

MODEL ANSWER

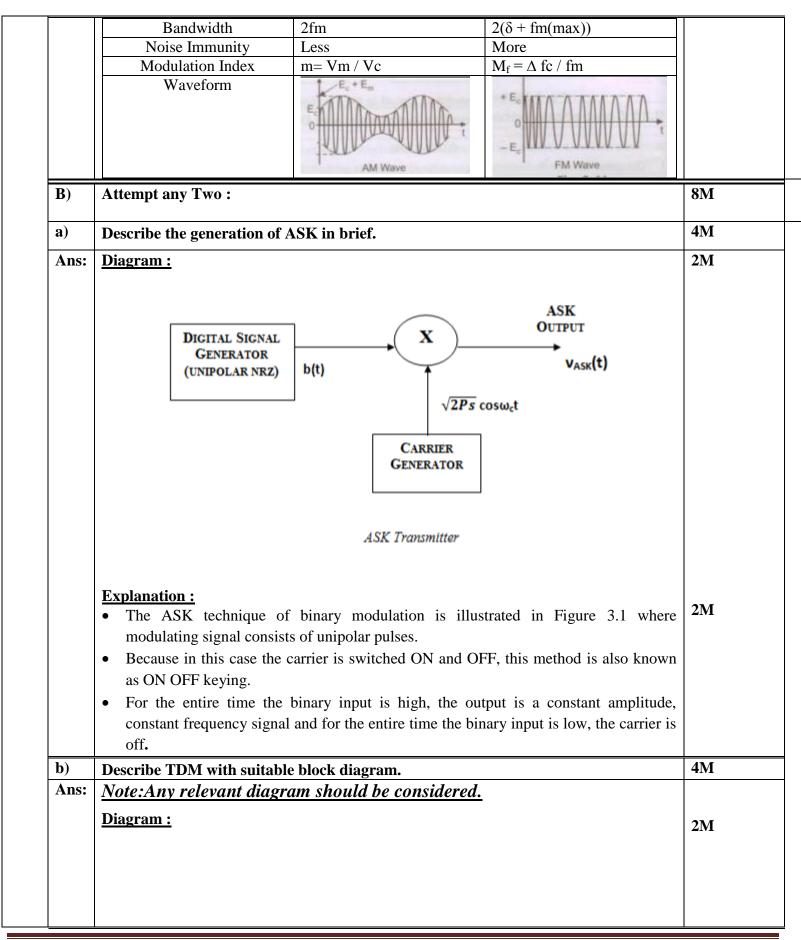
SUMMER-17 EXAMINATION

Subject Title: Principles of communication System

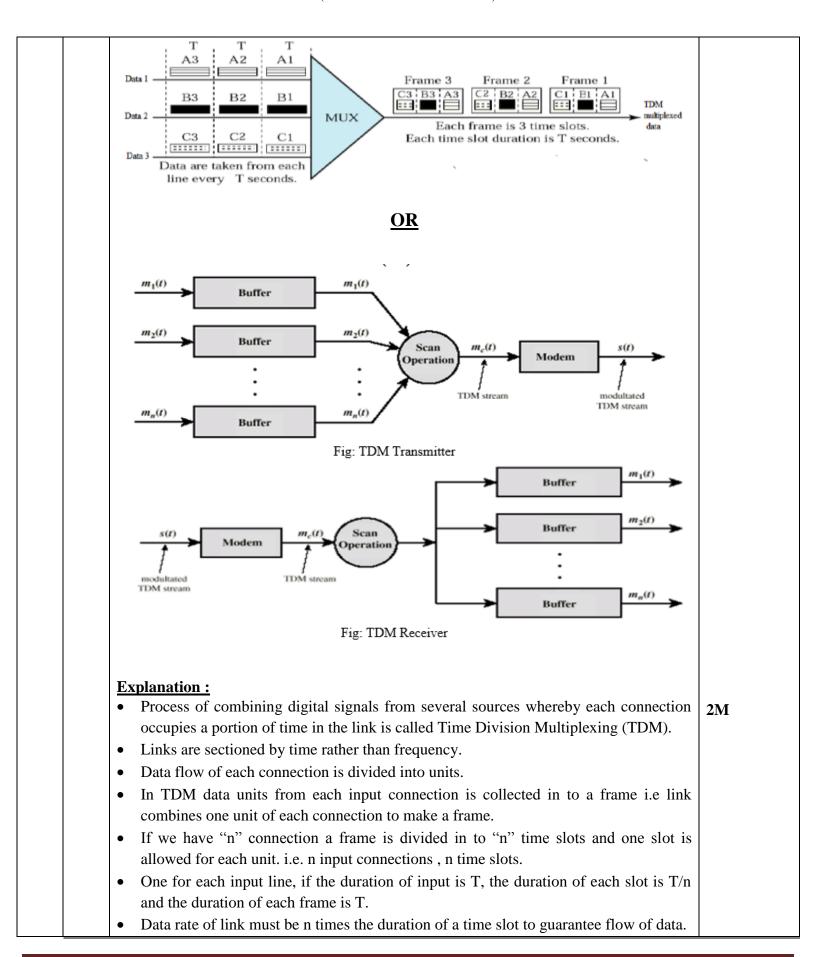
Subject Code: 17472

- Important Instructions to examiners:
 - 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
 - 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
 - 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
 - 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

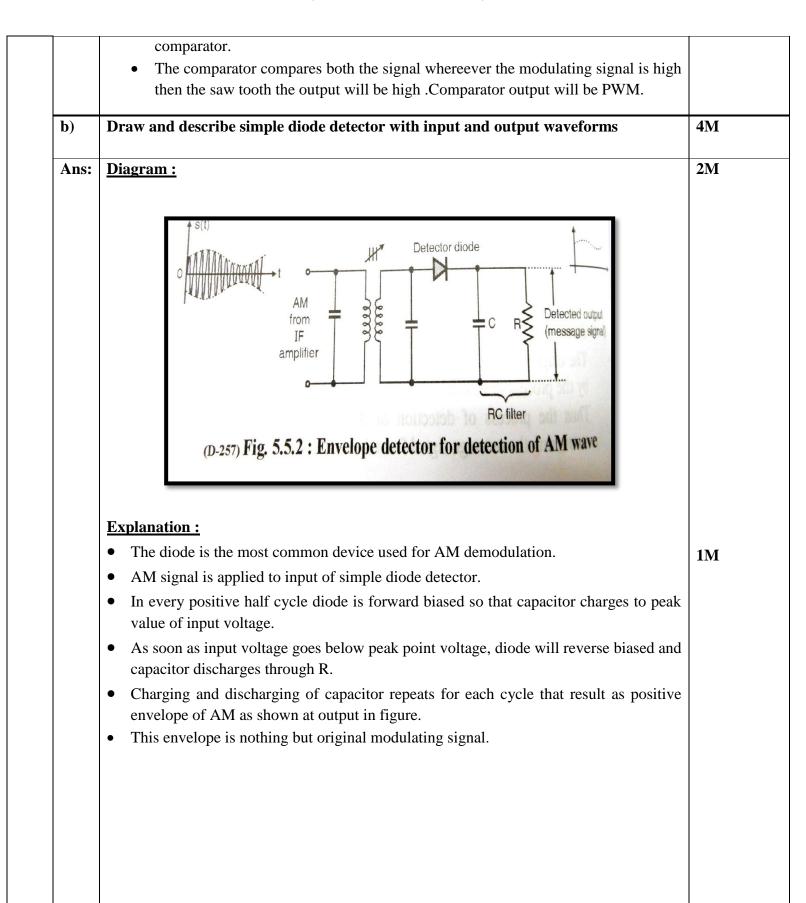
Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	A)	Attempt any six :	12-Total Marks
	a)	State sampling theorem.	2M
	Ans:	Sampling theorem:	2M
		State that the sampling frequency (Fs) i.e. number of sample per second should be greater	
		than or equal to twice the maximum frequency component (Fm) of the input signal.	
		$Fs \ge 2 Fm$	
		OR	
		Sampling theorem states that a band limited signal of finite energy having the highest frequency component Fm Hz can be represented and removed completely from a set of	
		samples taken at a rate of Fs samples per seconds provided that	
		Fs $\geq 2Fm$	
	b)	Give four advantages of satellite communication.	2M
	<i>v</i>)	-	
	Ans:	Any 4 advantage to be considered	¹ / ₂ M each
		Advantage :	
		• It is used for mobile and wireless communication applications independent of location.	
		• It covers wide area of the earth hence entire country or region can be covered with	
		just one satellite.	
		• It co-exists with terrestrial microwave line of sight communication.	
		• It is easy to install and manage the ground station sites.	
		• It is used for voice, data, video and any other information transmission. Satellite	



Ans:		
e)	Draw a neat sketches of star and bus network topology.	2M
	transmission.	
	 TDM by default can work well with the digital therefore it can be easily used for data 	
	• As only one channel is being transmitted at a time it is not necessary to separate out various channels at the receiver.	
	• The frequency selective fading does not affect the TDM to extent it affect of FDM.	
	bandwidth.	
	time. This is particularly advantageous for the digital channel which demands large	
	intermodulation products will not take place.The entire channel band width can be allowed to a single channel at given instant of	
Ans:	• In TDM since only one station is present at any given time so the generation of intermodulation products will not take place	2M (Any Two
d)	State any two advantages of TDM over FDM.	2M
	m = 4 / 6 = 0.66	
	m = 5-1 / 5+1	
	Modulation index = $m = Vmax - Vmin / Vmax + Vmin$	
	Vmin = 1 V	
	Vmax =5 V	
	<u>OR</u>	
	Modulation index = $m = Vm / Vc = 2 / 3 = 0.66$	
	Vm = 2V	
	Hence $Vc = 3V$	
	Vc - Vm = 1V	
Ans:	Vc + Vm = 5V	2M
c)	The amplitude of carrier varies between 5 V and 1 V. Calculate modulation index.	2M
	aircrafts, global mobile communication, connecting remote areas etc.	214
	signal broadcasting, gathering intelligence in military, navigation of ships and	
	 It has small fading margin on the order of about 3dB. It is used in wide variety of applications which include weather forecasting, radio/TV 	
	• It is easy to obtain service from one single provider and uniform service is available.	
	also used for GPS applications in various mobile devices for location determination.	

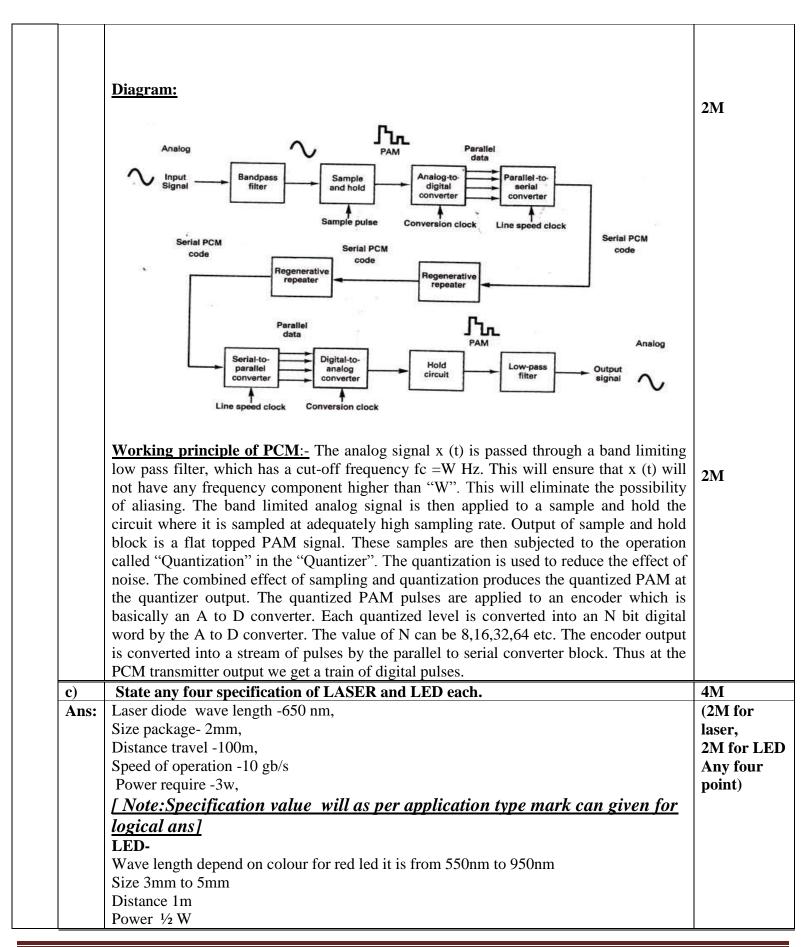


	STAR Topology	1M Each		
	OR			
	Bus Topology Image: Start topology			
f)	Define: Acceptance angle arid critical angle;	2M		
Ans:	Acceptance angle: The maximum value of incident angle for which the incident light can propagate through the fiber to the far end is called the acceptance angle. Critical angle: The critical angle is the angle at which a radio wave must hit the ionosphere to reflect back to the Earth.	(1M Each)		
g)	What is multiplexing? State its types.	2M		
Ans:	Multiplexing : Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link.	1M		
	Type of Multiplexing: (Any 2)a) TDM: Time division Multiplexingb) FDM: Frequency division Multiplexingc) WDM: Wave division multiplexing			
	c) WDM: Wave division multiplexing			
h)		2M		



			ı				
		• Time slots are grouped into frames; one complete cycle of time slots; each slot					
		dedicated to one device.					
		• A simple TDM process for three different data transmission is shown above. Here, all three data are divided into equal timeslots also called as units					
		 And each data unit from all three data are combined / multiplexed together to form 					
		TDM frames comprising of small units of all three data which is further transmitted.					
	c)	What is modulation? 'What is the need of modulation?	4 M				
	Ans:	Modulation :	2M				
	Ans.	Modulation is defined as the process by which some characteristic of a carrier wave is varied in accordance with the message signal.	2171				
		Need of modulation :					
		• Reduce height of the antenna.	2M				
		• Avoid mixing of signals.	(Any Two)				
		Increases range of communication.					
		• Easy to Multiplex.					
		Improve quality of reception.					
		Channel Selectivity.					
		Improved Signal to Noise Ratio.					
		 Less Fading of transmitted signal. 					
Q 2		Attempt any four :	16M				
~ -	a)	Draw and describe the block diagram of generation of PWM.	4M				
	a)	Draw and describe the block diagram of generation of 1 wive.					
	Ans:	<u>Diagram :</u>	2 M				
		MODULATING SIGNAL COMPARATOR + - PWM					
		SIGNAL COMPARATOR PWM SAW TOOTH GENERATOR	2M				
		SIGNAL COMPARATOR + PWM SAW TOOTH	2M				
		SIGNAL COMPARATOR PWM SAW TOOTH GENERATOR	2M				

	Waveform :	1M
	Diode ON through R Actual voltage across C through R Actual voltage across C time AM wave at the input Approximated output of the envelope detector time 0-258)Fig. 5.5.3 : Input output waveforms for an envelope detector	
c) Ans:	Encode the binary data stream 1000010 into Return to zero, non –return to zero (NRZ), AMI and Manchester code. Return to zero and non return to zero- Note-Any polar or unipolar to be considered	4M 1 M each
	1 0 0 0 1 0 Return Image: Constraint of the second	
	to zero (polar)	
	Return to zero (uni polar) Image: Constraint of the second seco	
	Non Image: Second sec	



	AMI Manch ester code					
d)	Give classification of satellite on the basis of their location and application.	4M				
Ans:	 Satellites are generally classified as, having either a Low earth orbit (LEO): motorolas satellite based mobile telephone system, iridium is a LEO system utilizing a 66-satellite constellation orbiting approximately 480 miles above the earths surface. Medium earth orbit (MEO): operates in 1.2 Ghz to 1.66 Ghz frequency band and orbit between 6000 miles and 12000 miles above earth. The department of Defense satellite based global positioning system, NAVSTAR is MEO system with a constellation of 21 working satellite and 6 spares orbiting approximately 9500 miles above earth. Geosynchronous earth orbit (GEO): these are high altitude earth orbits 22,300 miles above the earths surface. Most commercial communications satellites are in geosynchronous orbit. Mear synchronous orbit : satellites in high elevation, non synchronous circular orbit between 19,000 miles and 25,000 miles above earth are said to be in near synchronous orbit. 	4M 4M				
e)	Describe the mobile to mobile call procedure.					
Ans:	 Explanation : Then subscriber dials the number by using touch tone keypad. The called number as well as the mobile units identification no is given to base station. If the mobile units id no is valid, the cell site controller routes the called no over a wire line trunk circuit to the MTSO The MTSO sends a page command to all cell site controller to locate the destination party Once the destination mobile unit is located the destination cell site controller 	4M				

		 sends a page request through a control channel to the destination party to determine if the unit is ON or OFF. After receiving a positive response to the page channels are assigned to both mobile units. Call progress tone is applied in both directions. When the system receives notice that the called party has answered the telephone, the switches terminate the call progress tones and conversation begins. If the called party is OFF hook the calling party receives busy signal. If the called no is invalid, the calling party receives a recorded message announcing that the call cannot be processed. 	
	f)	Describe the following term related to noise:i)Signal to Noise Ratio (SNR)ii)Noise figure.	4M
	Ans:	Signal to Noise Ratio (SNR) It is defined as the ratio of signal power to the noise power, often expressed in decibels.	2M
		Noise figure: Noise figure is defined as the ratio of the signal to noise power supplied to input terminals of the receiver to the signal to noise power supplied to the output or load resistor. $F(Noise Figure) = \frac{input SNR}{output SNR}$ Noise figure will be 1 for ideal receiver. Noise figure may be expressed as an actual ratio or in decibels.	2M
Q. 3		Attempt any four:	16M
	a)	What are the advantages of pulse modulation over continuous wave modulation?	4 M
	Ans:	 Advantages- Digital modulation is possible. PCM is coded form hence it is used for security purpose like military application. Noise immunity is more. Good performance of all pulse modulation Less signal power and cover large communication area. Transmit modulated signal with low loss. Avoid interference with other communication. Make receiving antenna's quite small. Multiplex signals Increase channel allocations Have better noise immunity 	[Any 4 point 4 M- each point 1 M]
=	b)	Draw the block diagram of PCM. Write its working principle.	4M
	Ans:		

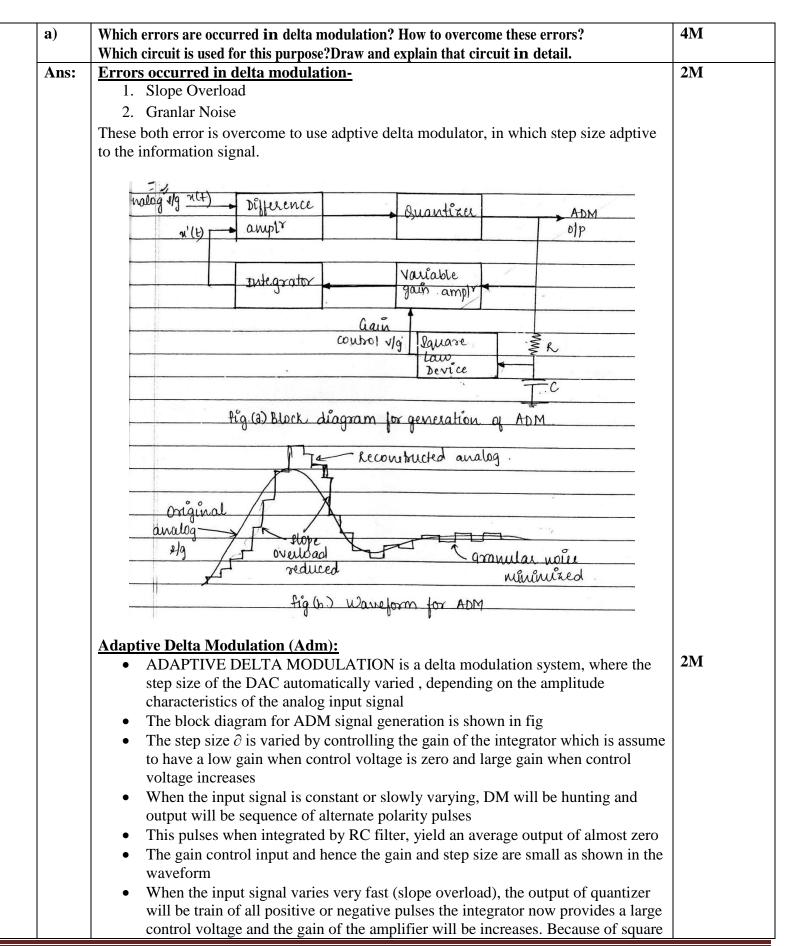
	Short distance [Note:Any other specification can consider]	
d)	Describe working principle of uplink and downlink model of satellite communication with block diagram.	4M
Ans:	Downlink Frequency : In satellite telecommunication, a downlink is the link from a satellite down to one or more ground stations or receivers. Uplink Frequency : An uplink is the link from a ground station up to a satellite	Diagram- 2M, Explanation -2M
	Chand : frequencies from 5.925 to 6.425 GHz K bond : frequencies from 5.925 to 6.425 GHz K bond : frequencies from 14 to 14.5 GHz from 14 to 14.5 GHz from 14 to 14.5 GHz from 14 to 14.5 GHz from 15 to 12.2 GHz	
	Uplink frequency is not same as down link frequency. Uplink frequency higher than	
	down link frequency, and transponder is design for same	
	 It's all about power considerations. In satellite communication, the signals have to cross the atmosphere which presents a great deal of attenuation. The higher the frequency, the more is the signal loss and more power is needed for reliable transmission. Lower frequencies get reflected by atmospheric bands and cannot penetrate to get through to the satellite. 	
	• As satellite is a light-weight device which cannot support high-power transmitters on it. So, it transmits at a lower frequency (higher the frequency, higher is the transmitter power to accommodate losses) as compared to the stationary earth station which can afford to use very high-power transmitters. This is compensated by using highly sensitive receiver circuits on the earth station which is in the line-of-sight (LOS) of the satellite	
e)	Describe the following interferences occurred in celluar communication system with	4M
Ans:	the help of neat schematic diagram. The concept of cellular system in mobile communication is that rather than servicing a given geographical area with a single transmitter & receiver, the system divides the service area into many smaller areas known as cells. The receiver in each cell station continuously monitors the signal strength of the mobile unit.	Diagram- 2M, Explanation -2M

	Diagram:	
	Analog Sample and PAM + Delta PCM	2M
	hold	2111
	t dc	
	Sampling pulse	
	Digital-to-analog	
	(DAC)	
	 A set and a set of the set of t	
	Up/down U/D	
	Clock 1=up 0=down	
	Working:	
	1. Sample and Hold circuit: The input analog is sampled and converted to a PAM signal.	
	2. DAC: The output of DAC is a voltage equal to the regenerated magnitude of the	
	previous sample, which was stored in the up-down counter as a binary number.	2M
	3. Up-Down counter: The up-down counter is incremented or decremented depending on whether the previous sample is larger smaller than the current sample. The up-down	
	counter is clocked at a rate to the sample rate. Therefore up-down counter is updated after	
	each comparison.	
c)	State different frequency bands used in satellite communication.	4 M
Ans:	Frequency bands used in satellite communication.	(Any 4
	Band Frequency L 1.53 – 2.7 GHz	bands- 4M)
	S 2.5 – 2.7 GHz	
	C 3.4 – 6.4 GHz	
	X 7.2 – 8.4 GHz	
	A 7.2 - 8.4 GHZ	
	Ku 10.95 – 14.5 GHz	
	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz	
	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz Q 36 – 46 GHz	
	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz Q 36 – 46 GHz V 46 – 56 GHz	
<u>d)</u>	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz Q 36 – 46 GHz V 46 – 56 GHz W 56 – 100 GHz	4M
/	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz Q 36 – 46 GHz V 46 – 56 GHz W 56 – 100 GHz State advantages of multimode graded index fiber, single mode step index fiber.	4M (2M for
d) Ans:	Ku 10.95 – 14.5 GHz Ka 17.7 – 31 GHz Q 36 – 46 GHz V 46 – 56 GHz W 56 – 100 GHz	
/	Ku10.95 – 14.5 GHzKa17.7 – 31 GHzQ36 – 46 GHzV46 – 56 GHzW56 – 100 GHzState advantages of multimode graded index fiber, single mode step index fiber.Advantages of multimode graded index fiber- 1)Allow the use of non- coherent optical light source ie LED 2)Impose lower Tolerance requirement on fibre connector	(2M for
/	Ku10.95 – 14.5 GHzKa17.7 – 31 GHzQ36 – 46 GHzV46 – 56 GHzW56 – 100 GHzState advantages of multimode graded index fiber, single mode step index fiber.Advantages of multimode graded index fiber-1)Allow the use of non- coherent optical light source ie LED2)Impose lower Tolerance requirement on fibre connector3)Reduced dispersion compared with step index multimode fibre	(2M for multimode,
/	Ku10.95 – 14.5 GHzKa17.7 – 31 GHzQ36 – 46 GHzV46 – 56 GHzW56 – 100 GHzState advantages of multimode graded index fiber, single mode step index fiber.Advantages of multimode graded index fiber- 1)Allow the use of non- coherent optical light source ie LED 2)Impose lower Tolerance requirement on fibre connector	(2M for multimode, 2M for
,	Ku10.95 – 14.5 GHzKa17.7 – 31 GHzQ36 – 46 GHzV46 – 56 GHzW56 – 100 GHzState advantages of multimode graded index fiber, single mode step index fiber.Advantages of multimode graded index fiber-1)Allow the use of non- coherent optical light source ie LED2)Impose lower Tolerance requirement on fibre connector3)Reduced dispersion compared with step index multimode fibre	(2M for multimode, 2M for

	2) Allow use	node is allowed du of high power lase ersion high bandwi	r	interference effect		
e)	Write electrical cha	racteristics of RS-23	2 standard.			4M
Ans:						4 M
	Second Second Second	Data S			Signals	
	Driver (output)	Logic 1 -5 V to -15 V	Logic 0	Enable (On)	Disable (Off)	
	Driver (output) Terminator (input)	-3 V to -15 V -3 V to -25 V	+5 V to +15 V +3 V to +25 V	+5 V to +15 V +3 V to +25 V	-5 V to -15 V -3 V to -25 V	
f)	With the help of sui State mathematical	formula which give	-			4M
Ans:	available in the clus Diagram:	ster.				1M
	ζ			All operate at All use f2 All use f3 All use f4		
	 Explanation: Frequency reuse cover different are that are physically In the frequency of the frequ	as separate from eacl	h other.			2M
	 In the frequency objectionable. In frequency reus cover entire area. 					
	• Instead many tran be used.			C	1 2	
	• This technique al antenna has to cov small area.		nimum height of t	ransmitting antenn	a, because each	
	• The users located frequencies.		-			
	• The advantage of but if the system is designed properly	not		-	ctrum efficiency	
			•	phone system as sh	own in the	

		 above diagram. It uses the same frequency repeatedly in the same area in one system. Here the total frequency spectrum allocation is divided into four co-channel cells in the system. The cells marked -1 will use same frequency say f1, the cells marked 2 will use same frequency f2 and so on. Formula cluster size C=i²+ixj +j² [where integer i and j are relative location of co channel for example i= 1 and j =2 then c=7] 	1M
Q.5		Attempt any four :	16M
ļ	a)	Draw block diagram of BPSK generation. State functions of each block .	4M
	Ans:	Digital Invited Binary BPSK BPF Product Band limited BPSK computer Carrier Carrier Carlier Car	2M

	Working: • <u>NRZ Encoder:</u>		2M		
	This converts binary data signal (0's and 1's) into NRZ bipolar system.				
	<u>Carrier Oscillator:</u>				
	Generates sine wave c				
	<u>Product Modulator</u>				
	Multiplies input data and carrier which results BPSK signals.				
	• <u>BPF:</u>				
<u> </u>		is band pass signal which limits the frequency band of BPSK.			43.4
)	Compare ASK, FSK, PSKon the basis of waveform, variable parameters, noise immunity				4 M
Ans:	and bandwidth require	nent			Fach point
1115.			PSK	Each point 1M	
	variable parameters	ABK	ron	PHASE	
	variable parameters	AMPLITUDE	FREQUENCY	FHASE	
					-
	waveform,				
		000000 00000000			
		-WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MMMMMMMM FSK	NOOMAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	h 14h	(1+r)R	4fb		-
	bandwidth	and a contractor	Department of the second	fb	
		R= bit rate.r=1	fb=bit frequency		
	noise immunity	1 Edd	MODE	MODE	-
	noise minumity	LESS	MORE	MORE	-
)	Degerihe the working of	trongnondor ugod in go	tallita communication		414
/	Describe the working of	transponder used in sa	tellite communication.		4M 2M
,	Describe the working of Diagram :	403	C422 11302 # 11		4M 2M
,		403	tellite communication.		
,		403	C422 11302 # 11		
,		403	C422 11302 # 11	e e e e e e e e e e e e e e e e e e e	
/		Frequenc	cy Translator		
/		Frequence Low Noise RF	RF Low		
/		Frequenc	RF Low		
/		Frequence Low Noise PF Mixe (LNA)	RF BPF BPF (LPA)		
,		Frequence Low Noise PF Mixe (LNA)	RF BPF Amplifier	5	
/	<u>Diagram :</u>	Frequence Frequence RF Amplifier (LNA) Mixe Inthestation MW	RF BPF RF Shift	5	
) Ans:	<u>Diagram :</u>	Frequence Low Noise PF Amplifier (LNA)	RF RF RF RF Shift lator	The station	
,	<u>Diagram :</u>	Frequence Frequence RF Amplifier (LNA) Mixe Inthestation MW	RF RF RF RF Shift lator	Turth station	
,	Diagram :	Frequence Frequence RF Amplifier (LNA) Mixe Inthestation MW	RF RF RF RF Shift lator	To arth station	
	Diagram :	Frequence Frequence RF Amplifier (LNA) rth station MW Oscil	RF Shift lator		2M
	Diagram :	Frequence PF Low Noise Amplifier (LNA) rth station MW Oscil	RF Shift lator		
,	Diagram :	Frequence PF Low Noise Amplifier (LNA) MW Oscill wing antenna (f = uplint t low	RF Shift lator To ea Nk frequency), a band h	imiting circuit band	2M
/	Diagram :	Frequence PF Low Noise Amplifier (LNA) rth station MW Oscil	RF Shift lator To ea Nk frequency), a band h	imiting circuit band	2M
/	Diagram :	Frequency translator, out	RF Shift lator To ea Nk frequency), a band h	imiting circuit band	2M


	 shift oscillator is equal to Frequency shift required and hence it is equal to difference of uplink and downlink frequency (usually = 2GHz.) 		
d)	State functions of hubs, repeaters, routers and bridges.	4 M	
Ans:	Hub: A common connection point for devices in a network. Hubs are commonly used to connect segments of a LAN. A hub contains multiple ports. When a packet arrives at b1 port, it is copied to the other ports so that all segments of the LAN can see all the packets.		
	<u>Repeaters:</u> A repeater is the simplest facility used for network interconnection, whose major function is to receive a network signal from one LAN terminal cable segment and to regenerate and retransmit the signal as it is in its original strength over a one or more other cable segment. Basically repeater regenerates the strength of the signal before transmitting it.	1M	
	<u>Routers:</u> A device that connects any number of LANs. Routers use headers and a forwarding table to determine where pkts go and they use ICMP to communicate with each other and configure the best route between any 2 hosts	1M	
	Bridge: A device that connects two local-area networks (LANs), or two segments of the same LAN. The two LANs being connected can be alike or dissimilar. For example, a bridge can connect an Ethernet with a Token-Ring network. Unlike routers, bridges are protocol -independent. They simply forward packets without analyzing and re-routing messages. Consequently, they're faster than routers, but also less versatile	1M	
e)	Draw the block of MODEM. Describe the function of each block.	4 M	
Ans:	Circuit Diagram- Block diagram of MODEM :	2M	
	<u>Definition:</u> MODEM is an acronym for MODulator DEModulator. A modem is a device that converts data from digital computer signals to analog signals that can be sent over a		

(

	Parallel transmission of data				
	Transmitter Receiver				
	wires carrying the bits				
	Diagram :	2M			
	With increase in the number of users, these wires will be two many to handle.				
	• It has one disadvantage that, to transmit an N bit word, we need N number of wires.				
	one clock cycle. Due to this the clock frequency can be kept low without affecting the speed of operation.				
	• The advantage of parallel transmission is that all the data bits will be transmitted simultaneously. Therefore the time required for the transmission of N-bit word is only				
	• Parallel transmission is possible practically if the two devices are close to each other.				
	 separate wires. This type of transmission requires multiple circuits for interconnecting two devices. 				
	• In parallel transmission of data, all the bits of a byte are transmitted simultaneously on				
Ans:	Explanation :	2M			
f)	Describe parallel data transmission mode.	4M			
	Demodulator converts signal back to original form to feed it to computer terminal.				
	and receiving modem, control circuit is used.				
	Control and Timing Circuit: To establish the communication link between transmitting				
	Filter and Amplifier: The two frequencies are sent with amplified form through telephone line.				
	for logic "1"				
	converted into analog signal with two frequencies:1070 Hz for logic '0' and 1270 Hz				
	Modulator Circuit:Serial data (in digital room) coming from interfacing circuit is				
	can be used to serve this purpose.				
	signal bits. This parellel to serial conversion is done by interfacing circuits. UART 8250	2M			
	<u>Function of each block:</u> Interfacing circuit: To transmit byte data, it is necessary to convert byte into eight				
	digital data by the receiving modem. This is called demodulation.				
	disital data hay the measuring medam This is called dame dulation				

b)	Describe the working principle of avalanche photodiode with the help of suitable diagram.				
Ans:	Diagram :			2M	
c)	** Working : The avalanche process means that a single electron produced by light in the un-doped region is multiplied several times by the avalanche process. As a result the avalanche photo diode is far more sensitive. Light enters the un-doped region of the avalanche photodiode and causes the generation of hole-electron pairs. Under the action of the electric field the electrons migrate towards the avalanche region Here the electric field causes their velocity to increase to the extent that collisions with the crystal lattice create further hole electron pairs. In turn these electrons may collide with the crystal lattice to create even more hole electron pairs. In this way a single electron created by light in the un-doped region may result in many more being created.				
-,	Compare step index with graded index fiber on the basis of : i) i) Core radius ii) Light source iii) Index profile diagram			4M	
	iv) Intermodal dis	persion.			
Ans:	ParametersCore radiusLight sourceIndex profile diagramIntermodal dispersion	Step index 8-12µm laser	Graded index 50-100µm Laser, LED	Each Point 1M	
		List the layers of OSI model and state function of any three layer.			
<u>d)</u>		el and state function of anv th	ree laver.	4M	

	7 Application	
	6 Presentation	
	5 Session	
	4 Transport	
	3 Network	
	2 Data link	
	1 Physical	
		2M
	Explanation: <u>Physical Layer</u> : To transmit bits over medium. To provide electrical and Specifications.	mechanical (Any Three)
	Data Link Layer : To organize bits to frame .To provide hop to hop delive	ery.
	Network Layer: To move packets from source to destination .To provide	•
	internetworking.	1
	<u>Transport Layer:</u> To provide reliable process to process message deliver recovery	y and error
	Session Layer: To establish manage and terminate session.	
	Presentation Layer : To translate encrypt and compress data	
	Application Layer : To allow access to network resources	
e)	Draw and describe star LAN configuration.	4M
Ans:	LAN (Local Area Network) is a computer network covering a small geograph	nic area, like a
	home, office, school, or group of buildings.	
	Diagram :	2M
	Node 1	
	Node 7 Node 7	
	Node 2	
	Node 6 Central unit	
	Node 5 Node 3	
	Node 5 Node 4	
	A large no. of users can be connected to the central node	204
	• Each user on a star network communicates with a central hub that resent	
	message either to all the computers of a star network or only to the destination computer in a switched star network.	ition

f)		FDMA, TDMA, CDMA	A on the basis of follow	ing parameters:	4M
	 i) Multiplexing technique ii) Power efficiency iii) Synchronization iv) Guard band. 				
Ans:	,				Each Poin
	Parameter	FDMA	TDMA,	CDMA	1M
	Multiplexing Tech.	frequency	time	Code division	
	Power efficiency	less	full	full	
	Synchronization	Not require	require	require	
	Guard band	Guard band require	Guard time require	Both band require	