Important Instruction to Examiners:-

1) The answers should be examined by key words & not as word to word as given in the model answers scheme.

2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance.

4) While assessing figures, examiners, may give credit for principle components indicated in the figure. The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

- 1. In Question No- 4(a) Student may find quantity by centerline method. Final answer will be same by all methods.
- 2. In Question No- 5(a) if student have calculated the rate of sand and aggregates in brass instead of m3 marks should be given accordingly. Rates will be different at different places hence examiner should give proportionate marks. Marks should not be given according the GRAND TOTAL, marks should be given according to data entered by students i.e Material, Labour, Centering Shuttering etc.)
- 3. A) In Question No- 5(d) in this numerical depth of excavation is not mentioned hence if student have attempted this quantity full marks should be given.

B) Thickness of brick work is not given if students have assumed thickness of brickwork 0.23m thick or 0.3m thick or have attempted this question full marks should be given to students by examiner.

C) P.C.C is calculated considering thickness of BBM as 0.3m. If students have considered thickness as 0.23m thick proportionate marks should be given.

D) R.C.C slab is calculated considering thickness of BBM as 0.3m. If students have considered thickness as 0.23m thick proportionate marks should be given.

Q.NO	SOLUTION	MARKS
Q.1	Attempt Any Three of the following:	12 M
a)	State different types of estimates and explain any one in detail.	04 M
	 There are two types of estimates: 1) Approximate estimate or preliminary estimate 2) Detailed estimate 1) Approximate estimate or preliminary estimate: 	01M
	• This estimate is required for preliminary studies of various aspects of work or project, to decide the financial position and policy for administrative sanction by the competent authority. In case of commercial projects as irrigation projects, residential, building project and similar project which earn revenue, the probable income may be work out. To prepare the approximate estimate less skill and time is required.	3M (for any one)
	 3) Detailed estimate or item rate estimate: Detailed estimate is an accurate estimate and consists of working out the quantities of each item of work. The dimensions, length, breadth and height of each item are taken out correctly from drawing and quantities of each item are calculate, and abstracting and billing are done. All other expenses required for satisfactory completion of project are added to the above cost to know the total cost of the detailed estimate. 	
b)	Explain the lead and lift.	04 M
	 Lead: - It is the horizontal distance between the trench pit and the place where excavated earth is deposited. Normally lead is taken as 30m. Separate measurements are taken for every 30m lead. Lift: - It is the depth of excavation or the vertical movement of material is called Lift. Normally lift is taken as 1.5m. Separate measurements are taken for every 1.5m lift. 	02 M 02M
c)	1.5m lift. How will you prepare approximate estimate for roads and highways	04 M
	 Approximate estimate for roads and highways is prepared for per kilometer basis depending on the nature of road, width and thickness of metal etc. for roads and highways the factors to be considered area, land to be acquired, quantity of earthwork, type of road etc. 1. The cost of land acquired: The cost is variable if the route is passing through highly developed area, the cost of this item will be very high 2. The cost of excavation, embankment and drainage: The cost of this item depends 	04 M
	 The cost of excavation, embankment and dramage. The cost of this item depends on the topography of the country through which the highway runs. The cost of road surface or pavement: the cost of this item is fairly constant for two different highways with same road surface. e.g. for 10 km of a state highway approximate cost @ Rs. 500000 per 1 km works out as Rs.50 lakhs. 	

d)	Differentiate with respect to four points' unit quantity method and total quantity method.							
	Sr.No	Unit quantity method	Total quantity method	1 M (for each				
	1	In unit quantity method the work is divided into various items	In total quantity method item of work divided into the following five subdivisions a) Material, b) labour c) plant d) overheads e) profit.	point)				
	2	The total quantity of work under each item is taken out in proper unit of measurement.	The total quantity of each kind or class of material or labour are found and multiplied by their individual unit cost.					
	3	The total cost per unit quantity of each item is analyzed and work out.	Similarly, the cost of plants, overhead expenses and profit are determined.					
	4	Then the total cost for the item is found by multiplying the cost per unit quantity by no. of units.	The cost of all the five sub-heads is summed up to give the estimated cost of the item of work.					
1)B	Attemp	t any <u>ONE of the following</u>		6 M				
a)		e 'provisional quantities' and 'pro	visional sum'	6 M				
,		onal Sum:		3 M				
	some sp called "f Shifting work are Provisio These ar variation of drawi	ecial type of work whose details are provisional sum". Some special work of water lines, Installation of air come done through licensed contractor or onal quantities: The the additional quantities which are n of site condition. These quantities a ng and kept in the bill of quantities usere is a possibility of certain concret nal quantities for the work shall be p	ditioner and its fittings, sever lines such a	3M				

b)	Explain any six factors affecting the rate analysis	6 M
	Factors affecting Rate Analysis:-	1 M (for
	1. Major Factors :- a) Material b) Labour	each
	2. Minor Factors: -a) Special Equipment b) Place of work c) Magnitude of work d)	factor)
	Conditions of Contract e) Profit of the contractor f) Specification g) Miscellaneous	
	Major Factor:-	
	a) Materials: - The material can be calculated by knowing the specification of the items.	
	The price of various materials depends upon market conditions. The cost of material is	
	taken as delivered at site inclusive of transport, local taxes, and other charges. For tools	
	and plants and miscellaneous petty item which cannot be accounted in details lump sum	
	provision is made. It is also necessary to include a certain percentage of waste of all	
	materials to cover breakage, losses, cutting waste etc.	
	b) Labour: - The labour force will be necessary to arrange the materials in proper way	
	so that the items can be completed. The amount of labour force required to carry out a	
	unit of a particular item is decided from past experience or in case of complicated items	
	it is decided by carrying out a sample of that item. The labour force required depends	
	upon the efficiency of labourer hence this force will vary from place to place and also	
	there prices. By knowing the amount of labour force and wages of laborer the cost of	
	labour can be calculated	
	Minor factors:-	
	a) Special equipments: - different types of tools and plants are necessary for execution	
	of work. A good estimator will decide whether purchasing is more economical or hiring	
	the tools and plants is advisable.	
	b) Place of work:- if the site is in remote areas, transportation charges increases	
	similarly labour charges also varies i.e. if site conditions are difficult, cost will be more.	
	c) Magnitude of work: - greater the magnitude of work lesser will be the cost.	
	d) Conditions of Contract:- if the condition of contract is very stiff the rates are high	
	e) Profit of the contractor: - Normally 10% of actual cost of work is considered as	
	contractor profit.	
	f) Specification: - it shows the proportion of material, the method of construction and execution of work. If superior quality material issued rate will be higher	
	execution of work. If superior quality material issued rate will be higher.g) Miscellaneous: - time of completion, climatic condition, also affects the rate of item.	
	g) wiscenaneous time of completion, crimatic condition, also affects the fate of item.	

2)	Attempt any TWO of the following	16 M
a)	Prepare the rate analysis for brick masonry in super-structure using traditional	8 M
	bricks and cement mortar proportion 1:6	
	Rate Analysis for Brick Work in Super Structure in C.M (1:6) in Super Structure	
	Assume 1st Class Brickwork	
	Assume Volume of Brick Masonry = $10m3$	
	a) Dry Volume = 35% of volume of masonry	1M
	$=\frac{35}{100} \times 10 = 3.5 \text{ cu.m.}$	
	b) Volume of Cement = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}}$ x Content of cement in proportion	1M
	Volume of Cement = $\frac{3.5}{1+6} \ge 1 = 0.5$ cu. m	
	No. of Cement Bags = $\frac{0.5}{0.0347}$ = 14.409 bags	
	= approximately $=$ 15 bags	
	c) Volume of Sand = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}}$ x Content of Sand in proportion	1M
	Volume of Sand $=\frac{3.5}{1+6} \ge 6 = 3 \text{ cu. m}$	
	d) Number of Bricks	1M
	Size of one Brick = 19 cm x 9cm x 9 cm = 0.19 m x 0.9 m x 0.9 m	
	Add thickness of Mortar through $out = 1 cm$	
	Size of Brick with mortar = $0.2m \ge 0.1m \ge 0.1m$	
	Number of Bricks = $\frac{10}{0.2 \times 0.1 \times 0.1}$ = 5000 Nos.	
	Assume 5% wastages = $\frac{5}{100}$ x 5000 + 5000 = 5250Nos.	

Page No- 06 /20

Sr.No.	Particulars	Quantity	Rate Rs.	Per	Amount Rs.				
	Material								
	Cement	15	350	Bag	5250				
1	Sand	3	650	M3	1950				
	Bricks	5250	5	No.	26250				
	Scaffolding	Lump Sum	Lump Sum	Lump Sum	100	2M			
					33550				
	Labor								
	Head Mason	0.5	400	Day	200				
	Mason	9	300	Day	2700				
	Male Mazdoor	13	250	Day	3250				
2	Female Mazdoor	5	200	Day	1000				
	Bhisti	2	200	Day	400				
	Contingencies T& P	Lump Sum	Lump Sum	Lump Sum	400				
					7950				
				Total	41500				
2	Water Charges			1.5%	622.50				
5					42122.50				
	Profit & Overhead			10%	4212.25				
4				Grand Total	46334.75	2M			
	Rate Per Cu	bic Meter = 4	6334.75/10 =	4633.4 Rs					
students newly pr	and area of construct coposed school buildin	tion is 1600 m	2. Prepare ap	proximate est	imate of a	4M			
Cost of plinth area of existing school building $=\frac{25000000}{1600}$ = 15625 Rs/m ²									
Then, The approximate cost of Newly proposed school building =Total plinth area of proposed building X cost per plinth area of similar existing building = 15625 X 50000 = 7.8125 crores									
	1234The cost students newly pi plinth and Cost of pCost of pThen, Then, The app Newly pi	Material Cement 1 Sand Bricks Scaffolding Labor Head Mason Mater Mason Male Mazdoor 2 Female Mazdoor Bhisti Contingencies T& P Gamma 3 Water Charges 3 Profit & Overhead 4 Rate Per Cu The cost of construction of sch students and area of construct newly proposed school building plinth area method. Cost of plinth area of existing school building Then, The approximate cost of Newly proposed school building	Material1Cement151Sand3Bricks5250ScaffoldingLump SumLaborHead Mason0.5Mason9Male Mazdoor132Female Mazdoor5Bhisti2Contingencies T& PLump Sum3Water Charges3Profit & Overhead4Profit & Overhead4Image: School building for 1500 stup5Bhisti5School building for 1500 stup6Cost of plinth area of existing school building1Then,7The approximate cost ofNewly proposed school building=Total plint	Sr.No.ParticularsQuantityRs.Material $\hfill \ Cement$ 153501Sand3650Bricks52505ScaffoldingLump SumLump SumLabor $\hfill \ Head Mason$ 0.5400Mason9300Male Mazdoor132502Female Mazdoor5200Bhisti2200Contingencies T& PLump SumLump Sum3Water Charges $\hfill \ Quantity \ $	Sr.No.ParticularsQuantityRs.PerMaterial	Sr.No.ParticularsQuantityRs.PerRs.MaterialCement15350Bag52501Sand3650M31950Bricks52505No.26250ScaffoldingLump SumLump Sum100Image: Construction of the second s			

(ii)	Describe 'typical bay' method for approximate estimate.	4 M
	Typical Bay Method: This method is used for the buildings have similar column spans	4 M
	over a larger area such as factory buildings, go-downs, railway platform. Cost of each	
	bay is found out by using other method of estimation. Then the cost of whole factory	
	building is worked out by multiplying the total number of bays by the cost of	
	construction for each bay.	
	Approximate cost = no. of bays X cost of one bay	
c)(i)	State the desired accuracy in taking measurements of items of work as per IS-1200	4 M
	To achieve the desired accuracy in measurements, following points shall be observed,	1M
	1. Dimensions shall be measured to the nearest 0.01 m except the following:	(For
	• Thickness of slab measured nearest to 0.005 m.	each
	• Wood work to nearest 0.002m.	point)
	• Reinforcement to nearest 0.005 m.	
	• Thickness of roadwork less than 20 cm, measured nearest to 0.005m.	
	2. Areas shall be measured to the nearest 0.01sq.m.	
	3. Cubic content shall be worked out nearest to 0.01cu.m. Wood work shall be measured	
	nearest to 0.001cu.m.	
	4. Weights shall be workout to nearest 1 kg.	
(ii)	Give the market rates of the following materials.	4 M
	a) Cement bag:- 290-350 Rs/bag	1M
	b) Reinforcing steel:- 32000-35000 per ton	(For
	c) Teak wood:- $3000-3100 \text{ per ft}^3$	each)
	d) Coarse aggregate (20 mm to 22 mm):- 900-1000 m^3	
Q3.	Attempt <u>Any Four</u> of the following:	16 M
a)	What are the advantages of using software (QE – Pro) in preparation of estimates	04 M
	of civil engineering works?	
	Following are the advantages of QE-Pro:	1 M
	1) Fort of accurate quantity computation.	Each
	2) Calculates quantities from building plans.	give any
	3) Generation of measurement sheet in LBD format.	four
	4) Cost break up for material, labour and machine.	
	5) Project planning and Gantt chart.	
	6) Interface with MS project.	
b)	Enlist any four software used for estimation in civil engineering.	04 M
	1) QE-Pro	1M for
	2) 2002 CD Estimator.	each give
	3) Chief Estimator	any four
	4) ICE 2000.	points
	5) TECS.	
	6) Estimator 2.0	
	7) Estimate Master 5.13	
	8) Build Soft	
	9) Plan Swift Software	
	10) EXTRAXION Estimating Software etc.	

	State any four purposes of estimating and costing.	04 M
	Purpose of Estimating	1M for
	1) To know the approximate cost of proposed work.	each give
	2) To obtain administrative approval and technical sanction.	any four
	3) To know the requirement of tools, plants and equipment.	points
	4) To fix up the completion period.	Police
	5) To draw up a construction schedule and programme.	
	6) To know value of property.	
	7) To invite tender.	
	8) To keep control over expenditure during construction.	
	Purpose of Costing	
	1) To arrange the finance for proposed work.	
	2) To know the probable cost of project before the execution.	
	3) For valuation of existing property	
	4) To know the cost of various items, well in advance, to be constructed.	
d)	State the rules for deduction in plastering as per IS - 1200.	04 M
	Plastering usually 12mm thick is calculated in sq.m.	1 M
	Deduction in plastering are made in the following manner	Each
	1) No deduction is made for ends of beams, posts, rafters etc.	Luch
	2) No deduction is made for opening up to 0.5 sq.m. And no addition is made for jambs,	
	soffits and sill of these opening.	
	3) For opening more than 0.5 sq.m. And up to 3 sq.m. Deduction is made for one face only.	
	No addition for jambs, soffits and sills.	
	4) For opening above 3 sq.m. Deduction is made for both faces of openings, and the jambs,	
	soffits and sill shall be added.	
e)	Explain PWD method of taking out quantities.	04 M
	PWD method is also called as Long wall and short wall or 'out-to-out' and 'in-to-in'	
	method. For the accurate estimate the dimensions, length, breadth and height or depth are	
	taken out correctly from drawings. Then the following steps are followed	
	1) Draw the center line plan.	
	2) Consider wall spanning in horizontal direction as 'long wall' and vertical	0434
	direction as 'short wall' in plan or vice versa.	04 M
	3) Calculate the center to center lengths of long wall and short wall	
	4) Calculate length of 'long wall' out to out	
	Length of long wall = c/c length of long wall + width of item	
	5) Calculate length of 'short wall' in to in	
	Length of short wall = c/c length of short wall - width of item	
	6) Multiply the length by the width and depth to find the quantity.	
	Student should draw a diagram showing long wall and short wall or at least show sample	
	calculation of long wall and short wall.	
f)	Find quantity of 10 mm φ reinforcement in footing shown in fig. no. 1 and prepare	
1)	schedule of reinforcement.	
		04 M
	TAT	U4 IVI
	$10 \text{ mm} \phi$	
	@150 mm c/c	
	(eeee) (al 150 mm c/c both way	
	(also mm c/c both way	

Page No- 10 /20

Item	Description or	No	Length	Breadth	Depth	Quantity	Total	
No.	Particular of work			2. caum	2 cpui	Zumny	Quantity	1 N
i)	Excavation in		1		1	1	Zummy	ce
1/	foundation							li
	Toundation							cal
	5W1 5W2 4.8m 4.3m							ti
	LWI E LWI CO CO SWI							2 N fin cor ans
	4.8 m Center line plan							1 N
	Long wall :							
	LW1 = 7.3; LW2 = 5.3.							pro ta
	Short Wall							W
	SW1 = 4.8; SW2 = 4.3							a
	LW1 = 7.3 + 1 = 8.3m	2	8.300	1.000	0.850	14.110	1	cal
	LW2 = 5.3 + 1 = 6.3m	1	6.300	1.000	0.850	5.355		ti
	E = 5.5 + 1 = 0.5 II		-		_	6.460		•
	SW1 = 48 - 1 = 38m	2	3 800		10 850	0 400		
	SW1 = 4.8 - 1 = 3.8m SW2 = 4.3 - 1 = 3.3m	2	3.800	1.000	0.850			
	SW2 = 4.3 - 1 = 3.3m	2	3.300	1.000	0.850	5.610	31.535m ³	
method	SW2 = 4.3 - 1 = 3.3m Student may find quantity l	2	3.300	1.000	0.850	5.610	31.535m ³	
method PCC 1	SW2 = 4.3 - 1 = 3.3m Student may find quantity l ls. : 4 : 8 in foundation	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all	
method PCC 1 Item	SW2 = 4.3 - 1 = 3.3m Student may find quantity l ls. : 4 : 8 in foundation Description or	2 by cen	3.300	1.000 ethod. Final	0.850	5.610	31.535m ³ by all Total	1 N
method PCC 1 Item No.	SW2 = 4.3 - 1 = 3.3m Student may find quantity l ls. : 4 : 8 in foundation	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all	1 M
method PCC 1 Item	SW2 = 4.3 - 1 = 3.3m Student may find quantity l ls. : 4 : 8 in foundation Description or Particular of work	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all Total	1 N cei li
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 SUL 4.8 m 4.8 m	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all Total	1 N cer li cale
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 SW2 4.8 m 4.5 m 5 5 m 6 5 m 6 5 m 6 5 m 7 5 m 7	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all Total	1 N cer li cal ti 2 N fi cor
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 SW2 = $4.3 - 1 = 3.3$ m : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation Center line plan Long wall :	2 by cen	3.300 terline mo	1.000 ethod. Final	0.850 answer v	5.610 vill be same	31.535m ³ by all Total	1 N cei li calo ti 2 N fi coi ans
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 4.8 m Center line plan Long wall : LW1 = 7.3; LW2 = 5.3. Short Wall SW1 = 4.8 ; SW2 = 4.3	2 by cen	3.300 terline mo	1.000 ethod. Final Breadth	0.850 answer v	5.610 vill be same Quantity	31.535m ³ by all Total	1 M cer li cald ti 2 M fi cor ans 1 M pro
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 = 4.8 ; SW2 = 4.3 LW1 = 7.3 ; LW2 = 5.3 . Short Wall SW1 = 4.8 ; SW2 = 4.3 LW1 = $7.3 + 1 = 8.3$ m	2 by cen	3.300 terline mo Length 8.300	1.000 ethod. Final Breadth	0.850 answer v Depth 0.200	5.610 vill be same Quantity 3.320	31.535m ³ by all Total	4 1 M cer li cald ti 2 M fi cor ans 1 M pro ta
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation Swi 4.8 m 4.8 m 4.8 m 4.9	2 by cen	3.300 terline mo Length 8.300 6.300	1.000 ethod. Final Breadth	0.850 answer v Depth 0.200 0.200	5.610 vill be same Quantity 3.320 1.260	31.535m ³ by all Total	1 M cer li cale ti 2 M fir con ans 1 M pro ta wo
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation SW1 4.8 m 4.8 m 4.8 m 4.8 m 4.8 m 4.8 m 4.9 m 1.00 wall : LW1 = 7.3 + 1 = 8.3 m LW2 = 5.3 + 1 = 6.3 m SW1 = $4.8 - 1 = 3.8$ m	2 by cen No 2 1 2	3.300 terline mo Length 8.300 6.300 3.800	1.000 thod. Final Breadth 1.000 1.000 1.000	0.850 answer v Depth 0.200 0.200 0.200	5.610 vill be same Quantity 3.320 1.260 1.520	31.535m ³ by all Total	1 N cer li calo ti 2 N fi cor ans 1 N pro ta wo a
method PCC 1 Item No.	SW2 = $4.3 - 1 = 3.3$ m Student may find quantity lis. : 4 : 8 in foundation Description or Particular of work PCC 1 : 4 : 8 in foundation Swi 4.8 m 4.8 m 4.8 m 4.9	2 by cen No 2 1 2	3.300 terline mo Length 8.300 6.300	1.000 ethod. Final Breadth	0.850 answer v Depth 0.200 0.200	5.610 vill be same Quantity 3.320 1.260	31.535m ³ by all Total	1 N cei li cal ti 2 N fi con ans 1 N pro ta w

Page No- 11 /20

Item	Description or	No	Length	Breadth	Depth	Quantity	Total
No.	Particular of work						Quantity
i)	UCR in foundation						
	Step 1.						
	$LW_{1} = LW_{1} \xrightarrow{SW_{2}} UW_{2}$						
	SW, 4.8 m						
	Center line plan						
	Long wall :						
	LW1 = 7.3; LW2 = 5.3.						
	Short Wall						
	SW1 = 4.8; SW2 = 4.3 LW1 = 7.3 + 0.8 =	2	8.100	0.800	0.600	7.776	
	8.1m	2	0.100	0.800	0.000	7.770	
	LW2 = 5.3 + 0.8 =	1	6.100	0.800	0.600	2.928	
	6.1m						
	SW1 = 4.8 - 0.8 =	2	4.000	0.800	0.600	3.840	
	4.0m						
	SW2 = 4.3 - 0.8 =	2	3.500	0.800	0.600	3.360	
	3.5m					17.904	
						m3	
ii)	UCR in plinth Step 2.						
/	LW1 = 7.3 + 0.6 =	2	7.900	0.600	0.800	7.584	
	7.9m						
	LW2 = 5.3 + 0.6 =	1	5.900	0.600	0.800	2.832	
	5.9m		4 200	0.000	0.000	4.000	
	SW1 = 4.8 - 0.6 = 4.2m	2	4.200	0.600	0.800	4.032	
	3.2m SW2 = 4.3 - 0.6 =	2	3.700	0.600	0.800	3.552	
	3.7m	2	5.700	0.000	0.000	5.552	
						18.000	
						m3	
	Total UCR in plinth						35.904
	and foundation.						m3

WINTER – 15 EXAMINATIONS <u>Model Answer-</u> Estimating and Costing

Page No- 12 /20

iv)	Mosaic	c flooring								4 M
·	Item	Description	or	No	Length	Breadth	Depth	Quantity	Total	
	No.	Particular of							Quantity	3 M for
	i)	Mosaic floo	oring							calculation
		Room 1		1	4.500	7.000		31.500		
		Room 2		1	4.000	5.000		20.000		1 M for
		Door Sill fo	r D1	3	0.300	1.000		0.900		final
									52.400 m ²	correct answer
		Students may rrect method						n in sectior	n of figure	
4. (B)		pt any one of								6 M
	Calcul	ate the quan ig schedule.			ement for	• the follow	wing and	prepare a	bar	
		nber	Overall	size		Details	of Reint	forcement		
	Bear		4000	mm			ottom	oreciment		
	Deal		length	min			einforce	ment		
			(230 m							
			400 H					- 5 Nos. – nt and 2		
			section)	mm			ent up)	n and 2		
			section)				-	orcement	-	
							$2 \text{ mm } \phi$		-	
						(c) St	irrups -	6 mm ¢		
			1			0		150		
		e clear cover of main bar	on all sides	= 25 1	mm.	@ c/	c	150 mm		
		e clear cover of main bar	on all sides	= 25 1	mm.			150 mm		
	Length	of main bar			4000			150 mm		
		of main bar	on all sides		4000					3 M for calculation

		1			_				
i)	Bent up	bar							
	\sim	-	1	2					
	$I - T_{r}$	- 2 x side cover +	2×0	42 x d +	2 x 94				
		$0 - 2 \ge 25 + 2 \ge 0$							
		2 mm.							
ii) Length	of anchor Bar							
	-		-	2					
	L – T	– 2 x side cover +	2 v 0	<u>д</u>					
		$-2 \times 3100 \text{ cover}$		Ψ					
		56 mm.							
ii	i) Length	of Stirrups							
	100	701							
	1000								
	L	2 - 25							
	A = 230 = 180	- 2 x 25							
	$\mathbf{B} = 400$								
	= 350								
		(A + B) + 24 d (B + 350) + 24 x 6							
	= 2(10) = 1204								
iv) Number	r of stirrups = $\frac{TL - TL}{TL}$	2 x Clea	r cover	+ 1				
1			Spacin	g	⊤ 1				
			.50	+ 1					
		= 27.33 say 28 No	OS						
Bar I	Bending Scheck Description	Shape of Bar	No.	L (m)	Total	Dia.	Wt.	Total wt.	
No.	Description	Shape of Dai	110.		length	Of bar	kg/m	in kg	
	D. II				(m)	(mm)	$(d^2/162)$		3 M for
1	Bottom	c	3	4.238	12.714	16	1.580	20.1	BBS
	straight bar 16 mm		5	4.230	12./14	10	1.300	20.1	
	φ								
2	Bottom								
	bent-up	2	2	4.532	9.064	16	1.580	14.34	
	bar 16 mm								
3	ф Тор								
5	anchor bar		3	4.166	12.498	12	0.889	11.10	
1 1		-			12.190				
	12 mm ø								
4	$\frac{12 \text{ mm } \phi}{\text{Length of}}$	الادما							
4	Length of Stirrups 6	F = 3	28	1.204	33.712	6	0.222	7.484	
4	Length of Stirrups 6 mm \ @		28	1.204	33.712	6	0.222	7.484	
4	Length of Stirrups 6		28	1.204	33.712	6	0.222	7.484 53.02Kg	

WINTER – 15 EXAMINATIONS <u>Model Answer-</u> Estimating and Costing

Page No- 14 /20

b)	Calculate the quantities of cement, sand and coarse aggregate for 40 m ³ cement	6 M
	concrete having proportion $(1:2:4)$ Wet volume of concrete = 40 m^3	
	Wet volume of concrete = 40 m^3	1 M
	Dry volume $= 52\%$ more of wet volume	
	$=\frac{52}{100} \times 40 + 40$ = 60.80 m ³	
	$100 - 60 \ \text{so} \ \text{m}^3$	
	= 00.80 III	
	Volume of cement = $\frac{\text{Dry volume}}{\text{Sum of proportion}}$ x Content of cement in proportion	
	Volume of cement = $\frac{60.80}{1+2+4} \times \frac{1}{1+2+4}$	
	Volume of center $= \frac{1+2+4}{1+2+4}$	2 M
	Volume of cement = 8.685 m^3	
	Number of cement bags = $\frac{\text{Volume of cement}}{\text{Volume of one cement bag}}$	
	Number of cement bags = $\frac{8.685}{0.035}$ = 248.14 say 250 bags	
		1 ½ N
	Volume of Sand $= \frac{\text{Dry volume}}{\text{Sum of proportion}} x$ Content of sand in proportion	
	Sum of proportion	
	Volume of Sand $=\frac{60.80}{1+2+4} \times 2$	
	Volume of Sand $= 17.37 \text{ m}^3$	
	Dry volume	
	Volume of Coarse aggregate = $\frac{\text{Dry volume}}{\text{Sum of proportion}}$ x Content of coarse aggregate in	$1\frac{1}{2}$
	proportion	
	Volume of Coarse aggregate $=\frac{60.80}{1+2+4} \times 4$	
	Volume of Coarse aggregate $= 34.74 \text{ m}^3$	

WINTER – 15 EXAMINATIONS <u>Model Answer-</u> Estimating and Costing

Page No- 15 /20

	Attempt any TWO of the following :												
a)	Find quantity of excavation and concrete for circular community well. SR.												
	No.	Description	No.	L	В	Н	Unit	Qty	Total Qty				
	1	Excavation											
	i)	a) Excavation upto 1.5m in soft rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
		b) Excavation from 1.5m to 3.0m in soft rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
		c) Excavation from 3.0m to 4.0m in soft rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.0	M ³	19.634					
							M ³		78.538	1M			
	ii)	a) Excavation from 4.0m to 4.5m in hard murum		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	0.5	M ³	9.81					
		b) Excavation from 4.5m to 6.0 m in hard murum		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
		c) Excavation from 6.0m to 7.5m in hard murum		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
		d) Excavation from 7.5m to 9.0m in hard murum		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
							M ³		98.173	1M			
	iii)	a) Excavation from 9.0m to 10.5m in hard rock		$rac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
		b) Excavation from 10.5m to 12.0m in hard rock		$\frac{\pi}{4}d^2 =$	$\frac{\pi}{4}x 5^2$	1.5	M ³	29.452					
							M ³		58.904	1M			
							M ³	Total Quantity	235.615	1M			
	2	Concrete		$\frac{\pi}{4}x(5.4)$	(-5^2)	1.5	M ³	4,90		2M			
		a)P.C.C (0.2m thick)											
		b)P.C.C(0.2m thick)		$\frac{\pi}{4}x(7.4^2)$	(-5.4^2)	0.2	M ³	4.021		2M			
							M ³	Total Quantity	8.921				

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

Page No- 16 /20

5 (b)	Chainag	10	0		30	60			00	
	Ground Le	-	50	0	499.70	498.9	90		7.60	
	Formatio		497		497.3	497.2		496.80		1M
	Depth(F. G.L)	L-	-2.5		-2.4	-1.8	-1.8).8	
	Chainage	Depth	BD	SD ²	A=BD+SD ²	A _m =A ₁ +A ₂	L	Q=A _r	n x L	
								Cutting	Filling	
	0	-2.5	30	9.375	39.375					
	30	-2.4	28.8	8.64	37.44	38.407	30	1152.21		2M
	60	-1.8	21.6	4.86	26.46	31.95	30	958.5		2M
	90	-0.8	9.6	0.96	10.56	18.51	30	555.3		2M
					Total Qu	uantity in m ³		2666.01		1M
	Assume Wet Volume of R.C.C = 10 m ³ a) Dry Volume = 52% more of Wet volume $= \frac{52}{100} x 10 + 10 = 15.2 \text{ cu.m.}$ b) Volume of Cement = $\frac{\text{Dry Volume}}{\text{Sum of Mix Proportion}} x$ Content of cement in proportion Volume of Cement = $\frac{15.2}{1+2+4} x 1 = 2.1714 \text{ cu.m}$ No. of Cement Bags = $\frac{2.1714}{0.0347} = 62.576 \text{ bags}$									1M
	$= approximately = 63 bags$ c) Volume of Sand = $\frac{Dry Volume}{Sum of Mix Proportion} \times Content of Sand in proportion$ Volume of Sand = $\frac{15.2}{1+2+4} \times 2 = 4.3428 \text{ cu. m}$ d) Volume of Aggregates = $\frac{Dry Volume}{Sum of Mix Proportion} \times Content of Aggregates in proportion$									
	Volume	of Aggr	egates =	$=\frac{15.2}{1+2+4}$	x 3 = 8.6857	cu. m				

	Weight of Steel = 0.1 x 7850 = 785 Kg Binding Wire = 10 x 0.785 = 7.85Kg									
Sr.No.	Particulars	Quantity	Rate Rs. P	Per	Amount Rs. P					
	Material									
	Cement	63	350	Bag	22,050					
	Sand	4.3428	650	M^3	2822.82					
1	Aggregates	8.6857	900	M^3	7817.13					
	Steel	785	40	kg	31400					
	Binding Wire	7.85	35	Kg	274.75					
					64,364.70					
	Labor									
	Head Mason	1.5	400	Day	600					
	Mason	3	300	Day	900					
	Male Mazdoor	13	250	Day	3250					
	Female Mazdoor	10	200	Day	2000					
2	For Reinforcement Blacksmith	15	200	Day	3000					
	Bhisti	2	400	Day	800					
	Contingencies T& P	Lump Sum	Lump Sum	Lump Sum	200					
					10,750					
	Centering & Shuttering									
	Carpenter	10	400	Day	4000					
3	Mazdoor	10	300	Day	3000					
	Nails	Lump Sum	Lump Sum	Lump Sum	300					
	1.4115	Zump Dum	Zump Dum	Zump Sum	7300					
				Total	82414.70					
4	Water Charges			1.5%	1236.22					
•	Profit & Overhead			10%	8241.47					
5				Grand Total	91892.39					
(Note:- instead differen not be g	r Cubic Meter = $\frac{91892.}{10}$ if student have calcu of m ³ marks should nt places hence exami given according the G tered by students i.e	lated the rate be given accor ner should giv GRAND TOTA	of sand and a rdingly. Rates ve proportion AL, marks sho	aggregates in l s will be differ ate marks. M ould be given	ent at arks should according to					

WINTER – 15 EXAMINATIONS Model Answer- Estimating and Costing

Page No- 18 /20

SR. No	Desription	No.	L	В	н	Unit	Qty	Total Qty
1	Excavation	-	2.4	6				
2	BBM (0.3m) thick A=(2.4x6 - 1.8x5.4)=4.68m ²		4	.68	2	M ³		9.36
_	(1.8+0.3+0.3)=2.4m (5.4+0.3+0.3)=6.0m							
3	P.C.C	-	2.4	6	0.15	M ³		2.16
4	R.C.C Slab	-	2.4	6	0.12	M ³		1.728
SR. No	Desription	No.	OF L	R B	н	Unit	Qty	Total Qty
1	Excavation	-	2.26	5.86	2.15			28.47
2	BBM (0.23m) thick L = 1.8 x 2 + (5.4 + 0.23+ 0.23) x 2 = 15.32m	-	15.32	0.23	2	M ³		7.04
3	P.C.C	-	2.26	5.86	0.15	M ³		1.986
4	R.C.C Slab	-	2.26	5.86	0.12	M ³		1.589
nave 2) Tł orick shoul 3)P.C consie 4)R.C	E:- 1) In this numerica attempted this quantit nickness of brick wor work 0.23m thick or 0 d be given to students C.C is calculated cons dered thickness as 0.23 C.C slab is calculated co dered thickness as 0.23	y full r k is n 0.3m t by exa idering on thic	narks sh ot given hick or l miner. g thickn ck propo ring thic	ould be ; if stude have atte ess of H rtionate kness of	given. ents ha empted BBM a marks BBM a	this que assu this que this que this que the this the	umed this uestion f if stud be given if stude	ickness of full marks ents have nts have

Q No.6	Attem	pt any F	OUR	of the fol	lowing :					16 M 04 M		
a)	Explain how you will prepare approximate estimate of an auditorium.,											
				-	to accommodate large audience.							
	•As such they lead to have wide span and multiple stories high in order to											
	accommodate seating and acoustical requirements.Raised stage floors, special lightening equipments are often required as well.											
		-		-		-	-			1M		
						or approximat				11111		
						eveled terrace	for each ro	ow of seath	ing help	1M		
					audience to s	long with som	a snaca hati	waan two r	OWS			
						g system shou						
						g system shot			module			
	various performance venues. <u>d) Fire & Life Safety:-</u> Fire and life safety is calculated in approximate estimate as											
	additional cost may incurred for these safety features.											
b)					ement Sheet.					04 M		
		-			-							
	1	2		3	4	5	6	7	8	2M		
	Item	-	1	Number	Length(m)	Breadth(m)	Depth(m)	Quantity	Total			
	No.	No. of Item (m)										
	Abstra	act Sheet	t	2	2	4	5					
	<u>C</u> .					4 Rate	6	2M				
	Sr.No.		Particulars		Quantity or Number	Rs. P	Per		ount P			
6 (c)					Number	K 5. 1		K3.	1	1M		
0(0)	Description Multiplying Factor											
		Corrugat	ed Sh	eet		1.10	1M 1M					
	M.S.		.04 511			1.00				1M		
		ed Door	•				1.3 for Each side					
	Fully Glazed Window0.5 for Each side											
6 (d)		vice Unit				·				1M		
	1)Hospital:- Per Bed											
	2)Auditorium :- Per Seat											
	,	odown:-		ау						1M		
	,	bad:- Per								1M eac		
6(e)		Factors Affecting Task Work: 1. Out turn of skilled labour depends on the nature, size, height, situation, location,										
					1		eight, situat	ion, locatio	on,	for any four		
	climatic condition, technique adopted, wages paid etc.											
	2. Availability of skilled labour.3. A well-organized work increases the out turn of labour.											
						ay increase the		ork				
				-		•			ır			
	5. If the work is allotted on piece work basis then the daily wages output of labour increases.											

6 (f)	Contingencies:	
	• The term Contingencies indicates incidental expenses of miscellaneous character which cannot be classified under any distinct sub head, yet pertain to the work as a whole.	2M
	• In an estimate a certain amount in the form of contingencies of 3 to 5 percent of estimated cost is provided to allow for the expenses for miscellaneous petty items which do not fall under any sub head of items of work.	
	• Miscellaneous incidental expenses which cannot be classified under any subhead or item are met from the amount provided under contingencies.	
	• If there is any saving against this amount, the amount may be utilized with the sanction of the competent authority for other expenses.	
	Work charged establishment:	2M
	• It is the establishment which is charged to the works directly.	
	• During the construction of a building or a project, a certain number of work supervisors, chaukidaars, mates, munshies etc. are required to be employed and their salaries are to be paid from the amount of work-charged est. provided in the estimate.	
	• A percentage of $1\frac{1}{2}$ to 2% of the estimate is included in the estimate.	
	• The work-charged employees are temporary staff and their appointment shall have to be sanctioned by competent authority for a specific period.	