WINTER- 18 EXAMINATION

Subject Name: ESTIMATING AND COSTING
Model Answer
Subject Code: 17501

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
Q. 1	a) (i) Ans	Attempt any THREE of the following: State the purpose of estimating and costing. Purpose of estimating: 1) Before starting the construction project it is necessary to know the probable cost so that financial arrangements can be made. It is the main purpose of estimating. 2) Various technical and administrative departments need estimate for approval and sanctioning the project. 3) Before starting construction project, contractor and concerning authority must know the tools, plants, machineries and equipments. Estimate helps to know the requirements of tools, plants equipments and labor required. 4) With the help of estimating, construction schedule and program accordingly can be prepared. 5) Companies and Government departments invite tenders of the project. Estimating helps in preparing probable cost of project on basis of which contractor fills the tender. 6) To determine the value of construction, or value of property, estimate is prepared. 7) To determine completion period of the project, Estimate is prepared. In brief, estimating is important for various sanctions, scheduling, tendering etc. Purpose of Costing. 1) To study feasibility of project. 2) Owner is able to plan finance before starting construction. 3) Various items required for construction is well known in advance which helps the planning. 4) Alterations are possible if costing goes beyond capacity.	(12) (any four) 1/2 mark For each 1/2 mark For each

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Ornamental cornice: It is measured in cu.m. \\
Honeycombed brickwork: Honeycombed brickwork is measured sq.m, stating its thickness and pattern of honey combing. Holes or openings in honeycombing shall not be deducted. \\
Formwork: Formwork is measured in sq.m
\end{tabular} \& \\
\hline Q. 1 \& \begin{tabular}{l}
b) \\
(ii) \\
Ans
\end{tabular} \& \begin{tabular}{l}
Describe in brief rules of deduction for opening as per IS 1200 for brickwork and plastering. \\
Deduction in masonry as per IS1200 \\
1) No deduction is made for opening up to 0.1sq.m (1sq.ft) \\
2) No deduction for ends of beam, posts, rafter, purlins up to 0.05 sq.m of section. \\
3) No deduction bed plate, wall plate, bearings of chajjas etc up to 100 mm depth. \\
4) Bearings of floor and roof slabs, concrete blocks for hold fasts are not deducted from Brick Masonry \\
5) For other Rectangular openings, deduction will be equal to volume of B.M. less volume of opening. (LX BX \(\mathrm{H}-\mathrm{I} \times \mathrm{b} \times \mathrm{h}\)) \\
6) For semicircular arch opening
\[
\text { Deduction } \left.=\left((\mid \times h)+\frac{1}{4} \times \mid \times r\right) \times \text { thickness of wall }\right)
\] \\
Deduction rules for Plastering \\
1) No deduction or addition is made for ends of beam, joists, post, rafters and steps. \\
2) No deduction is made for small openings up to 0.5 sq.m and no addition is made for jambs, soffits and sills of these openings. \\
3) For openings exceeding 0.5 sq.m but less than 3 sq.m deduction is made for one face only and no addition for jambs, soffits and sills is considered. \\
4) For openings above 3 sq.m , deduction is made for both faces and addition for jambs, soffits and sills are taken into account.
\end{tabular} \& 03 M \\
\hline Q. 2 \& a)
Ans \& \begin{tabular}{l}
Attempt any TWO of the following: \\
Describe in brief procedure for preparing approximate estimate of irrigation project and highway project. \\
Approximate estimate of Irrigation project. \\
Approximate estimate of Irrigation project is determined by considering approximate estimate of storage reservoir, dam, or canals. \\
For storage reservoir and the dam, estimate is prepared on the basis of per million cubic meter of storage capacity or sq.m of catchment area. This method involves, selection of site with the help of topo- sheets and finding the catchment area. Finding rainfall data from rain gauge station near catchment area, Finding capacity of reservoir by contours, and deciding construction cost per million cubic meter. \\
For canals ,approximate estimate is prepared on the basis of per km, or per cubic meter capacity of canal or per hectare of command area. \\
For example; \\
1) Approximate cost of 10 km long irrigation canal is Rs. 5 lakhs at the rate of Rs. \(50,000 /-\) per km. \\
2) For an irrigation project of command area 2000 hectares, approximate estimate is Rs 40 lakhs at rate of Rs 2000/- per hectare. \\
Approximate estimate of highways. \\
For preparation of approximate estimate of highways, service unit method is adopted.
\end{tabular} \& (16)

01 M

02 M
01 M

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Service unit adopted for new proposed highway is per km or per mile. \\
The cost of road per km depends upon nature of road(National/ state highway or village road), width of road, thickness of metaling pavement surface, temporary and permanent acquisition of land, topography and cross drainage works. \\
By knowing the cost of construction per km length of a similar type of road(rate), approximate estimate of proposed road can be prepared. \\
For example: State highway of 10 km is constructed in Rs 20,00000/- . Hence approximate cost per km length is Rs.200000/-.
\end{tabular} \& \begin{tabular}{l}
01 M \\
01 M \\
01 M \\
01 M
\end{tabular} \\
\hline Q. 2 \& b) \& \begin{tabular}{l}
Prepare approximate estimate for high school building from following data. \\
i. Proposed plinth area \(=2500\) sqm. ii. Plinth area rate \(=4000 /\) sqm. \\
iii. Water supply charges \(=3 \%\) of cost of building. \\
iv. Electric installation charges \(=10 \%\) of cost of building. \\
v. Contingencies \(=3 \%\) of overall cost of building. \\
Approximate estimate of school building.
\[
\begin{aligned}
\text { Cost of building }=\text { plinth area } \times \text { rate } \& =2500 \times 4000 \\
\& =\text { Rs. } 100,00000 /-
\end{aligned}
\]
\[
\begin{aligned}
\text { Water supply charges } \& =3 \% \text { of cost of building } \\
\& =3 / 100 \times 100,00000=\text { Rs. } 300000 /-
\end{aligned}
\]
\[
\begin{aligned}
\text { Electrical installation charges } \& =10 \% \text { of cost of building. } \\
\& =10 / 100 \times 10000000=\text { Rs. } 1000000 /-
\end{aligned}
\] \\
Overall cost \(=10000000+300000+1000000=\) Rs \(11,300,000 /-\) \\
Contingencies \(=3 \%\) of overall cost \(=3 / 100 \times 11300000=\) Rs 3 39000/- \\
Approximate Estimate \(=11,300,000+339000=\) Rs. \(11,639,000 /-\)
\end{tabular} \& \begin{tabular}{l}
01 M \\
01 M \\
01 M \\
02 M \\
01 M \\
02 M
\end{tabular} \\
\hline Q. 2 \& \begin{tabular}{l}
c)i) \\
Ans
\end{tabular} \& \begin{tabular}{l}
Describe in brief center line method for taking out quantities. \\
Centre line method: Centre line method is used for calculating quantities of rectangular, circular and polygonal buildings. This method is simple and quick. Calculations in this method are less and easy. \\
Centre line method involves the following steps. \\
a)prepare centre line plan at foundation from given drawing and write centre line lengths of each wall. \\
b) Find the total length of centre lines having the same type of footing. \\
c) Calculate the number of junctions of cross walls. It may be noted that ,corners of buildings are not taken as junctions. If two walls meet at one point, then take \(n=2\) at that point. \\
Calculation of length of an item \(=\) Total centre line length \(-\mathrm{n} \times(1 / 2\) width of item) \\
Where \(n=\) number of junctions of cross walls with main walls . \\
d) For buildings having different type of walls, each set of walls should be taken separately. \\
e) Multiply number, length, breadth, depth to get the quantity of item.
\end{tabular} \& 01 M

03 M

\hline Q. 2 \& c)ii)

Ans \& | State the approximate percentage of steel required for following R.C.C. members. |
| :--- |
| 1. Footing |
| 2. Column |
| 3. Beam |
| 4. Slab |
| Approximate percentage of steel required for |
| 1) Footing : 0.5% to 0.8% of quantity of concrete in cu.m |
| 2) Column : 1% to 5% of quantity of concrete in cu.m | \& 01 M for

\hline
\end{tabular}

		3) Beam : 1% to 2% of quantity of concrete in cu.m density of mild steel 4) Slab : 0.7% to 1% of quantity of concrete in cu.m (But steel is not expressed in cu.m, hence quantity in quintals is calculated by considering density of mild steel as $7850 \mathrm{Kg} / \mathrm{m}^{3} .1 \mathrm{~m}^{3}$ of steel $=7850 \mathrm{~kg}$.)	each
Q. 3	a) Ans	Attempt any FOUR of the following: Describe in brief DSR. 1) It is printed booklet (or in the form of soft copy) in which rate of various items are given. DSR means District Schedule of rates. 2) In DSR, labour rates and material rates are also mentioned. 3) DSR served as guide for preparation of estimate of any work. 4) DSR is revised every year because of changes in cost of materials and labour charges every year.	(16) 01 M for each
Q. 3	b) Ans	State data required for detailed estimate. 1) Drawing: - Detailed drawing showing plan, elevation and section with all dimensions. 2) Specifications: - Detailed specification which decides rates of various items. 3) Rates: - Market rates of various items, materials and labours. For this DSR may be preferred. 4) Location of work: - It is needed to use appropriate rates of items. 5) Modes of measurement: - Modes of measurements for various items shall be decided.	Any four 01 M foe each
Q. 3	c) Ans	Define: i. Provisional sum ii. Provisional quantities i) Provisional sum: - It is amount provided in the estimate for specialized items such as installation of lift, air conditioner, firefighting equipment, acoustic work etc., details of which are not known at the time of preparing estimate. ii) Provisional quantities: - When the quantities of particular items are uncertain due to unavailability of data, provisional quantities of those items are called provisional items and corresponding quantities are called provisional quantities.	$02 \mathrm{M}$ $02 \mathrm{M}$
Q. 3	d) Ans	Enlist any four software used for estimation in civil engineering. 1) Tally system 2) Sage 3) Maxwell system 4) Premier construction software 5) e-Take off 6) Construction partner 7) Auto Quantity Takeoff - QTO 8) Estimator - CESDb etc.	Any four 01 M for each
Q. 3	e) Ans	Define: i. Lead and Lift ii. Task work i. Lead: - It is horizontal distance between point of earthwork excavation and point of earthwork disposal. It is generally measured in terms of 50 m distance. ii. Lift: - It is average vertical distance between point of excavation and point of disposal. Standard lift is 1.5 m . iii. Task work: - It is capacity of doing the work by average labour in terms of work per day (08 hours0	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \\ & 02 \mathrm{M} \end{aligned}$
Q. 4	a)	Work out quantities of the following any THREE items of work from Figure No.1. (i)Earth work in Excavation (ii) P.C.C. (1:4:8) (iii) U. C. R. Masonry in foundation (iv) Mosaic flooring	(12)

Sr.						
No.	Description	No.	L	B	D/H	Quantity

02 M for figure
(1) Mid-sectional area method:

Earthwork Calculation
$b=10 \mathrm{~m}, \mathrm{~s}=2$ for cutting as well as filling

Chain age (m)	Height (m)	Mean Ht . (h) (m)	Central Area (bh) (m^{2})	Area of side parts sh^{2} $\left(m^{2}\right)$	$\begin{gathered} \text { Total } \\ \text { Area } \\ \left(\mathrm{bh}+\mathrm{sh}^{2}\right) \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	Length in meter (L)	Quantity of earthwork $\left(b h+s h^{2}\right) \times L\left(m^{3}\right)$	
							Filling	Cutt ing
300	2.00	--	--	--	--	--	--	--
330	1.20	1.60	16.00	5.12	21.12	30	633.60	--
360	1.20	1.20	12.00	2.88	14.88	30	446.40	--
390	0.50	0.85	8.50	1.45	9.95	30	298.50	--
420	0.75	0.625	6.25	0.78	7.03	30	210.90	--
						total	1589.40	--

OR
(2) Mean-Sectional area method:

Earthwork Calculation
$b=10 \mathrm{~m}, \mathrm{~s}=2$ for cutting as well as filling

Chain age (m)	Height (h) (m)	$\begin{gathered} \text { Area } \\ (\mathrm{b}+\mathrm{sh}) \mathrm{h} \\ \left(\mathrm{~m}^{2}\right) \end{gathered}$	Mean area A $\left(m^{2}\right)$	Length in meter	Quantity of earthwork ($\mathrm{A} \times \mathrm{L}$) $\left(\mathrm{m}^{3}\right)$	
					Filling	Cutting
300	2.00	28.00	--	--	--	--
330	1.20	14.88	21.44	30	643.20	--
360	1.20	14.88	14.88	30	446.40	--
390	0.50	5.50	10.19	30	305.70	--
420	0.75	8.62	7.06	30	211.80	--
				total	1607.10	--

(Note : Calculation of Quantity of earthwork can be done by any one method from above

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

		(1) Major factors: The are mainly two factors on which the rate of an item depends, (i) Materials and (ii) Labour. (i) Materials :- The quantities of various materials required for the construction of an item can be easily worked out by knowing the specification of that item. (ii) Labour :- The labour force will be necessary to arrange the materials in a proper way so that the item can be completed. (2) Minor Factors :- (i) Special equipment: - If the execution of an item requires the use of some special equipment ort plant, the cost of using such special equipment on the rental basis should be included in the rate analysis of that item. (ii) Place of work :- The site of work will also have some effect on the rate of an item under certain conditions. If it is too far, more amount will have to be spent on carting. This will increase the cost of transportation of the materials and consequently, the rates of the items are to be modified. (iii) Nature of work :- If the work consists if large quantities of the items, the rates may be less and vice versa. (iv) Conditions of contract :- If the condition of contract are very stiff, the rates of various items will be high and vice versa. (v) Profit of the contractor :- The usual percentage of the profit of the contractor is TEN. But if it is more or less, the rate of the item will be correspondingly affected. (vi) Specifications :- If the specifications of work provide for rigid type tolerances and superior quality turn out, the rates will be on the higher side. (vii) Site conditions :- If the site conditions are such that difficulties will be experienced during execution of work, such as foundations involving water troubles, th0e rates will be on the higher side. On the other hand, if site conditions are ideally suited for the construction activities, the contractor may quote slightly lower rates. (viii) Miscellaneous :- The other remaining miscellaneous factors affecting rates of items include time of completion of the project, climatic conditions, reputation of the contracting firm, discipline of the organization, etc. (C) Importance of Rate analysis: The rate analysis is important: (1) To determine the actual cost per unit of the items. (2) To work out the economical use of materials and processes in completing the particulars item. (3) To calculate the cost of extra items which are not provided in the contract bond, but are to be executed as per the directions of the department. To revise the schedule of rates due to increase in the cost of material and labour or due to change in technique.	
Q. 6	b)	Work out the quantity of following items for septic tank (size $2 \mathrm{~m} \times 4 \mathrm{~m}$) and height 1.45 m. The top of slab of septic tank is 20 cm above GL. i. Earth work in excavation ii. P.C.C. (15 cm thick) at bottom. iii. B.B. Masonry ($\mathbf{2 5 0} \mathbf{~ m m}$ thick) iv. R.C.C. slab at top (15 cm thick) Assume baffle wall of 0.15 m thick and 15 cm offset is provided for P.C.C. on all sides of Septic Tank. First of all , draw the plan and sectional elevation of Septic tank from the given data	

