q.6		Attempt any FOUR. Explain the construction & operation of KT weir.		16 M
	a) Ans.	Ans. Construction : This type of bandhara is commonly constructed in Kolhapur district & hence called K. T. Weir. The sufficient openings are kept in nalla portion so that there is no afflux. Masonry piers with regular grooves are provided with standard opening of 2 m. These openings are blocked by means of needles in two rows filled with paddle in between them. The needles are placed in the grooves provided in piers. The size of wooden needle 15 cm high, 5 cm thick & 2 m in length. These wooden needles are placed into the openings by the fag end of monsoon to store the post monsoon water. It is necessary to restrict the number of openings because of the consideration difficulties involved each time in placing the wooden needles at the fag end of the monsoon & removed of them just before the monsoon. Operation: It is fully open weir. It consists of number of piers & has side grooves for fixing wooden needles. The needles are put across the piers for the required height to form continuous weir. The height can be changed by removing needles or putting additional needles. Needles are removed during floods to avoid rise of water on u/s.	2 M 2 M	
				4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No. 22/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	b)	 Mention four advantages of sprinkler irrigation over canal irrigation. Ans. Following are the four advantages of sprinkler irrigation over canal irrigation : Erosion of land can be controlled. Uniform application of water is possible. Irrigation is better controlled. Land preparation is not required, hence labor cost is reduced. Small streams of irrigation water can be used efficiently. Fertilizers can be applied in solution form along with irrigation water from the sprinkler. Elimination of seepage & percolation losses thus prevents water logging. 	1 M each (any four)	4 M
	c) Ans.	Draw the cross section of canal in embankment & partial cutting & embankment.	2 M (ske- tch, , Labe- lling)	
		Boundazy Stone 1 Boundazy Stone 1 Cls OF CANAL IN PARTIAL CUTTING & EMBANKMENT (Conal bank level is below G.1. but FSL is above G.1.)	2 M (ske- tch, , Labe- lling)	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2016

Subject & Code: Irrigation Engg. (17502)

Page No. 23/23

Que. No.	Sub. Que.		Model Ar	iswers	Marks	Tota Mark
<u>6</u>	d)	_	in four causes & correspondi logging.	ng preventive measures of		Wiark
	Alls.	Sr. No.	Causes of water logging	Corresponding Preventive measure		
		1	Over & Intensive irrigation	Reducing the intensity of irrigation		
		2	Seepage of water from the adjoining high lands	Providing intercepting drains	1 mark	
		3	Seepage of water through canals	Lining of canals	each (any	
		4	Impervious Obstruction	Providing intercepting drains	four)	
		5	Inadequate natural drainage	Improving natural drainage of the area		
		6	Inadequate surface drainage	Providing intercepting drains		
		7	Excessive rain fall	Provision of an efficient drainage system		
		8	Submergence due to floods	Improving natural drainage of		4 M
	e)	-	are between aqueduct & sup	the area er passage.		
	e) Ans.	Ans. Sr.	are between aqueduct & sup Aqueduct	<u> </u>		
		Ans.	Aqueduct	er passage. Super Passage		
		Ans. Sr.	Aqueduct The discharge of drain is more in comparison to canal	er passage. Super Passage The discharge of canal is more in comparison to drain		
		Ans. Sr. No.	Aqueduct The discharge of drain is	er passage. Super Passage The discharge of canal is more		
		Ans. Sr. No. 1 2	Aqueduct The discharge of drain is more in comparison to canal discharge. The bed level of canal is sufficiently above the high flood level in the drain.	er passage. Super Passage The discharge of canal is more in comparison to drain discharge. The bed level of drain is sufficiently above the Full supply level in the canal.	1 M each	
		Ans. Sr. No.	Aqueduct The discharge of drain is more in comparison to canal discharge. The bed level of canal is sufficiently above the high	er passage. Super Passage The discharge of canal is more in comparison to drain discharge. The bed level of drain is sufficiently above the Full		
		Ans. Sr. No. 1 2	Aqueduct The discharge of drain is more in comparison to canal discharge. The bed level of canal is sufficiently above the high flood level in the drain.	er passage. Super Passage The discharge of canal is more in comparison to drain discharge. The bed level of drain is sufficiently above the Full supply level in the canal.		4 M