

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Code:

17444

Subject Title: Power Electronics

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	(A)	Attempt any SIX:	12M
	a)	Draw the symbol of MOSFET and IGBT	2M
	Ans:	Symbol of MOSFET : G G C C C C C C C C C C C C C	1M
		Symbol of IGBT : $G \circ f = f \circ f$	1M
	b)	Draw the structural diagram and symbol of SCR.	2M

Ans:	<u>Symbol :</u>	1M
	Anode Cathode Gate	
	Diagram : Anode(A) P1 J1 J2 P2 J3 N2 Cathode(K)	1M
c)	List any four methods of triggering SCR.	2M
c) Ans:	List any four methods of triggering SCR. Note: Any four triggering method can be considered. Different triggering methods of SCR are: 1. Forward voltage triggering 2. Thermal or temperature triggering 3. Radiation or Light triggering 4. dv/dt triggering 5. Gate triggering • D.C Gate triggering • A.C Gate triggering • Pulse Gate triggering	(½ M Each
<u> </u>	Note: Any four triggering method can be considered. Different triggering methods of SCR are: 1. Forward voltage triggering 2. Thermal or temperature triggering 3. Radiation or Light triggering 4. dv/dt triggering 5. Gate triggering • D.C Gate triggering • A.C Gate triggering	(¹ / ₂ M
Ans:	Note: Any four triggering method can be considered. Different triggering methods of SCR are: 1. Forward voltage triggering 2. Thermal or temperature triggering 3. Radiation or Light triggering 4. dv/dt triggering 5. Gate triggering • D.C Gate triggering • A.C Gate triggering • Pulse Gate triggering	(¹ /2 M Each Method)

	• Diode	
e)	Give the classification of chopper.Define inverter.	2M
Ans:	DC chopper can be classified as : 1.According to input/output voltage levels • Step -Up chopper • b.Step - Down chopper	1M
	 2. <u>According to direction of output voltage and current</u> Class A Chopper Class B Chopper Class C Chopper Class D Chopper Class E Chopper 	
	 3. According to Circuit operation First Quadrant Chopper Two quadrant Chopper Four Quadrant Chopper 4. According to Commutation method Voltage Commuted Chopper 	
	 Current Commuted Chopper Load Commuted Chopper Impulse Commuted Choppe Defination of Inverter: An Inverter is a circuit that converts a fixed dc input voltage into an ac output voltage of variable frequency and of fixed or variable magnitude.	1M
f)	Define any two performance parameters of inverter.	2M
Ans:	Performance parameters of inverters : Harmonic factor of nth harmonics(HF _n): The harmonic factor is a measure of contribution of individual harmonics. It is defined as the ratio of the rms voltage of a particular harmonic component to the rms value of fundamental component. OR $H_{F_n} = \underbrace{E_n \wp m_s}_{E_1 \wp m_s}$	1M each
	Total Harmonic Distortion (THD): It is a measure of closeness in a shape between the output voltage waveform and its	

B)	Attempt any TWO:	8M
Ans:	Commutation is the process by which we can turn OFF a thyristor. So the process of switching OFF a thyristor or SCR is known as Commutation.	2M
h)	Define the term commutation of SCR.	2M
	 It transfers the load current away from the main rectifier ,thereby allowing all of its thyristors to regain their blocking states. 	
Ans:	Freewheeling diode serves two main function:It prevents reversal of load voltage except for small diode voltage drop.	2M
g)	State the function of freewheeling diode in any rectifier in circuit.	2M
```	<b>Lowest-Order Harmonics(LOH):</b> The lowest frequency harmonic ,with a magnitude greater than or equal to three percent of the magnitude of the fundamental component of the output voltage, is known as Lower order harmonic.	
	$DF = \underbrace{\sum_{n=2,3,\dots}^{\infty} \left( \frac{E_{n ms}}{n^2} \right)^2}_{E_{1 mms}}$	
	Distortion factor (DF): It indicates the amount of harmonics that remain in the outut voltage waveform, after the waveform has been subjected to second order attenuation. <u>OR</u>	
	$= \sqrt{\frac{E_{o_{rms}}^2 - E_1^2}{E_1}}$	
	$T:HD = \sqrt{\sum_{n=2,3,\dots}^{\infty} E_{nrms}^{2}}$ $F_{1rms}$	
	OR	
	fundamental component. It is defined as the ratio of the rms value of its total harmonic component of the output voltage and the rms value of fundamental component.	



Ans:	Holding current: It is the minimum value of anode to cathode current below which the device stops conducting and return to its off state.	11/2M
	<b>Latching current:</b> It is the minimum anode to cathode current required to keep the device in the on state after the trigger pulse has been removed.	1½M
	Typical value of holding current and Latching current varies with SCR to SCR. And holding current is always less than Latching current. <i>Note:- Please give marks accordingly.</i>	1M
b)	Draw and explain single phase half wave controlled rectifier with resitive load.State the equations of average voltage and current.	<b>4</b> M
Ans:	Diagram :	1M
	Waveform (optional):	1M
	Supply voltage $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ $T_g$ T	
	Working :	1M
	During the positive half cycle of the input ,T1 (SCR1) if forward biased and with the application of gate pulse ,SCR1 (T1) is turned ON at an angle $\alpha$ . Thus we obtain load	



	voltage and load current at the output.	
	During negative half cycle of the input SCR1 is reverse biased and thus load voltage and load current is zero.	
	Average output voltage $E_{dc} = E_m / 2\Pi (1 + \cos \alpha)$	
	Average output current $I_{dc} = \underline{\underline{E}}_{\underline{m}} / 2\Pi (1 + \cos \alpha) / R$	
	$\underline{OR}$ $I_{dc} = E_{dc}/R$	1M
c)	Draw and explain the block diagram of SMPS.	4M
Ans:	Diagram :	2M
	ac RFI Filter Hiter Switching element Feedback and filter Feedback and filter Isolation filter	
	OR	
	$ \begin{array}{c}  & & & & & & & & & & & & & & & & & & &$	
	<b>Description of working:</b> SMPS converts unregulated AC or DC voltage into a regulated voltage. In case of AC it first converted into unregulated DC. This is fed to a high frequency step-up chopper. It uses a high frequency AC conversion stage to facilitate the use of a high frequency transformer for voltage scaling and isolation. The output of transformer is then rectified and filtered, to get a regulated output for the load. The output is fed back to the chopper	2М















	$v_1$ $v_2$ $v_3$ $v_4$ $v_2$ $v_3$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_4$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$ $v_8$	Any one waveform 1M 1M
<b>e</b> )	Define firing angle.Explain the methods of phase control techniques.	4M
Ans:	<ul> <li>Firing angle: The angle at which the SCR is turned ON is called as firing angle and it is denoted by α.</li> <li>Different methods of phase control techniques are: <ul> <li>Firing angle control Or phase angle control</li> <li>Extinction angle control</li> <li>Pulse width Modulation control</li> </ul> </li> <li>Note : any one method should be considred</li> </ul>	1M Any one method 3M
	1. Firing angle control. Or phase angle control :	











		<ul><li>FWD due to energy stored in inductor' L'.</li><li>Load current can be continuous or discontinuous depending on the values of 'L' and duty cycle 'd'</li></ul>	
Q. 3		Attempt anyFour:	16M
	a)	State the types of power MOSFETS.Explain the working of any one type with a constructional diagram.	4M
	Ans:	There are two types of power MOSFETs:         1) Depletion Enhancement or DE MOSFET         2) Enhancement MOSFET	1M
		Constructional diagram of DE MOSFET:	1M
		Working :         DE MOSFETs can be operated in either of the two modes, the depletion mode or the enhancement mode.         Depletion Mode: with a negative gate voltage, the negative charges on the gate repel conduction electrons from the channel leaving it positively charged. Now the n channel is depleted of some electrons, thus decreasing its conductivity. At asufficiently high negative gate to source voltage, the channel is totally depleted and the drain current is zero.         Enhancement mode: with a positive gate voltage, the channel gets negatively charged increasing its conductivity.         Enhancement mode: with a positive gate voltage, the channel gets negatively charged increasing its conductivity.         Enhancement MOSFET:         Diagram :	2M



		$V_{GG} \xrightarrow{+} + \underbrace{-}_{-} V_{GG} \xrightarrow{-}_{-} + \underbrace{-}_{-} \underbrace{-} \underbrace{-}_{-} \underbrace{-}_{-} \underbrace{-}_{-} \underbrace{-}_{-} \underbrace{-}_{-} $		
		(b) Induced channel		
		5 8 - Capital Andre Presidentia		
<u>N</u>	<u>channel enh</u>	ancement MOSFET		
lay	ver of negat		gion adjacent to the SiO2 layer.	. The
lay con the	ver of negat nductivity of e threshold th <b>fote: any one</b>	tive charges in the substrate re	gion adjacent to the SiO2 layer, easing the gate to source voltage. If tops conducting.	. The
lay con the	ver of negat nductivity of e threshold th fote: any one ompare SCR	tive charges in the substrate re f the channel is enhanced by increa here is no channel and the device s e to be considered) R & TRIAC with any four points	gion adjacent to the SiO2 layer. easing the gate to source voltage. If tops conducting.	. The Below
b)	ver of negat nductivity of e threshold th fote: any one ompare SCR Sr No.	tive charges in the substrate re af the channel is enhanced by increa- mere is no channel and the device s to be considered) <b>X &amp; TRIAC with any four points</b> SCR	gion adjacent to the SiO2 layer. easing the gate to source voltage. He tops conducting.	. The Below 4M
b)	ver of negat nductivity of e threshold th fote: any one ompare SCR	tive charges in the substrate re f the channel is enhanced by increating there is no channel and the device s to be considered) & TRIAC with any four points SCR Is a unidirectional device The gate current can only be	gion adjacent to the SiO2 layer, easing the gate to source voltage. It tops conducting. <b>TRIAC</b> Is a bidirectional device The gate current can be positive	. The Below 4M
b) Contraction (N	ver of negat nductivity of e threshold th ompare SCR Sr No. 1	tive charges in the substrate re f the channel is enhanced by increase here is no channel and the device s to be considered) & TRIAC with any four points SCR Is a unidirectional device	gion adjacent to the SiO2 layer, easing the gate to source voltage. If tops conducting. <b>TRIAC</b> Is a bidirectional device The gate current can be positive or negative Operates in either Ist or 3 rd	. The Below 4M
b) Contraction (N	ver of negat nductivity of e threshold the cote: any one ompare SCR Sr No. 1 2	tive charges in the substrate re f the channel is enhanced by increa- mere is no channel and the device set to be considered) & TRIAC with any four points SCR Is a unidirectional device The gate current can only be positive Operates only in the first quadrant Anti parallel SCRs are used for power control of inductive	gion adjacent to the SiO2 layer, easing the gate to source voltage. It tops conducting. <b>TRIAC</b> Is a bidirectional device The gate current can be positive or negative	. The Below 4M
b)	ver of negat nductivity of e threshold the cote: any one ompare SCR Sr No. 1 2 3	tive charges in the substrate re f the channel is enhanced by increa- mere is no channel and the device s to be considered) & TRIAC with any four points SCR Is a unidirectional device The gate current can only be positive Operates only in the first quadrant Anti parallel SCRs are used for	gion adjacent to the SiO2 layer. easing the gate to source voltage. It tops conducting. TRIAC Is a bidirectional device The gate current can be positive or negative Operates in either Ist or 3 rd quadrant TRIAC is not suitable for power	. The Below 4M



	7	Constructional dia.	Constructional dia.	
	8	$G \xrightarrow{P^+}_{K}$ Used in applications like, controlled rectifiers, inverters, battery charger, speed control of DC & AC motors etc.	$\begin{array}{c c} G & P & MT_{1} \\ \hline M_{3} & P_{2} \\ \hline N_{1} \\ \hline N_{4} \\ \hline N_{4} \\ \hline M_{7_{2}} \\ \end{array}$ Used as a static switch fan regulator, lamp dimmer, AC voltage stabilizer etc.	
c)		triggering of SCR, with a neat ci	rcuit diagram and necessary	<b>4M</b>
Ans:	waveforms. Diagram :			2M
		$R$ $E$ $R_2$ $R_2$ $R_2$ $R_1$ $R_1$ $R_1$ $R_2$ $R_2$ $R_1$ $R_2$ $R_2$ $R_1$ $R_2$ $R_2$ $R_1$ $R_2$ $R_2$ $R_2$ $R_1$ $R_2$ $R_$	+Vee RL RL RL RL RL RL RL RL RL RL	
	<u>Waveforms:</u>			1M







	Circos detailed electification of invertex	
e) Ans:	Give a detailed classification of invrters. <u>1)According to nature of input source :</u>	4M (4M
	a) Voltage source inverter (VSI)	A detailed
	b) Current source inverters (CSI)	list to be given)
	2) According to the wave shape of the output voltage.	given)
	a) Sine wave inverter	
	<ul><li>b) Square wave inverter</li><li>c) Quasi square wave inverter</li></ul>	
	d) Pulse width modulated inverter	
	3) According to the wave inverter :	
	a) line commutated inverter	
	b) forced commutated inverter	
	<u>4) According to the connection of thyristor and commutation components :</u>	
	a) Series inverter	
	b)Parallel inverters	
	<ul> <li>c) Bridge inverters which are further classified as half bridge and full bridge.</li> <li>5) According to the semiconductor device used :</li> </ul>	
	a) Thyristorised inverter	
	b) Transistorized inverter	
	c) MOSFET based inverter	
	d) IGBT based inverter	
<b>f</b> )	Draw a fully controlled bridge configration of single phase rectifier.Explain working with necessray waveforms.	<b>4</b> M
	Diagram :(with R- load):	2M
	Diagram . (with K- Ivau).	2141







Ans:	SR NO.	ction and area of a PARAMETER	POWER BJT	POWER MOSFET	
	1	Performance factor	Switching speed slow(µs)	Switching speed fast (ns)	(Any 2-1M each)
			On state losses are less	On state losses are more than Power BJT	
			Input impedance low	Input impedance high	
	2	Construction	Collector	Share Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold Hold	1M
			been 10,000 protection for the first ter first	Aich orde Body Short Short nt nt nt nt at Body nt drift layer nt nt nt nt nt nt nt nt nt nt nt nt nt	
	3	Area of applications	Losses are low so used in high power applications&	Losses are higher than power BJT so used in low power applications&	1M
			Low frequency applications	High frequency applications	
			PUT" with relevant diagra	ms. Why it is called	4M
	Diagran	nmable? n :	♀ Anode ( <i>A</i> )		1M
			P N P N C Gate (G)		



	<b>Working:</b> The PUT is an improved version of a UJT. PUT is a PNPN device, but its operation is so similar to the UJT that it is always considered with the UJT. The PUT behave like a UJT whose trigger voltage $V_P$ can be set by the circuit designer via an external voltage divider. Fig. shows the PNPN structure and the circuit symbol for the PUT. The anode (A) and cathode (K) are the same as for any PNPN device. The gate (G) is connected to the N- region next to the anode. Thus, the anode and gate constitute a P-N junction. It is this P-N junction which controls the "on" and "off" states of the PUT. The gate is usually positively biased relative to the cathode by a certain amount, $V_g$ . When the anode voltage is less than $V_g$ , the anode-gate junction is reverse-biased and the PNPN device is in the "off" state, acting as an open-switch between anode and cathode. When the anode voltage exceeds $V_{g by}$ about 0.5V, the anode gate junction conducts, causing the PNPN device to turn "on" in the same manner as does forward biasing the gate cathode junction of an SCR. In the "on" state, the PUT acts like any PNPN device between anode and cathode (low resistance and $V_{AK} \approx 1V$ ). The PUT is also referred to as a complementary SCR (CSCR).	2M
	PUT is called programmable :	
	The PUT is called as programmable because its intrinsic standoff ratio $\Pi$ and triggering voltage Vp can be changed by external voltage divider.	1M
(c)	Explain Complementary commutation with necessary diagrams and waveforms.	4M
Ans:	$\frac{Class C := Complementary Commutation}{\left  \begin{array}{c} 1 \\ R_{L} \\ $	2M
	<ul> <li>Explanation:</li> <li>Here Complementary thyristor T₂ is connected in parallel with the main thyristor.</li> <li>Initially, both the thyristors are OFF, when a triggering pulse is applied to the gate of T₁, the thyristor T₁, the thyristor T₁ is triggerd. Therefore current starts flowing through the load as well as R₂&amp; C. Capacitor C will get charged by the supply voltage Edc as</li> </ul>	2M



	• When a triggering pulse is applied to the gate of $T_2, T_2$ will be turned on. As soon as $T_2$ is ON, the negative polarity of capacitor C is applied to the anode of T1 and positive to the cathode. This causes the reverse bias voltage across the main thyristor				
	T1 and immediately turns it OFF.				
( <b>d</b> )	Draw a neat circuit diagram of single phase half bridge inverter. Explain with waveforms.	<b>4</b> M			
Ans:	Diagram : $ \frac{Diagram :}{E_{dc} + } \qquad $	2M			
	<ul> <li>Explaination:</li> <li>Figure shows the basic configuration of single phase half bridge inverter.</li> <li>Switches S₁&amp; S₂ are the gate commuted devices such as power BJTs, MOSFETs, GTO,IGBT, MCT etc. When closed, these switches conducts &amp; current flows in the direction of arrow.</li> </ul>	1M			
	Working:	1M			
	• The operation of the circuit can be divided into two periods:				
	• Period I: Where switch S1 is conducting from $0 \le t \le T/2$ and Derived II: Where switch S2 is non-ducting from $T/2 \le t \le T$				
	<ul> <li>Period II: Where switch S2 is conducting from T/2≤t≤T,</li> <li>○ Where T=1/f &amp; F is the frequency of the output voltage waveform.</li> </ul>				
	<ul> <li>Switch S₁ is closed for half -time period (T/2) of the desired ac output.</li> </ul>				
	<ul> <li>It connects point P of the dc source to point A and the output voltage V₀ becomes equal to + Edc/2</li> </ul>				











			circuit				
		4	Application	DC motor controller, battery chargers	Power Supply		
5		Attempt any FOUR:					
	a)		ame any four triggering devices. Draw the characteristics of "DIAC".				
1	Ans:	Triggering Devices:1. UJT2. PUT3. SUS4. SBS5. DIAC					
		V-I characteristics of DIAC-					
	<u>b)</u> Ans:	With ne Diagran		-V80 +IB6 P	conduction state des trehalf cycle fruit quadrent tring state of DIAC m-off mechanism of SCR.	2M 4M 2M	
	Ans:	Diagran	Fe c R c A volta F volta	Anode current $I_T$ orward urrent node age $V_{AK}$ forward voltage $V_T$ $V_T$	Forward voltage applied here ta Time tg tg tg tg		
		Turn – off mechanism of SCR (turn off characteristics)					



	Explaination :	2M			
	<ul> <li>Once the SCR starts conducting the gate has no control on it and the device can be brought back to the blocking state only by reducing the forward current to a level below that of the holding current.</li> <li>If a forward voltage is applied immediately after reducing the anode current to zero it</li> </ul>				
	will not block the forward voltage and will start conducting again , although it is not triggered by a gate pulse . It is therefore necessary to keep the device reverse biased for a finite period before a forward anode voltage can be reapplied.				
	<ul> <li>Turn – off time :</li> <li>The turn off time of the thyristor is defined as the minimum time interval between the instant at which the anode current becomes zero and the instant at which the device is capable of blocking the forward voltage .</li> </ul>				
	<ul> <li>Turn off time = reverse recovery time + gate recovery time</li> <li>Toff = trr + tgr</li> </ul>				
	<ul> <li>Reverse Recovery time (trr):</li> <li>When the anode forward current becomes zero the anode current flows in the reverse direction after some time a reverse anode voltage is developed and the reverse recovery current continues to decrease .The time required for this process is called reverse recovery time.</li> <li>Gate recovery time (tgr):</li> <li>After reverse recovery time the thyristor is not able to block a forward voltage because carriers called trapped charges are still present at the junction J2. The time required for recombination of this trapped charges is called gate recovery time.</li> <li>SCR turn – off time varies in the range of 10 to 100 μs</li> <li>In practical application the turn – off time required to the SCR by the circuit (tq) must be greater than the device turn off time (toff)</li> </ul>				
<b>c</b> )	Explain the principle of step up chopper with a neat diagram.	4M			
Ans:	Diagram : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2M			















diode. This diode is commonly described as a commutating diode as its function is to commutate or transfer load current away from the rectifier whenever the load-voltage goes into a reverse state. This diode serves two main functions

- 1. It prevents reversal of load voltage except for small diode voltage drop.
- 2. It transfers the load current away from the main rectifier, thereby allowing all of its SCR to regain their blocking states.
- During the positive half cycle, voltage is induced in the inductance. Now, this induced voltage in inductance coil change its polarity as the di/dt changes its sign & diode  $D_F$  will start conducting as soon as the induced voltage is of sufficient magnitude, thereby enabling the inductance to discharge its stored energy into the resistance.
- Hence, after  $\pi$  (180 deg.), the load current will freewheel through the diode and no reverse voltage will appear across the load. Thus improves the power factor.



## Waveform (optional) :











<b>d</b> )	<ul> <li>State the need of 3-phase rectifier. State the expression for average DC output voltage of a 3-phase controlled rectifier during.</li> <li>i) Continues conduction mode</li> <li>ii) Discontinues conduction mode</li> </ul>	4M
Ans:	Need of 3-phase rectifiers:	2M
	The capacity of single phase rectifiers are limited normally only upto 2 KW. Hence when higher power is required for the load, poly phase rectifiers are used. A single phase rectifier produces DC voltage high ac ripple at its output. So it require a large smoothing filter ckts to smoothen the output voltage, increasing its cost. As the number of pulses are more a 3 phase rectifier produces a smooth output voltage, reducing the cost of filtering. Expression for average DC output voltage, <b>Continuous conduction mode:</b>	1M
	$Edc = \frac{3\sqrt{3}}{2\pi} Em. Cos \alpha$	
	Discontinuous conduction mode:	
	$Edc = \frac{3Em}{2\pi} \left\{ 1 + Cos(\alpha + 30) \right\}$	1M
e)	Draw the circuit diagram of battery charger and state significance of each component.	4M
Ans:	Diagram :	2M
	Res Ri Res Res Ri Res Ri Res Ri Res Res Ri Res Res Ri Res Res Res Res Res Res Res Res Res Res	
	<ul> <li>Significance of Components: <ol> <li>D1, D2 provide full wave rectified output across T1</li> <li>R3-D3 provide triggering current for T1.</li> <li>SCR T1 provides voltage to battery during its charging</li> <li>when the battery is fully charged, the voltage dividing circuit R1-R2 provide zener voltage.</li> <li>zener diode provides gate supply to SCR2 switching it ON.</li> <li>When T2 is ON a short circuit results in the R3-R4 circuit, reducing the T1 current to become less than the holding current and switches it OFF, preventing over charging of battery</li> </ol> </li> </ul>	2M
<b>f</b> )	battery. Draw electronic timer and state it's working.	4M



