MAHARASHT (Autonomous)

(ISO/IEC - 2700 ·tified)

WINTER-18 EXAMINATION

Model Answer

Subject Name: Power electronics

Subject Code:

17444

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any SIX of the following:	12- Total Marks
	(a)	Name four layer Thyristor family devices (Any two devices).	2M
	Ans:	(Consider any two names from following)	Each device:
		1. SCR: Silicon Controlled Rectifier	1M
		2. PUT: Programmable Uni-junction Transistor	
		3. LASCR: Light Activated Silicon Controlled Rectifier	
		4. SBS: Silicon Bilateral Switch.	
		5. SUS: Silicon Unilateral Switch.	
		6. SCS: Silicon Controlled Switch	
		7. GTO: Gate Turn Off Thyristor	

WINTER-18 EXAMINATION

Model Answer

Subject Name: Power electronics

Subject Code:

17444

(b)	List any two uses of IGBT.	2M
Ans:	Applications Of IGBT:	Any two
	1. Inverters.	applicat
	2. Choppers.	ons: 2M
	3. SMPS (Switching Mode Power Supply).	Each
	4. Un-interrupted Power Supply (UPS).	applicat
	5. Speed Control of DC and Ac Motors.	on:1M
	6. Resistance welding system.	
(c)	Identify the given symbols of Thyristor family devices:	2M
	i) $A \circ G G$ ii) $F G c$	
	iii) A iv) A G M_2	
Ans:	iii) A iv) A G M_2	Each
Ans:	$iii)$ A $iv)$ A G M_2	
Ans:	$ \begin{array}{c} iii) \\ \downarrow \\ $	symbol Identifi
Ans:	$i) \land \circ \downarrow \downarrow \circ \circ$	symbol Identifi ation:
Ans:	$i) A \circ \bigcup_{G}^{C} G $ $ii) Ga \circ \bigcup_{G}^{A} Gc$	symbol Identifi
Ans:	$i) \land \circ \downarrow \downarrow \circ \circ$	symbol Identifi ation:
Ans:	$i) A \rightarrow \downarrow \downarrow G G$	symbol Identifi ation:
Ans:	$i) A \rightarrow \downarrow \downarrow G G$	symbol Identifi ation:
Ans:	$i) A \rightarrow \downarrow \downarrow$	symbol Identifi ation:
Ans:	$i_{A} \qquad \qquad$	symbol Identifi ation:

Model Answer

Subject Name: Power electronics

Subject Code:

17444

(d)	List any two applications of inverter.	2M
Ans:	Applications of inverters	Any two
	1. Variable speed AC motor drives.	applica
	2. Induction heating.	ons:2M
	3. Aircraft power supplies.	Each
	4. Uninterrupted power supplies (UPS).	applica
	5. High voltage DC transmission lines.	on:1M
	6. Battery vehicle drives.	
	7. Regulated voltage and frequency power supplies	
e)	Draw resistance triggering circuit of SCR.	2M
Ans:	Resistance triggering circuit of SCR:	Diagrai :2M
	N Rmin IK	
f)		2M
f) Ans:	N N IK	2M Definit
-	N Rmin IK Define chopper. Classify.	Definit n of Choppe
-	N Rmin IK IK Define chopper. Classify. Image: Chopper is a circuit used to obtain variable D.C voltage from a source	Definit

tified)

Subject Name: Power electronics

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-18 EXAMINATION

Model Answer

Subject Code:

17444

	5. Battery Charger and heat control.	
	4. Motor Speed Control.	
	3. Static Switches.	applicat on:1M
	2. Regulated Power Supply.	Each
	1. Rectifiers.	applicat ons:2M
Ans:	Applications of Controlled Rectifiers:	Any two
g)	State any two applications of controlled rectifiers.	2M
	d) Impulse commutated	
	c) Load commutated	
	b) Current commutated	
	a) Voltage commutated	
	4) According to commutation method	
	c) Four quadrant chopper	
	b) Two quadrant chopper	
	a) First quadrant chopper	
	3) According circuit operation	
	e) Class E (type E)	
	d) Class D (type D)	
	c) Class C (type C)	
	b) Class B (type B)	
	a) Class A (type A)	
	2) According to the direction of output voltage and current.	01M
	a) Step up chopper b) Step down chopper	ation)

itified)

Subject Name: Power electronics

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-18 EXAMINATION

Model Answer

Subject Code:

17444

Cand

Ans:	Advantages of SMPS:	supply is smaller in size compare	ed to conventional DC cumuly	Any two advanta ges:2M
		supply is smaller in size compare	ed to conventional DC supply.	
	2. It is light weight and con			Each advanta
	3. Ripples in the output can the cost and size of filte	be easily filtered out using sma r circuit.	ll filter components, reducing	ge:1M
	4. Size and cost of the trans	former used is less.		
	5. It has a better power effi	ciency (typically 60 to 70 percen	t).	
	6. Less affected by electron	nagnetic interferences.		
	7. SMPS has wide output ra	nge.		
	8. Low heat generation in	SMPS.		
(B)	Attempt any TWO of the fol	lowing: :		08- Tota Marks
a)	Compare single phase halfw rectifier(any four points)	vave controlled rectifier and sing	gle phase full wave controlled	4M
Ans:				1M each for
	PARAMETER	Single phase half wave	Single phase full wave	any 4
		controlled rectifier	controlled rectifier	points
	No. of SCR used	ONE SCR	TWO OR FOUR SCRs	
	Firing circuit complexity	Easier	Complicated	
	Application	In small battery chargers	In DC motor speed control	
	Waveforms	Supply Vibling Faring pulses 0 - On Lond	r+ Eq. 03 of Sequel reliand Process reliand reliand	

WINTER- 18 EXAMINATION

Model Answer

Subject Name: Power electronics

Subject Code:

17444

	Average load voltage	Vm/2π * (1+ cosα)	Vm/π * (1+ cosα)	
	Ripple frequency	50 Hz	100 Hz	
b)	State four performance pa	rameters of inverter.		4M
Ans:	Performance parameters of	of Inverter		1M each
	1. Harmonic factor of	nth harmonic (HFn)		
	2. Total harmonic dist	ortion (THD)		
	3. Distortion factor (D	F)		
	4. Lowest order harmo	onic(LOH)		
c)	Draw the neat circuit diag	ram of emergency light systen	n and write its working.	4M
Ans:	Circuit diagram of emerger	ncy light system: vant diagram may also be	<u>considered)</u>	Circuit diagram :2M Working : 2M
	$230 V,$ $1 = \phi,$ $50 Hz$ supply $6 V$	D_3 R_1 D_1 C R_2 R_2 D_2	$\frac{SCR1}{R_3} = 6V$ Battery	
	Working:-			
	input. This supply	is stepped down by a centre	uit .The 230v ac supply is applied - tapped transformer. Transfor vave rectifier circuit using D ₁ & D	mer

•

Model Answer Subject Code:

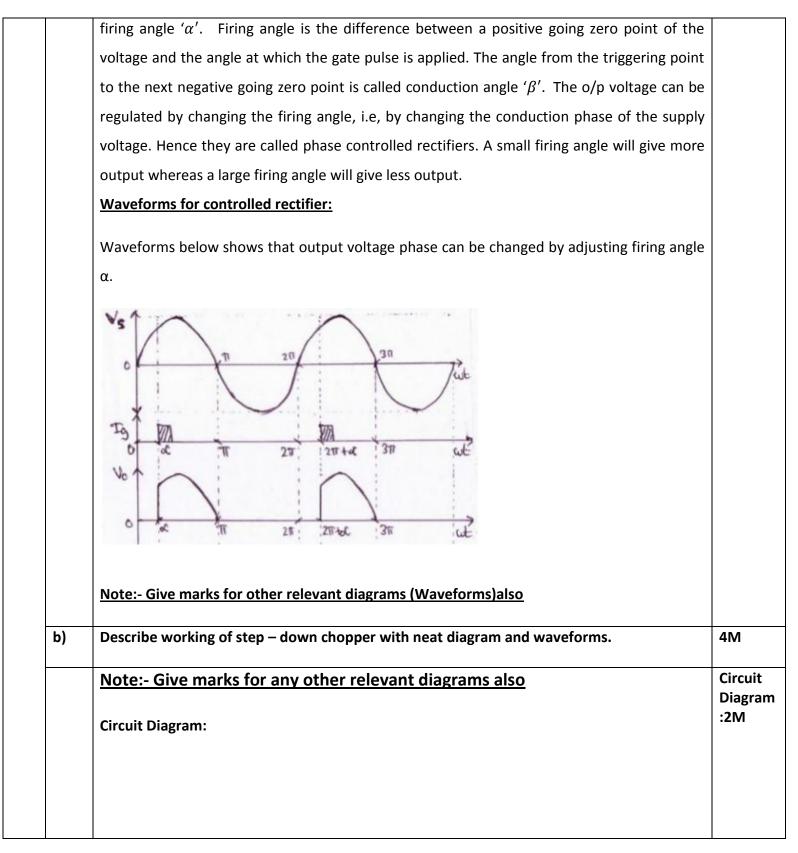
When supply is ON, the lamp is connected to rectifier output dc voltage, and will

17444

		remain ON.	
		• At the same time a pulsating current flows through D3 & R1 charge the battery to a	
		voltage slightly less than the supply voltage.	
		• The capacitor C gets charged with upper plate +VE to some voltage less than	
		secondary voltage of transformer. Due to capacitor voltage, gate cathode junction of	
		SCR1 gets reverse biased. The anode is at battery voltage & cathode is at rectifier	
		output voltage, which is slightly higher, hence SCR1 is reverse biased & cannot conduct.	
		• When power fails, the capacitor C discharges through D3 R1 & R3 until the cathode of	
		SCR, is less positive than anode. At the same time the junction of R2 & R3 becomes	
		+VE & establishes a sufficient gate to cathode voltage to trigger the thyristor. Once	
		the thyristor turns ON, the battery discharges through it, & turns the lamp ON. When	
		power is restored, the thyristor gets connected & commutated and capacitor C	
		recharges again.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR of the following::	16- Total Marks
	a)	Why the controlled rectifiers are called phase controlled rectifiers? Justify with neat sketch.	4M
	Ans:	Justification:	Justifica
		Unlike diode rectifiers, phase controlled rectifiers has an advantage of regulating the output	tion:2M
		voltage. The diode rectifiers are termed as uncontrolled rectifiers. When these diodes are	
		replaced with Thyristors, it becomes a controlled rectifier. Controlled rectifiers use the	wavefor
		principle of phase control technique. It is a method of turning ON a thyristor by varying the	ms:2M
-	•	•	

tified)

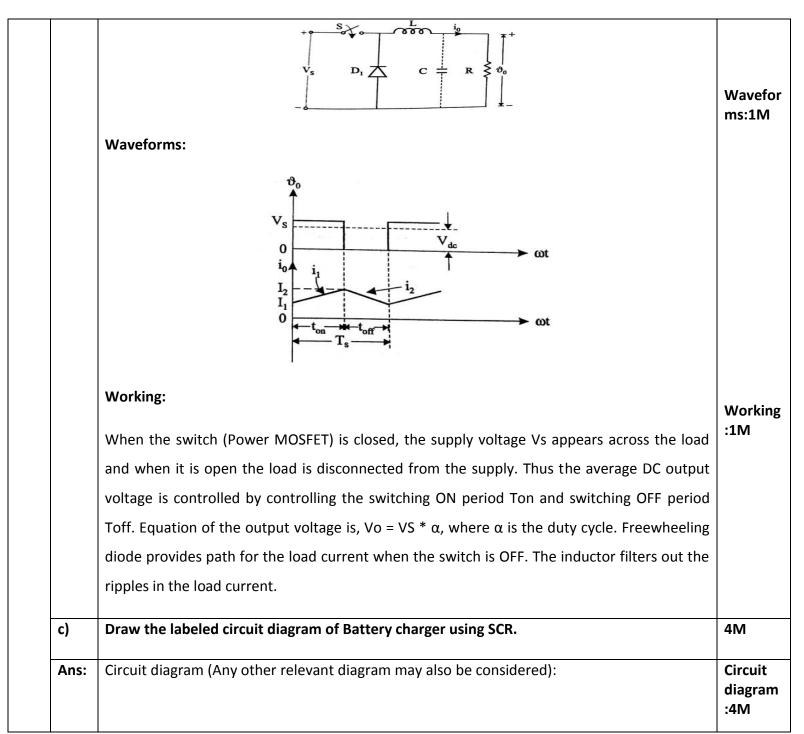
Subject Name: Power electronics


MAHARASHT

(Autonomous) (ISO/IEC - 2700

> WINTER- 18 EXAMINATION Model Answer Subject

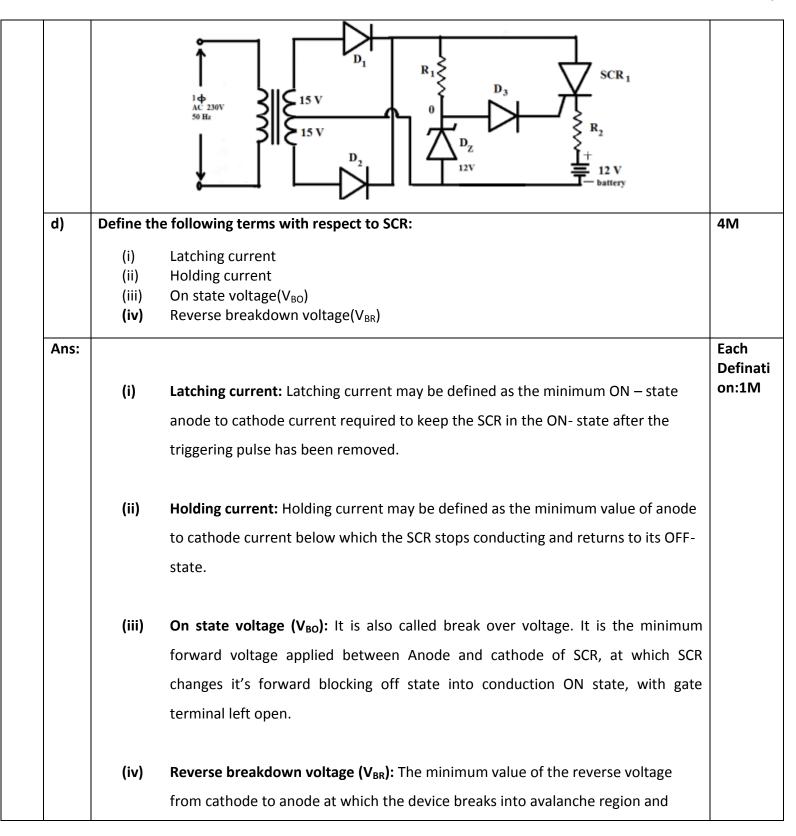
Subject Code:


17444

WINTER- 18 EXAMINATION Model Answer Sul

Subject Code:

17444



WINTER-18 EXAMINATION

Model Answer

Subject Code:

17444

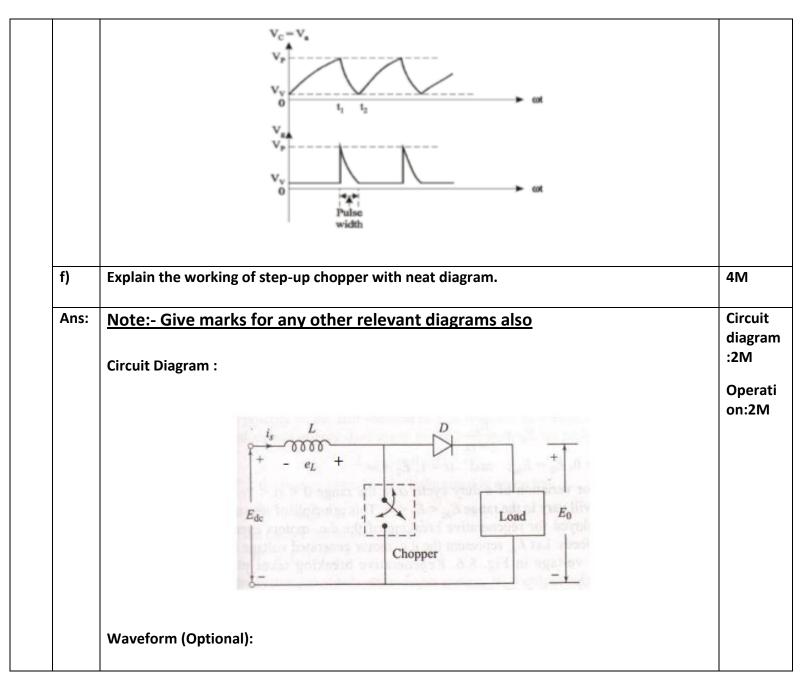
WINTER- 18 EXAMINATION Model Answer Subje

Subject Code:

17444

11

starts conducting heavily in the reverse direction. Draw the circuit diagram of PUT relaxation oscillator and explain its operation. 4M e) PUT relaxation oscillator: Circuit Ans: diagram :2M **Circuit diagram:** Operati V_{BB} on:2M R₈₂ Working: When the supply voltage V_{BB} is applied, the capacitor C starts charging through resistor R. When the voltage across the capacitor exceeds the peak voltage (Vp), PUT goes into negative resistance mode and this creates a low resistance path from anode (A) to cathode (K). The capacitor discharges through this path. When the voltage across the capacitor is below valley point voltage (Vv) the PUT reverts to its initial condition and there will be no more discharge path for the capacitor. The capacitor starts to charge again and the cycle is repeated. This series of charging and discharging results in a saw tooth waveform across the capacitor as shown in the figure below. Waveform(optional):

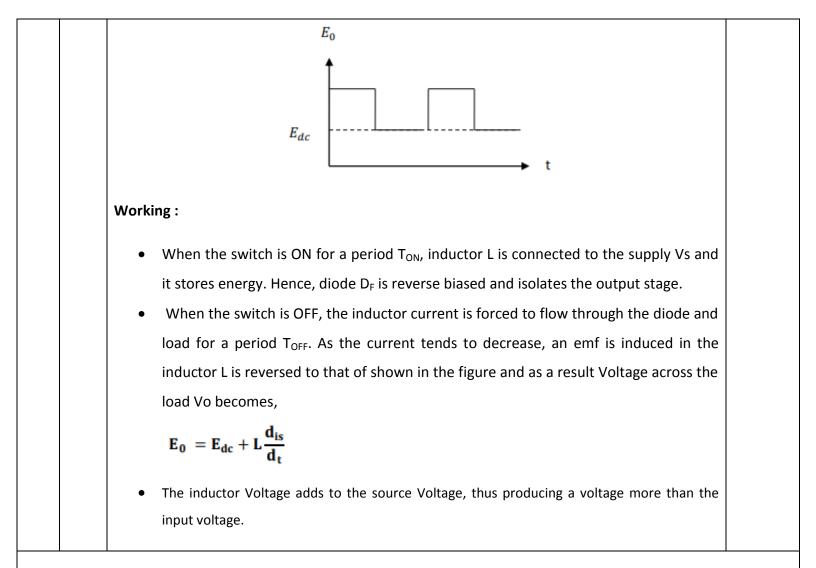


WINTER-18 EXAMINATION

Model Answer

Subject Code:

17444


MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

Subject Name: Power electronics

WINTER- 18 EXAMINATION Model Answer Subje

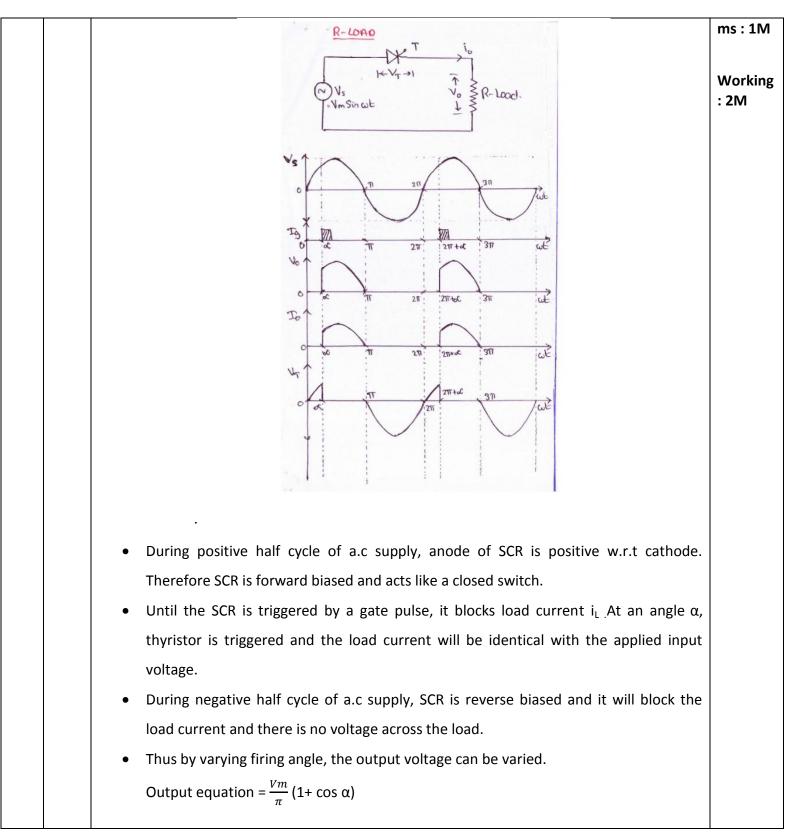
Subject Code:

```
17444
```


Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR of the following::	16- Total Marks
	a)	Differentiate TRIAC and DIAC with respect to (1) symbol (2) layered diagram (3) application (4) breakdown voltage.	4M

WINTER- 18 EXAMINATION

Subject Name: Power electronics


Model Answer

Subject Code:

17444

Ans:	Parameters	TRIAC	DIAC	4 poin : 4M
	Symbol	MT2	MT2	
		G MT1	MT1	
	Layered diagram	MAIN TERMINAL 2 MT ₂ MT ₂ P ₁ N ₁ P ₂ N ₃ GATE G MAIN TERMINAL 1 MT ₁	MT ₂ N ₁ P ₁ N ₂ P ₂ N ₃ MT ₁	
	Application	Fan control, light dimmer	Starter circuits, light dimmer, triggering of TRIAC	
	Breakdown voltage	Breakdown voltage or Break over voltage can be controlled by adjusting the gate current	Breakdown voltage or Break over voltage cannot be controlled	
b) Ans:	Describe working of half v and waveforms.	wave controlled rectifier with Resi	istive load. Draw circuit diagram	Circuit Diagra
				1M,

WINTER- 18 EXAMINATION <u>Model Answer</u> Subject Code:

WINTER- 18 EXAMINATION

Model Answer

Subject Code:

17444

c)	Define terms of GTO : (1) Turn off gain and (2) Maximum controllable I_A .	4M
Ans:	(1) Turn off gain	Each definiti
	The ratio of anode current I_A to negative gate pulse current $I_g^{(-)}$ needed to turn-off the GTO $% I_{\rm g}$ is	n : 2M
	called the turn off gain.	
	$\beta_{\text{off}} = \frac{I_A}{I_g^{(-)}} = \frac{\alpha_2}{\alpha_1 + \alpha_2 - 1}$	
	Where, α_1, α_2 are the transistor gains.	
	(2) Maximum controllable I _A	
	The maximum value of anode current above which no gate current can turn off a conducting	
	GTO is called its maximum controllable anode current (I _A).	
d)	Draw the construction of enhancement type power MOSFET and describe its working.	4M
Ans:	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	Circuit diagran : 2M Workin :2M
	Constructional diagram of N channel enhancement MOSFET	
	Working:	
	$\frac{\text{Working:}}{\text{Enhancement only MOSFETs have no physical channel. When V_{GS} is equal to zero, and V_{DD} is}$	

Meta

Metal substrate

Subject Name: Power electronics

17444

When positive V_{GS} is applied above the threshold value, electrons in P-region are pulled below the poly silicon gate to form a channel (N-type). Thus source gets connected to drain and a small current I_D flows depending upon the voltage V_{DD}. Below the threshold voltage, there is no channel and the device stops conducting. (OR) Metal substrate p_{\perp}

ID

n -Type substrate

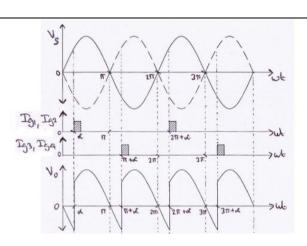
Basic structure

 p_+

Enhancement only MOSFETs have no physical channel. When V_{GS} is equal to zero, and V_{DD} is applied, no current flows through the device.

When negative V_{GS} is applied above the threshold value, holes in N-region are pulled below the poly silicon gate to form a channel (P-type). Thus source gets connected to drain and a small current I_D flows depending upon the voltage V_{DD}. Below the threshold voltage, there is no channel and the device stops conducting.

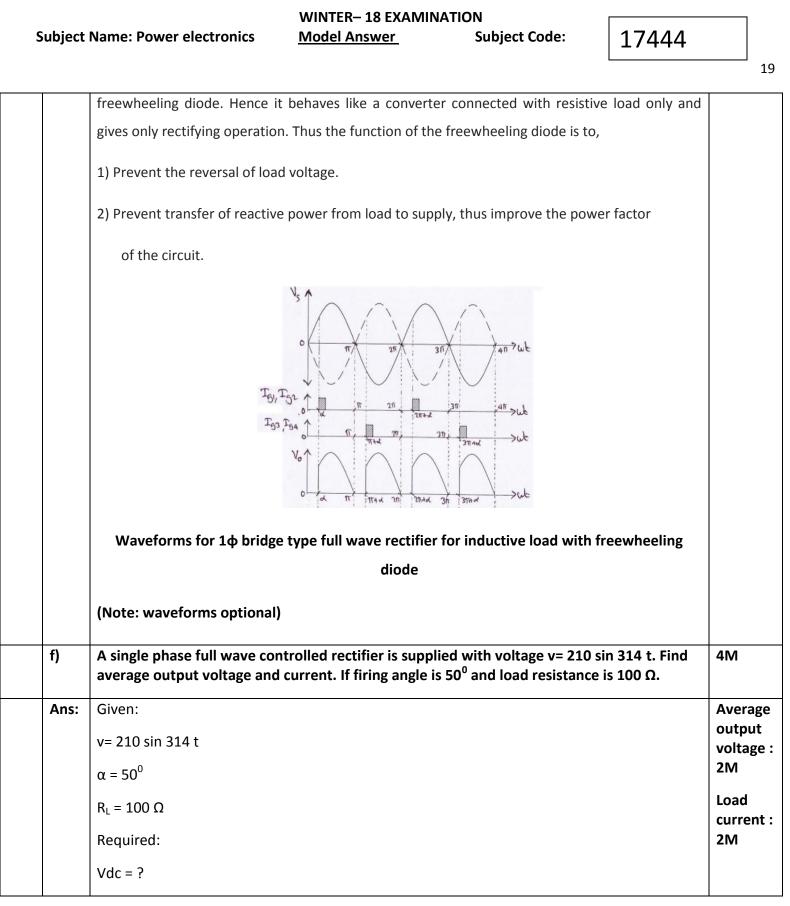
	e)	Write the effect of inductive load and significance of free wheeling diode in 1 ϕ bridge type full wave rectifier.	4M
	Ans:	Effect of inductive load:	Effect of load : 2M
			Significa nce of



WINTER- 18 EXAMINATION Model Answer Subject Code:

17444

18


Waveforms for 1φ bridge type full wave rectifier for inductive load without freewheeling diode

In single phase bridge type full wave rectifier, when one set of SCRs are triggered at an angle α , the load current increase slowly, since the inductance in the load forces the current to lag the voltage. During the positive conduction cycle, inductor stores energy. At $\omega t = 180^{\circ}$, the load voltage reverses along with the supply voltage as current through the inductor cannot be stopped instantly. Therefore during negative cycle, the current continues to flow till some part of the energy stored in the inductor is dissipated in the load resistor and the remaining fed back to the supply itself. Thus by controlling the firing angle from 0-180° the average DC output voltage can be varied continuously positive maximum to negative maximum. Because the output DC voltage is reversible even though the current flow is unidirectional, the power flow in the converter can be in either direction. Hence two modes of operation (rectifying mode & inverting mode) are available with 1Ø bridge rectifier.

Significance of freewheeling diode:

To cutoff the negative portion of the instantaneous output voltage and reduce the output current ripple, a freewheeling diode is used. When the load voltage tends to reverse, the freewheeling diode becomes forward biased and turns on. Thus, the load voltage is clamped to zero volts at $\omega t = 180^{\circ}$. At the same time a nearly constant load current is maintained by the

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER- 18 EXAMINATION Model Answer Sub

Subject Code:

17444

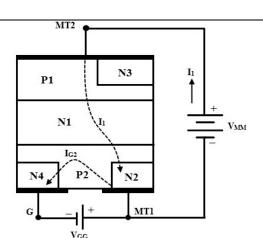
		I _L = ?	
		Solution:	
		Average output voltage = $\frac{Vm}{\pi}$ (1 + cos α)	
		$=\frac{210}{\pi}(1+\cos 50)$	
		= 66.84 * 1.642 = 109.75 V	
		Load current $I_L = \frac{Vdc}{RL} = \frac{109.75}{100} = 1.0975 \text{ A}$	
		·	
Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR of the following::	16- Total Marks
	(a)	Describe working of 1- ϕ half bridge inverter with neat sketch.	4M
	Ans:	$V_{S} = V_{0} + V_{0} + V_{0} + T_{1} + D_{1} + V_{0} + T_{1} + T_{2} + T_{2} + T_{1} + T_{2} + T_{2} + T_{1} + T_{2} + T_{2$	Circuit Diagram : 1M Wavefor ms : 1M Working : 2M
		1-φ half bridge inverter Waveforms of gate pulses and output voltage Working:	
		• The DC power supply has been divided into two halves each having a voltage of Vs/2.	
		• The thyristor T1 is turned on for a time T/2, which makes the instantaneous voltage across the load, Vo = Vs/2.	

WINTER- 18 EXAMINATION Model Answer Subje

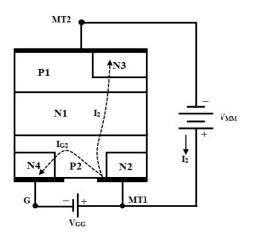
Subject Code:

17444

	• If thyristor T2 is turned on at instant T/2 by turning T1 off, the load current will now				
	flow in reverse and -Vs/2 voltage appears across the load.				
	 Thus by turning on T1 & T2 alternatively, a square wave A.C output may be produced across the load. The frequency of output, ω = ^{2π}/_T ^{rad}/_{sec} During the switching of T₁ and T₂, path for the reactive current back to the supply 				
	from inductor stored energy is provided by D1 and D2 respectively and hence called				
	feed back diodes.				
(b)	Explain four modes of operation of a TRIAC.	4M			
Ans:	There are four different operating modes of TRIAC:				
	1) MT2 and gate are positive with respect to terminal MT1(Mode1) : Here terminal MT2 is positive with respect to terminal MT1 current flows through path P1-N1-P2-N2.The two	Each			
	junctions P1-N1 and P2-N2 are forward biased whereas junction N1-P2 is blocked. The TRIAC				
	is now said to be positively biased. A positive gate with respect to terminal MT1 forward	1M			
	biases the junction P2-N2 and the breakdown occurs as in a normal SCR.				
	$\begin{array}{c c} MT2 \\ \hline P1 \\ \hline N3 \\ \hline H \hline \hline H \\ \hline H \hline \hline$				
	2) MT2 is positive but gate is negative with respect to terminal MT1(Mode2): Though the				
	flow path of current remains the same as in mode 1 but now junction P2-N3 is forward				
	biased and current carriers injected into P2 turn on the TRIAC.				


MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

Subject Name: Power electronics

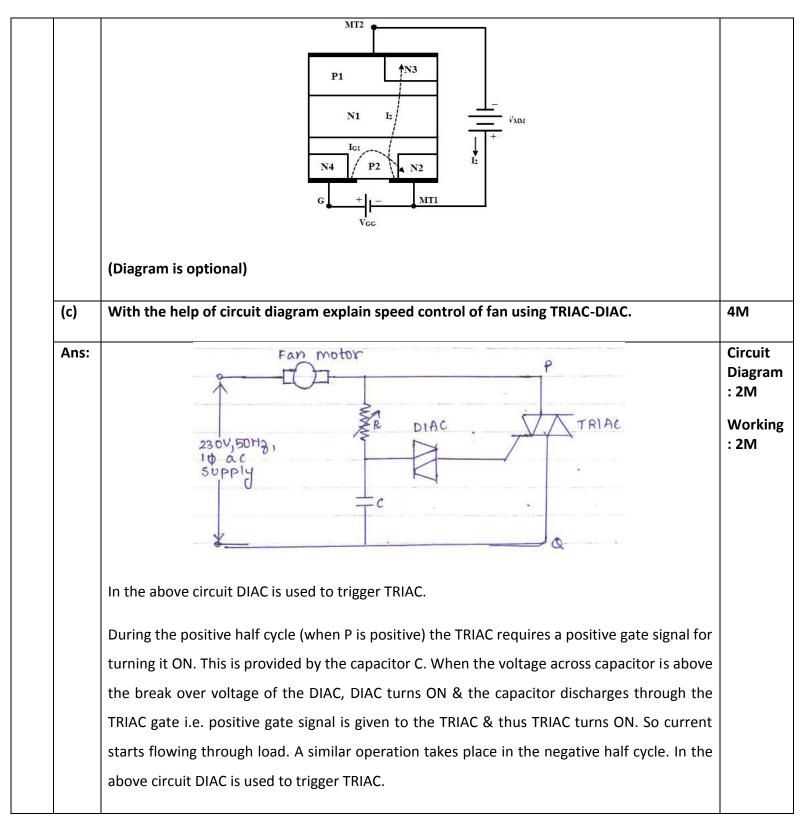

WINTER- 18 EXAMINATION <u>Model Answer</u> Subject Code:

17444

22

3) MT2 and gate are negative with respect to terminal MT1(Mode4) : When terminal MT2 is negative with respect to terminal MT1, the current flow path is P2-N1-P1-N4. The two junctions P2-N1 and P1 – N4 are forward biased whereas junction N1-P1 is blocked. The TRIAC is now said to be negatively biased. A negative gate with respect to terminal MT1 injects current carriers by forward biasing junction P2-N3 and thus initiates the conduction.

4) MT2 is negative but gate is positive with respect to terminal MT1(Mode3) : Though the flow path of current remains the same as in mode 3 but now junction P2-N2 is forward biased, current carriers are injected and therefore, the TRIAC is turned on.



WINTER- 18 EXAMINATION

Model Answer

Subject Code:

17444

MAHARASHT **BOARD OF TECHNICAL EDUCATION** (Autonomous) (ISO/IEC - 2700 tified) WINTER-18 EXAMINATION 17444 Subject Code: **Subject Name: Power electronics** Model Answer 24 So current starts flowing through load. A similar operation takes place in the negative half cycle, & a negative gate pulse will be applied when the DIAC breaks down in the reverse direction. The charging rate of capacitor C can be changed by varying the resistance R and, hence the firing angle can be controlled. Thus if firing angle is less speed of fan motor is more & if firing angle is more speed. Fan motor is less. Thus by controlling the firing angle of TRIAC, we can control speed of fan using TRIAC. (d) Describe working of complementary symmetry commutation circuit with neat diagram. 4M Ans: Circuit 1000d diagram Ra : 2M - 1+ Edc T. Working (main) : 2M Ta. IJ. IL TSCA Allar 1:141 Vsa table time constant **Explanation:** Here complementary thyristor T_2 is connected in parallel with the main thyristor. Initially, both the thyristors are OFF, when a triggering pulse is applied to the gate of T₁, thyristor T₁ is triggerd. Therefore current starts flowing through the

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700 tified) WINTER-18 EXAMINATION 17444 Subject Code: **Subject Name: Power electronics** Model Answer 25 load as well as R₂& C. Capacitor C will get charged by the supply voltage Edc. When a triggering pulse is applied to the gate of T_2 , T_2 will be turned on. As soon as T₂ is ON, the negative polarity of capacitor C is applied to the anode of T1 and positive to the cathode. This causes the reverse bias voltage to get applied across the main thyristor T1 turning it OFF. (e) Draw the block diagram of UPS and explain function of each block. 4M Ans: Block diagram static bypass : 2M Function AC filter critical rectifier inverter power : 2M load source backup batteries Power source: A $3\emptyset$ or $1\emptyset$ AC supply which supplies the rectifier. Rectifier & battery charger: Converts 30 or 10 AC. Rectifier supplies power to the inverter and the charger feeds the backup battery bank. Backup battery: When the supply is ON, the battery starts charging. A static switch will connect or disconnect the battery form the input of the inverter depending on the status of a.c mains. Inverter: It gets d c input voltage from the rectifier when the ac main is ON, and from the battery bank when the a.c mains is OFF. Inverter converts this d.c voltage into a.c voltage and through a suitable filter applies it to the load. Filter: It filters out the harmonics present in the output of the inverter and provides a perfect sinusoidal voltage to the load.

WINTER- 18 EXAMINATION Model Answer Subject

Subject Code:

17444

	Critical load: Computer systems for signaling systems, control systems, medical and lab						
		testing equipment are some of the critical loads that use UPS. Static bypass switch: Connects the AC Power mains directly to the load.					
	f)						
		Compare step-up chopper and step-down chopper (any four points).		4M			
	Ans :	Parameter	Step – up chopper	Step – down chopper	4 points : 4M		
		Switch position	In parallel with load	In series with load			
		Quadrant of operation	Second	First	(Other relevant		
		Output voltage equation	Vo = V / (1- α)	Vo = V * α	point can be		
		Applications	Battery charging, voltage booster	Motor speed control	conside ed)		
•		Attempt any FOUR of the fol	_		16- Tota Marks 4M		
	a)	Draw the neat circuit diagram of low power dc flasher and describe its working.					
	Ans:	Circuit diagram of low powe	r dc flasher:		2M - circuit		
		$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$					

BOARD OF TECHNICAL EDUCATION

tified)

WINTER- 18 EXAMINATION

Model Answer

Subject Name: Power electronics

MAHARASHT (Autonomous)

(ISO/IEC - 2700

Subject Code:

17444

Working:-	
 The circuit consists of UJT relaxation oscillator and Class C commutation circuit. 	
 UJT relaxation oscillator produces a train of pulses which is directly applied to SCR1 	
which is delayed & applied to SCR2 where the delay is decided by C & R6.	
 Let SCR 1 and lamp be ON initially. Capacitor C1 charges through R & SCR1 to supply 	
voltage Vdc .With the next trigger pulse SCR2 will be turned ON.	
 Now voltage across C1 reverse biases SCR1 & turns it OFF. 	
 Capacitor discharges through SCR2 & charges in opposite direction. 	
 Since SCR1 is reversed biased, it will not turn ON even if the gate pulse arrives. 	2M –
 When the current through SCR2 reduces below holding current, SCR2 turns OFF. A large 	working
R1 reduces the current through SCR 2.	
 When next trigger pulse comes SCR1 is turned ON, lamp glows again and capacitor C1 	
gets charged though R1 to develop commutating voltage for SCR1.	
 Switching of SCR1 gives flashes from lamp. 	
 The flash rate depends on firing pulse frequency of UJT relaxation oscillator. Therefore 	
by adjustingR3, the required flash rate can be obtained.	
With the help of construction and equivalent circuit explain working of LASCR.	4M
Constructional diagram:	1.5M – Constru tional diagram
	 UJT relaxation oscillator produces a train of pulses which is directly applied to SCR1 which is delayed & applied to SCR2 where the delay is decided by C & R6. Let SCR 1 and lamp be ON initially. Capacitor C1 charges through R & SCR1 to supply voltage Vdc .With the next trigger pulse SCR2 will be turned ON. Now voltage across C1 reverse biases SCR1 & turns it OFF. Capacitor discharges through SCR2 & charges in opposite direction. Since SCR1 is reversed biased, it will not turn ON even if the gate pulse arrives. When the current through SCR2 reduces below holding current, SCR2 turns OFF. A large R1 reduces the current through SCR 2. When next trigger pulse comes SCR1 is turned ON, lamp glows again and capacitor C1 gets charged though R1 to develop commutating voltage for SCR1. Switching of SCR1 gives flashes from lamp. The flash rate depends on firing pulse frequency of UJT relaxation oscillator. Therefore by adjustingR3, the required flash rate can be obtained. With the help of construction and equivalent circuit explain working of LASCR. Constructional diagram:

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

WINTER-18 EXAMINATION

Subject Name: Power electronics

Model Answer

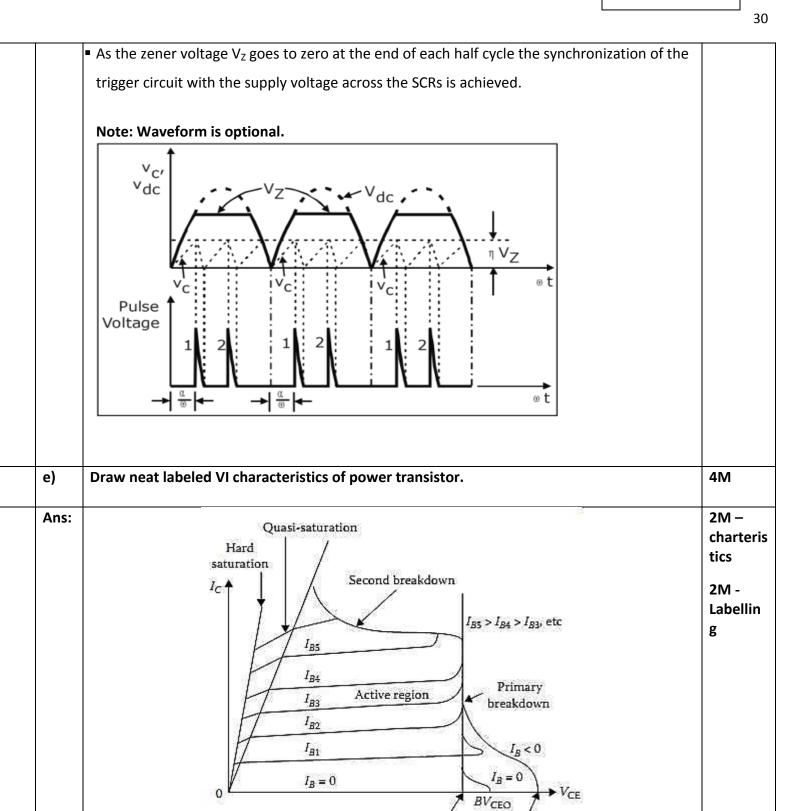
Subject Code:

17444

WINTER- 18 EXAMINATION Model Answer Subject

Subject Code:

17444


d)	 output, reducing the cost of filtering. Thus a 3Ø rectifier become more suitable for large power applications. Draw the circuit diagram of synchronized UJT triggering circuit and explain its working. 	4M			
Ans:	Draw the circuit diagram of synchronized UJT triggering circuit and explain its working. $ \begin{array}{c} $				
	Pulse transformer Synchronized UJT trigger-circuit				
	Working:				
	The diode bridge D1 – D4 rectifies a.c. to d.c.				
	Resistor Rs lowers V _{dc} to a suitable value for the Zener diode and UJT.				
	 The zener diode 'Z' functions to clip the rectified voltage to a standard level V_Z which remains constant except near V_{dc} 0. 	Workir			
	This voltage V _z charges capacitor 'C' at a rate determined by the RC time constant.				
	When the capacitor reaches the peak point V _P the UJT starts conducting and capacitor				
	discharges through the primary of the pulse transformer.				
	As the current through the primary is in the form of a pulse the secondary windings have				
	pulse voltages at the output. The pulses at the two secondary's feed SCRs in phase.				

MAHARASHT (Autonomous) (ISO/IEC - 2700 + tified)

Subject Name: Power electronics

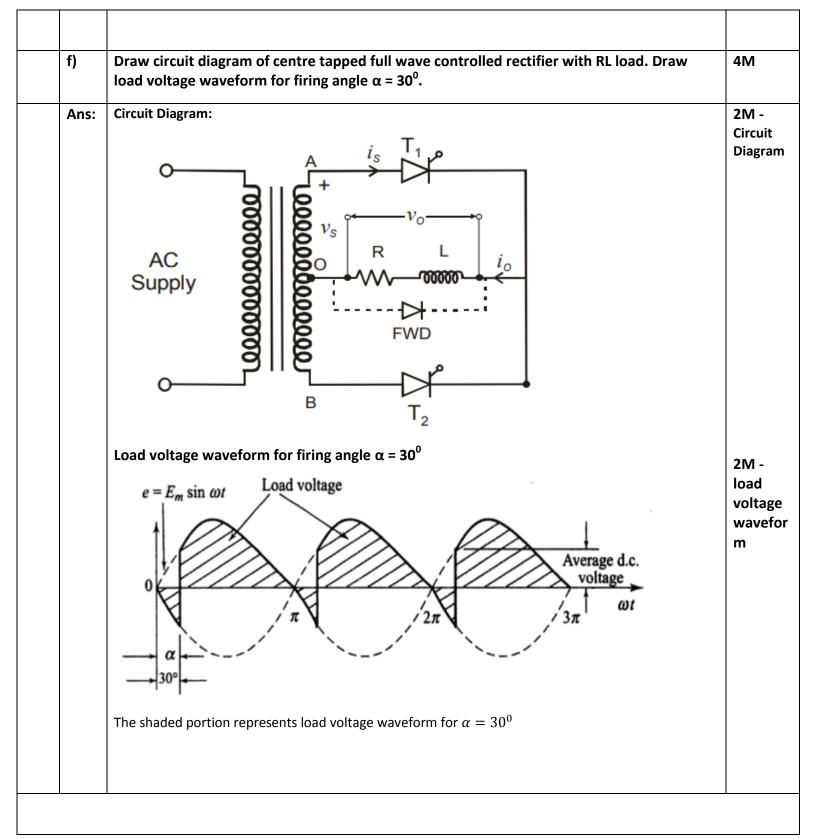
WINTER- 18 EXAMINATION Model Answer Subject Code:

17444

BVSUS

BVCBO

Page 30/37


WINTER-18 EXAMINATION

Subject Name: Power electronics

Model Answer

Subject Code:

17444

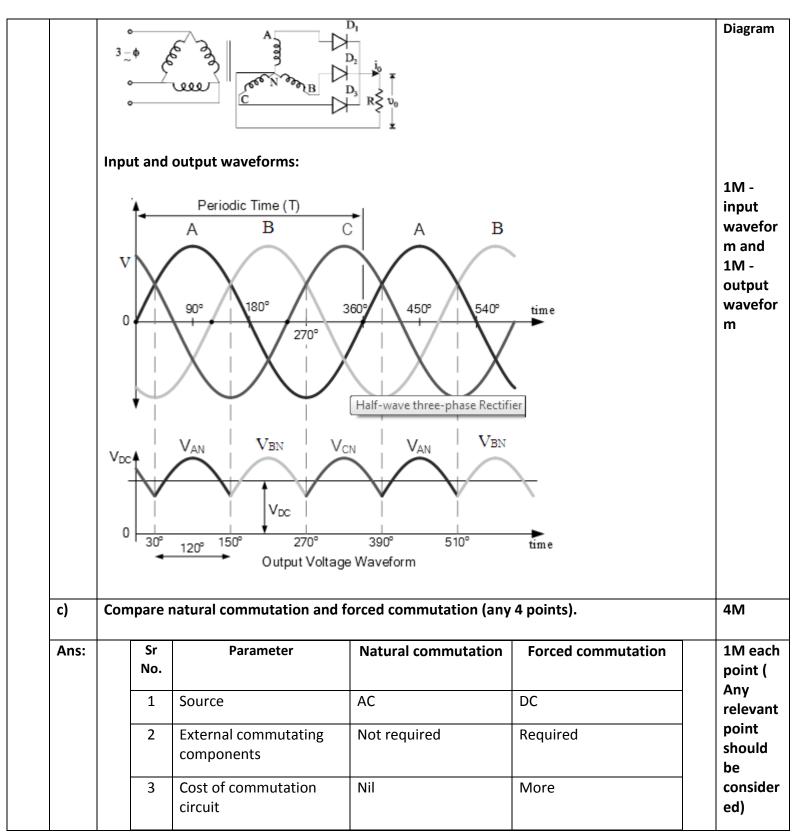
WINTER- 18 EXAMINATION

Subject Name: Power electronics

Model Answer

Subject Code:

17444


Sub Q. N.	Answers	Marking Scheme
	Attempt any FOUR of the following::	16- Tota Marks
a)	Describe working of Temperature Controller with neat diagram.	4M
Ans:	Circuit Diagram:	2M - Circuit Diagram 2M - Working
b)	Draw circuit diagram input and output waveforms of 3- ϕ half wave uncontrolled rectifier.	4M
Ans:	Circuit Diagram:	2 M - Circuit

WINTER-18 EXAMINATION

Model Answer

Subject Code:

17444

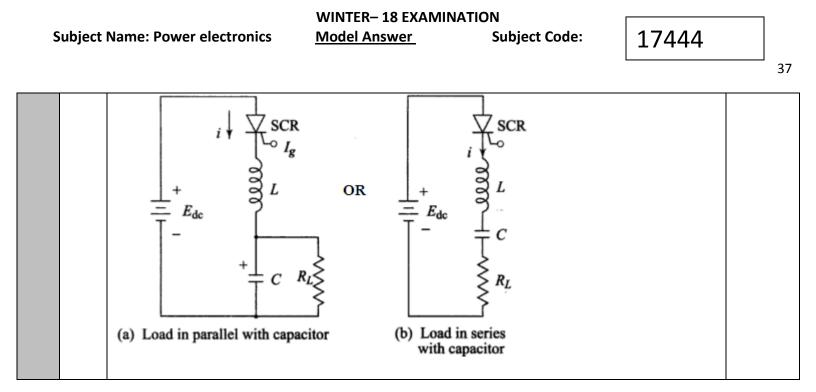
WINTER- 18 EXAMINATION Model Answer Sub

Subject Code:

17444

	4	Power loss in commutation components	Nil	Some power loss takes place.	
	5	Applications	Controlled rectifiers, AC Controllers.	Choppers, inverters.	
d)		structional details of SC uring the SCR?	CR. Why silicon is used as the	e intrinsic semiconductor for	4M
Ans:	Constructi	ional diagram of SCR: A 🌩		A●	2M - Constru tional diagram
	G • Ig	p J ₁ n n p p J ₂ J ₃ P K	$ \overset{J_1}{\longleftrightarrow} \overset{J_2}{\underset{Ig}{\overset{J_2}{\bullet}}} $	$\begin{bmatrix} la \\ p \\ n \\ lc2 \\ n \\ lc1 \\ p \\ J_3 \\ K \end{bmatrix}$	
	Silicon is u reasons:	used as the intrinsic ser	niconductor for manufactur	ing the SCR for following	2M - Reasoni ng
	-		ature, Silicon crystal has few hat silicon will have much sn		
		an Germanium.			

WINTER- 18 EXAMINATION <u>Model Answer</u> Subject Code:


					1
	current wi	th temperature is less i	n Silicon compared to Germa	nium.	
	3) Greater	operating range of ter	nperature: The structure of (Germanium crystals will be	
	destroyed	at higher temperature.	However, Silicon crystals are	not easily damaged by excess	
	heat.				
	4) Higher I	PIV rating: Peak Inverse	e Voltage ratings of Silicon did	odes are greater than	
	Germaniu	m diodes.			
	5) Si is less	s expensive due to the g	greater abundance of the ele	nent. The major raw material	
	for Si wafe	r fabrication is sand wh	nich is readily available in nat	ure.	
	But the po	tential Barrier of Silicor	n is more compared to Germa	anium. But if we consider the	
	advantage	s listed above, it can be	e concluded that Silicon is the	best element for the	
	Semicondu	uctor Devices and Appli	cations.		
e)	Compare I	petween power MOSFE	T and IGBT (any four points)		4M
Ans:	Sr No.	Parameter	Power MOSFET	IGBT	1M each
Ans:	Sr No.	Parameter Switching frequency	Power MOSFET Upto 100 KHz	IGBT 10 KHz	1M each point (Any
Ans:					point (Any relevant point
Ans:	1	Switching frequency ON state conduction	Upto 100 KHz	10 KHz	point (Any relevant point should be
Ans:	1 2	Switching frequency ON state conduction drop	Upto 100 KHz 4 – 6 volts 500 V/ 200 A	10 KHz 3.3 volts	point (Any relevant point should
Ans:	1 2 3	Switching frequency ON state conduction drop V-I rating	Upto 100 KHz 4 – 6 volts 500 V/ 200 A	10 KHz 3.3 volts	point (Any relevant point should be consider

WINTER- 18 EXAMINATION Model Answer Subject Code:

17444

		6	Turn OFF time	150-200ns	2 µs	
		7	Applications	Motor drives, UPS, static VAR compensators, induction heatng.	SMPS, Brush less DC motor drives, electronic d.c relay	
f)	Cla	assify th	e commutation metho	ods of Thyristor. Draw class A	commutation circuit.	4M
Ans:	Va	arious m	ethods of thyristor co	mmutation:		2M –
	1)	Natura	al commutation			Classific ation
	2)	Forced	l commutation)			
		i) Cl	ass A- Self commutatio	on by resonating the load		
		ii) Cl	ass B- Self commutatio	on by an LC circuit		
		iii) Cl	ass C- Complementary	commutation		
		iv) Cl	ass D- Impulse or auxil	iary commutation		
		v) Cl	ass E- External pulse co	ommutation		2M –
		vi) Cl	ass F- AC line commuta	ation		Circuit Diagran
	Cla	ass A co	mmutation:			

