

# MODEL ANSWER

## SUMMER-17 EXAMINATION

Subject Title: Microprocessor and Programming.

Subject Code:

17431

### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.<br>No. | Sub<br>Q.N. | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marking<br>Scheme                    |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Q.1       |             | Attempt any SIX of the following :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-Total<br>Marks                    |
|           | a)          | State the function of following pins of 8085 microprocessor :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2M                                   |
|           |             | (i) INTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
|           |             | (II) INTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|           | Ans:        | <b>INTR</b> : - It is level triggered, non-vectored interrupt. When INTR occurs the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1M each)                            |
|           |             | microprocessor generates interrupt acknowledgement signal INTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
|           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|           |             | INTA<br>It is an active low acknowledgement signal for INTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|           |             | This signal is used to get OPCODE & hence ISR address from external hardware.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|           | b)          | List any four features of 8086 microprocessor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2M                                   |
|           | Ans:        | <ol> <li>It is a 16 bit μp.</li> <li>8086 has a 20 bit address bus can access up to 2<sup>20</sup> memory locations (1MB).</li> <li>It can support up to 64K I/O ports.</li> <li>It provides 16-bit registers. AX,BX,CX,DX,CS,SS,DS,ES,BP,SP,SI,DI,IP &amp; FLAG REGISTER.</li> <li>It has multiplexed address and data bus AD<sub>0</sub>-AD<sub>15</sub> and A<sub>16</sub> – A<sub>19</sub>.</li> <li>8086 is designed to operate in two modes, Minimum and Maximum.</li> <li>It can prefetches up to 6 instruction bytes from memory and queues them in order to speed up instruction execution.</li> <li>Interrupts:-8086 has 256 vectored interrupts.</li> <li>Provides separate instructions for string manipulation.</li> <li>Operating clock frequencies 5MHz, 8MHz, 10MHz</li> </ol> | (Any Four<br>Features [½<br>M each]) |



| c)         | Define immediate and direct addressing mode. Also give one example of                                                                                                                                                                                                                                                                                                                                                     | of each                | 2M                                              |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|--|--|--|
| Ans:       | <ul> <li><b>1.Immediate addressing mode:</b> In this addressing mode, immediate data is a part of instruction, and appears in the form of successive byte or bytes</li> <li><b>Example:</b> MOV AX,56D3H</li> <li><b>2. Direct addressing mode:</b> In the direct addressing mode, a 16 bit address (offset) is directly specified in the instruction as a part of it.</li> <li><b>Example:</b> MOV CL,[1000H]</li> </ul> |                        |                                                 |  |  |  |
| <b>d</b> ) | List the program development steps for assembly language programm                                                                                                                                                                                                                                                                                                                                                         | ing.                   | 2M                                              |  |  |  |
| Ans:       | <ol> <li>Defining the problem</li> <li>Algorithm</li> <li>Flowchart</li> <li>Initialization checklist</li> <li>Choosing instructions</li> <li>Converting algorithms to assembly language program</li> </ol>                                                                                                                                                                                                               |                        |                                                 |  |  |  |
| <b>e</b> ) | Draw the format for flag register of 8085 microprocessor.                                                                                                                                                                                                                                                                                                                                                                 |                        | 2M                                              |  |  |  |
| Ans:       | Dr     Ds     Ds     Ds     Ds       S     Z     AC     P       Sign Flag     Zero Flag     Auxiliary Carry     Parity Flag       Flag     Flag                                                                                                                                                                                                                                                                           | Da<br>CY<br>Carry Flag | (Correct<br>Format of<br>flag register:<br>2 M) |  |  |  |
| <b>f</b> ) | Give the steps in physical address generation in 8086 microprocessor.                                                                                                                                                                                                                                                                                                                                                     |                        | 2M                                              |  |  |  |
| Ans:       | Generation of 20 bit physical address in 8086 :-         1. Segment registers carry 16 bit data, which is also known as base address.         2. BIU appends four 0 bits to LSB of the base address. This address becomes 20-bit address.         3. Any base/pointer or index register carries 16 bit offset.         4. Offset address is added into 20-bit base address which finally forms 20 bit physical            |                        |                                                 |  |  |  |
| <b>g</b> ) | Give the syntax for defining a procedure.                                                                                                                                                                                                                                                                                                                                                                                 |                        | 2M                                              |  |  |  |
| Ans:       | Procedure_Name PROC<br>Procedure Statements<br>Procedure Name ENDP.                                                                                                                                                                                                                                                                                                                                                       |                        | (Correct<br>Syntax : 2<br>M)                    |  |  |  |
| h)         | Write assembly language instruction of 8086 microprocessor to :<br>i. Copy 1000H to register BX                                                                                                                                                                                                                                                                                                                           |                        | 2M                                              |  |  |  |



|            | ii. Rotate register BL left four times                                                                                      |                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Ans:       |                                                                                                                             | (1M each)                             |
|            | 1) MOV BX, 1000H                                                                                                            |                                       |
|            | ii) MOV CL, 04H                                                                                                             |                                       |
|            | RCL BL, CL                                                                                                                  |                                       |
|            | Or                                                                                                                          |                                       |
|            | MOV CL, 04H                                                                                                                 |                                       |
|            | ROL BL, CL                                                                                                                  |                                       |
| <b>B</b> ) | Attempt any TWO of the following :                                                                                          | 8M                                    |
| a)         | State the function of Assembler and Debugger                                                                                | <b>4</b> M                            |
| Ans:       | Assembler:-<br>1. Assembler is a program that translates assembly language program to the correct<br>binary code.           | (Any two<br>Functions of<br>each :2M) |
|            | 2. It also generates the file called as object file with extension .obj.                                                    |                                       |
|            | 3. It also displays syntax errors in the program, if any.<br>4. It can be also be used to produce list(.lst) and .crf files |                                       |
|            |                                                                                                                             |                                       |
|            | Debugger: -                                                                                                                 |                                       |
|            | 1. Debugger is a program that allows the execution of program in single step mode under<br>the control of the user.         |                                       |
|            | 2. The errors in program can be located and corrected using a debugger.                                                     |                                       |
|            | 3. Debugger generates .exe file.                                                                                            | (3.6                                  |
| D)         | (i) DB (ii) DW (iii) DD (iv) DO                                                                                             | 41/1                                  |
| Ans:       | <u>DB (Define Byte)</u>                                                                                                     | (Correct                              |
|            | • This is used to define a byte type variable.                                                                              | Explanation                           |
|            | • The range of values : $0 - 255$ for unsigned numbers -128 to 127 for signed numbers                                       |                                       |
|            | • This can be used to define a single byte or multiple bytes                                                                |                                       |
|            | DW (Define Word)                                                                                                            |                                       |
|            | • This is used to define a word (16-bit) type variable.                                                                     |                                       |
|            | • The range of values : $0 - 65535$ for unsigned numbers -32768 to 32767 for signed                                         |                                       |
|            | numbers                                                                                                                     |                                       |
|            | • This can be used to define a single word or multiple words                                                                |                                       |
|            | DD (Define Double Word)                                                                                                     |                                       |
|            | • This is used to define a double word (32-bit) type variable.                                                              |                                       |
|            | • This can be used to define a single double word or multiple double word                                                   |                                       |
|            | DQ : Define Quad Word                                                                                                       |                                       |



|     |            | • This is u          | used to define a quad word (64-bit) type                                                                                              | be variable.                                                                                                                                                                                      |            |
|-----|------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |            | •This dire reserve 4 | ctive is used to tell the assembler to d words of storage.                                                                            | eclare a variable 4 words in length or to                                                                                                                                                         |            |
|     | <b>c</b> ) | Different            | iate between Re-entrant & Recursiv                                                                                                    | ve procedure.                                                                                                                                                                                     | 4M         |
|     | Ans:       | Sr.No                | Re-entrant procedure                                                                                                                  | Recursive procedure                                                                                                                                                                               | (Any two   |
|     |            | 1.                   | A procedure is said to be re-<br>entrant, if it can be interrupted,<br>used and re-entered without losing<br>or writing over anything | A recursive procedure is a procedure<br>which calls itself                                                                                                                                        | each)      |
|     |            | 2.                   | In Re-entrant Procedure must first<br>push all the flags and registers<br>used in the procedure .                                     | In recursive procedure the program<br>sets aside a few locations in stack for<br>the storage of the parameters which<br>are passed each time the computation<br>is done and the value is returned |            |
|     |            | 3.                   | To be a re-entrant, It should also<br>use only registers or stack to pass<br>parameters.                                              | In recursive procedure Each value<br>returned is then obtained by popping<br>back from the stack at every RET<br>instruction when executed at the end<br>of the procedure.                        |            |
|     |            | 4.                   | Example                                                                                                                               | Example<br>MAINLINE<br>PROCEDURE PROCEDURE PROCEDURE<br>FACTO<br>FACTO<br>CALL FACTO<br>NEXT MAINLINE<br>CALL FACTO<br>NEXT MAINLINE<br>RET<br>WITH 3!<br>WITH 2!<br>WITH 1!                      |            |
| Q 2 |            | Attempt              | any FOUR of the following :                                                                                                           |                                                                                                                                                                                                   | 16M        |
|     | a)         | Draw the             | Architecture of 8085 microprocess                                                                                                     | or.                                                                                                                                                                                               | 4 <b>M</b> |







| c)   | Explain the concept of pipelining in 8086 microprocessor with diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4M                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Ans: | <b>Description:</b> Process of fetching the next instruction while the current instruction is executing is called pipelining which will reduce the execution time. The technique used to enable an instruction to complete with each clock cycle. Normally, on a non – pipelined processor, nine clock cycles are required for fetch, decode and execute cycles for the three instructions as shown in Fig (a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Description<br>:2M,<br>Diagram:2<br>M) |
|      | This takes longer time when compared to pipelined processor. In this ,the fetch, decode and execute operations are performed in parallel, so only five clock cycles are required to execute the same three instructions as shown Fig(b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|      | In 8086, pipelining is implemented by providing 6 byte queue where as long as 6 one byte instructions can be stored well in advance and then one by one instruction goes for decoding and executions. So, while executing first instruction in a queue, processor decodes second instruction and fetches 3rd instruction from the memory In this way, 8086 perform fetch, decode and execute operation in parallel i.e. in single clock cycle as shown in above fig (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|      | F D E F D E F D E<br>$l_1$ $l_1$ $l_2$ $l_2$ $l_2$ $l_3$ |                                         |
|      | Cycle $fig(a)$<br>$I_1$ $I_2$ $I_3$ $I_4$ $I_5$ F-Fetch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|      | $I_1$ $I_2$ $I_3$ $I_4$ $I_4$ E-Execute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|      | $\begin{array}{c} Clock \\ Cycle \end{array} 1 2 3 4 5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| d)   | List any four features and four limitation of 8085 microprocessor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4M                                      |
| Ans: | Features of 8085Microprocessor1. 8085 is 8 bit microprocessor.2. Operating clock frequency is 3MHz and minimum clock frequency is 500 KHz.3. On chip bus controller.4. Provide 74 instructions with five addressing modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Any Four<br>Features [½<br>M each] ,    |
|      | <ul> <li>5. 16 address line so 2<sup>16</sup>=64 Kbytes of memory can be addressed.</li> <li>6. Provides 5 level hardware interrupts and 8 software interrupts.</li> <li>7. It can generate 8 bit I/O address so 2<sup>8</sup> =256 input and 256 output ports can be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |



|            | <ul> <li>accessed.</li> <li>8. Requires a single +5 volt supply</li> <li>9. Requires 2 phase, 50% duty cycle TTL clock</li> <li>10. Provide 2 serial I/O lines, so peripheral can be interfaced with 8085 μp</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|            | <ul> <li>Limitation of 8085Microprocessor</li> <li>1.In 8085 microprocessor, microprocessor can perform any arithmetic and logical operation only on 8 bit data at a time.</li> <li>2. In 8085 microprocessor, only 16 bit address lines, we can address only up to 64 KB of memory.</li> <li>3.8085 microprocessor has multiplexed address and data bus, so extra hardware is required to separate address signals from the data signals.</li> <li>4. Flags register has limited flags.</li> <li>5. Interrupts are very limited in 8085.</li> <li>6. Operating frequency is less in 8085 microprocessor, so the speed of execution is slow.</li> <li>7. In 8085 microprocessor due to limited 8 bit size of the all registers, we can store limited data bytes in the microprocessor memory.</li> </ul> | Any Four<br>Limitation<br>[½ M each] |
| <b>e</b> ) | What will be the content of register AL after the execution of last instruction?<br>MOV AL, 02H<br>MOV BL, 02H<br>SUB AL, BL<br>MUL 08H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4M                                   |
| Ans        | [Note: If the student corrects MUL instructions and writes the output, marks can be given,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Correct<br>Answer : 4<br>M)         |
|            | hence it gives no output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|            | After correction;<br>MUL instruction will be MUL BL or MUL AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
|            | MOV AL, 02H ; AL=02H<br>MOV BL, 02H ; BL=02H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
|            | SUB AL,BL ; AL=00H<br>MUL BL ; AX=0000H ;ANS: AL=00H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
|            | ( <b>OR</b> )<br>MOV AL, 02H ; AL=02H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|            | MOV BL, 02H ; BL=02H<br>SUB AL,BL ; AL=00H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
|            | MUL AL ; AX=0000H ; ANS: AL=00H<br>(OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|            | MOV AL, 02H ; AL=02H<br>MOV BL, 02H ; BL=02H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
|            | SUBAL,BL ; AL=00H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |



|      | <b>f</b> ) | Calculate the physical address for given :(i) DS = 73A2HSI = 3216H(ii) CS = 7370HIP = 561EH                                                                                                                                                                                                                                                                                                                                                                                               | 4M                                            |
|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|      | Ans:       | (i) $DS = 73A2H$ $SI = 3216H$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2M each)                                     |
|      |            | DS 73A20H0 is appended by BIU (or Hardwired zero)<br>SI + 3216 H                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
|      |            | 76C36H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |
|      |            | (ii) $CS = 7370H$ IP = 561EH                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
|      |            | CS 73700H0 is appended by BIU (or Hardwired zero)<br>IP + 561EH                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
|      |            | <br>78D1EH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| Q. 3 |            | Attempt any FOUR of the following :                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16M                                           |
|      | a)         | Write any two conditional and two unconditional branching instruction with their function. Give the syntax with one example each                                                                                                                                                                                                                                                                                                                                                          | <b>4M</b>                                     |
|      | Ans:       | Unconditional Branch Instructions :                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
|      |            | In Unconditional control transfer instructions, the execution control is transferred to the specified location independent of any status or condition. The CS and IP are unconditionally modified to the new CS and IP.                                                                                                                                                                                                                                                                   | (Any 2<br>uncondition                         |
|      |            | 1. CALL : Unconditional Call<br>The CALL instruction is used to transfer execution to a subprogram or procedure<br>by storing return address on stack There are two types of calls-NEAR (Inter-segment)<br>and FAR(Intra-segment call). Near call refers to a procedure call which is in the same<br>code segment as the call instruction and far call refers to a procedure call which is in<br>different code segment from that of the call instruction.<br>Syntax: CALL procedure_name | an<br>instruction<br>explanation:<br>1M each) |
|      |            | 2. RET: Return from the Procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
|      |            | At the end of the procedure, the RET instruction must be executed. When it is executed, the previously stored content of IP and CS along with Flags are retrieved into the CS, IP and Flag registers from the stack and execution of the main program continues further.<br>Syntax :RET                                                                                                                                                                                                   |                                               |
|      |            | <b>3. INT N: Interrupt Type N.</b><br>In the interrupt structure of 8086, 256 interrupts are defined corresponding to the types from 00H to FFH. When INT N instruction is executed, the type byte N is multiplied by 4 and the contents of IP and CS of the interrupt service routine will be taken from                                                                                                                                                                                 |                                               |



memory block in 0000 segment. Syntax : INT N 4. INTO: Interrupt on Overflow This instruction is executed, when the overflow flag OF is set. This is equivalent to a Type 4 Interrupt instruction. Svntax : INTO 5. JMP: Unconditional Jump This instruction unconditionally transfers the control of execution to the specified address using an 8-bit or 16-bit displacement. No Flags are affected by this instruction. Syntax : JMP Label 6. IRET: Return from ISR When it is executed, the values of IP, CS and Flags are retrieved from the stack to continue the execution of the main program. Syntax: IRET Example of unconditional CALL and RET, INT instruction: DATA SEGMENT NUM1 DB 10h NUM2 DB 20h DATA ENDS CODE SEGMENT START: ASSUME CS: CODE, DS: DATA MOV DX, DATA MOV DS,DX CALL ADD PROC MOV AX,4C00H INT 21H ADD\_PROC PROC MOV AL, NUM1 MOV BL,NUM2 ADD AL, BL RET ADD PROC ENDP CODE ENDS END START **Conditional Branch Instructions** When this instruction is executed, execution control is transferred to the address specified relatively in the instruction (Any 2 1. JZ/JE Label conditional Transfer execution control to address 'Label', if ZF=1. instruction 2. JNZ/JNE Label explanation: Transfer execution control to address 'Label', if ZF=0 1M each) 3. JS Label



|      | Transfer execution control to address 'Label', if SF=1.                                                                   |                    |
|------|---------------------------------------------------------------------------------------------------------------------------|--------------------|
|      | 4. JNS Label                                                                                                              |                    |
|      | Transfer execution control to address 'Label', if SF=0.                                                                   |                    |
|      | Transfer execution control to address 'Label', if OF=1.                                                                   |                    |
|      | 6. JNO Label                                                                                                              |                    |
|      | Transfer execution control to address 'Label', if OF=0.                                                                   |                    |
|      | Transfer execution control to address 'Label', if PF=0.                                                                   |                    |
|      | 8. JP Label                                                                                                               |                    |
|      | Transfer execution control to address 'Label', if PF=1.                                                                   |                    |
|      | <b>5. JB Label</b><br>Transfer execution control to address 'Label' if CF=1                                               |                    |
|      | 10. JNB Label                                                                                                             |                    |
|      | Transfer execution control to address 'Label', if CF=0.                                                                   |                    |
|      | <b>11. JCXZ Label</b><br>Transfer execution control to address 'I abel' if CX=0                                           |                    |
|      | Conditional LOOP Instructions.                                                                                            |                    |
|      | 12. LOOPZ / LOOPE Label                                                                                                   |                    |
|      | Loop through a sequence of instructions from label while ZF=1 and CX=0.                                                   |                    |
|      | Loop through a sequence of instructions from label while ZF=1 and CX=0.                                                   |                    |
|      | EXAMPLE OF JC AND LOOP Instruction:<br>MOV CX,08H<br>MOV AL,05H<br>UP:ROR AL,1<br>JC DN<br>INC BL<br>DN:LOOP UP           |                    |
| b)   | State the function of following registers of 8086 microprocessor :                                                        | <b>4M</b>          |
| Ans: | (i) <u>General Purpose Registers of 8086</u>                                                                              | (Any 4             |
|      | All I/O data transfer using IN & OUT instructions use "A" register(AH / AL or AX).                                        | General<br>Purpose |
|      | 2. BX – Base – used to hold the offset address or data in indirect addressing mode.                                       | Register           |
|      | 3. CX – acts as a counter for repeating or looping instructions.                                                          | :1/2 M each)       |
|      | 4. DX –Used with AX to hold 32 bit values during multiplication and division.                                             |                    |
|      | 5. BP – Base Pointer BP can hold offset address of any location in the stack segment. It                                  |                    |
|      | is used to access random locations of stack.                                                                              |                    |
|      | 6. SP – Stack Pointer – Contains the offset of the top of the stack.                                                      |                    |
|      | SP is used with SS register to calculate 20-bit physical address.<br>Used during instructions like PUSH POP CALL RET etc. |                    |
|      | 7. SI – Source Index – Used in string movement instructions. Holds offset address                                         |                    |
|      | of source data in Data segment during string operations. Used to hold offset address                                      |                    |
|      | of data segment.                                                                                                          |                    |
|      | Used to hold offset address of Extra segment                                                                              |                    |
| _    |                                                                                                                           |                    |







|            | 5. STD – This instruction Set Direction Flag, $DF \leftarrow 1$                                                                                                    |              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | 6 CI I – This instruction Clear Interrupt Elag IE $\leftarrow 0$                                                                                                   |              |
|            | 7 STI This instruction Set Interrupt Flag. IF $\checkmark$ 0                                                                                                       |              |
|            | 7. SII – This instruction Set interrupt Plag. II CI                                                                                                                |              |
|            | 8)HI T                                                                                                                                                             |              |
|            | • This instruction causes processor to enter the halt state                                                                                                        |              |
|            | <ul> <li>CDU stop fotobing and executing instructions</li> </ul>                                                                                                   |              |
|            | • CFO stop fetching and executing instructions.                                                                                                                    |              |
|            | • Used to add wait state of three cleak avalas and during these cleak avalas CDU does                                                                              |              |
|            | Osed to add wait state of three clock cycles and during these clock cycles CPU does     not perform any operation                                                  |              |
|            | This instruction is Used to add delay loop in program                                                                                                              |              |
|            | • This instruction is Used to add delay loop in program<br>10\WAIT                                                                                                 |              |
|            | • It causes processor to enter into an idle state or a wait state and continue to remain in                                                                        |              |
|            | • It causes processor to enter into an full state of a wait state and continue to remain in<br>that the processor receives state until one of the following signal |              |
|            | that the processor receives state until one of the following signal.                                                                                               |              |
|            | O Signal on processor LEST pin                                                                                                                                     |              |
|            | • Valid interrupt on INTR                                                                                                                                          |              |
|            |                                                                                                                                                                    |              |
|            | • Used to synchronize other external hardware such as math co-processor.                                                                                           |              |
|            | 11) <b>LOCK</b>                                                                                                                                                    |              |
|            | • Prevent other processor to take the control of shared resources.                                                                                                 |              |
|            | • Lock the bus attached to lock pin of device while a multicycle instruction completes                                                                             |              |
|            | • The lock prefix this allows a microprocessor to make sure that another processor does                                                                            |              |
|            | not take control of system bus while it is in the middle of a critical instruction                                                                                 |              |
|            | not take control of system bus while it is in the initiale of a critical instruction.                                                                              |              |
|            | <u>12)ESC:</u>                                                                                                                                                     |              |
|            | • This instruction is used to pass instructions to a coprocessor, such as the 8087 Math                                                                            |              |
|            | coprocessor, which shares the address and data bus with 8086. Instructions for the                                                                                 |              |
|            | coprocessor are represented by a 6-bit code embedded in the ESC instruction.                                                                                       |              |
|            |                                                                                                                                                                    |              |
| <b>e</b> ) | Write an assembly language program to add two BCD numbers.                                                                                                         | 4M           |
| Ans:       | DATA SEGMENT                                                                                                                                                       | Correct      |
|            | NUM1 DB 09H                                                                                                                                                        | Program :4   |
|            | NUM2 DB 09H                                                                                                                                                        | Μ            |
|            | SUM DB ?                                                                                                                                                           | (Any Other   |
|            | DATA ENDS                                                                                                                                                          | logic can be |
|            | CODE SEGMENT                                                                                                                                                       | considered)  |
|            | START: ASSUME CS:CODE,DS:DATA                                                                                                                                      |              |
|            | MOV AX,DATA                                                                                                                                                        |              |
|            | MOV DS,AX                                                                                                                                                          |              |
|            | MOV AL,NUM1                                                                                                                                                        |              |
|            | ADD AL,NUM2                                                                                                                                                        |              |
|            | DAA ;Decimal adjust for addition                                                                                                                                   |              |
|            | MOV SUM,AL                                                                                                                                                         |              |
|            | MOV AH,4CH                                                                                                                                                         |              |
|            |                                                                                                                                                                    |              |
|            | INT 21H                                                                                                                                                            |              |
|            | CODE ENDS                                                                                                                                                          |              |



|            | <u>(OR)</u>                                                                                                                                                                                                                                |                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|            | .MODEL SMALL<br>.DATA<br>NUM1 DB 84H<br>NUM2 DB 28H<br>RES_LSB DB ?<br>RES_MSB DB ?                                                                                                                                                        |                                            |
|            | .CODE<br>MOV AX,@DATA<br>MOV DS,AX                                                                                                                                                                                                         |                                            |
|            | MOV AL,NUM1 ;<br>MOV BL,NUM2<br>ADD AL,BL ;Ans ACH<br>DAA<br>JNC DN                                                                                                                                                                        |                                            |
|            | INC RES_MSB<br>DN:MOV RES_LSB,AL<br>MOV AH,4CH<br>INT 21H<br>END                                                                                                                                                                           |                                            |
| <b>f</b> ) | Explain concept of segmentation with diagram.                                                                                                                                                                                              | 4M                                         |
| Ans:       | <u>Memory Segmentation</u> : The memory in an 8086 microprocessor is organized as a segmented memory. The physical memory is divided into 4 segments namely,- Data segment, Code Segment, Stack Segment and Extra Segment.<br>Description: | (Explanatio<br>n: 2M,<br>Diagram : 2<br>M) |
|            | <ul> <li>Data segment is used to hold data, Code segment for the executable program, Extra segment also holds data specifically in strings and stack segment is used to store stack data.</li> </ul>                                       |                                            |
|            | <ul> <li>Each segment is 64Kbytes &amp; addressed by one segment register. i.e CS,DS,ES or SS</li> <li>The 16 bit segment register holds the starting address of the segment</li> </ul>                                                    |                                            |
|            | • The offset address to this segment address is specified as a 16-bit displacement (offset) between 0000 to FFFFH. Hence maximum size of any segment is 2 <sup>16</sup> =64K locations.                                                    |                                            |
|            | • Since the memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes.                                                                                                                                      |                                            |
|            | • The offset address values are from 0000H to FFFFH so the physical address range from 00000H to FFFFH                                                                                                                                     |                                            |



|     |            | <b>D</b> ito                                                                |             |
|-----|------------|-----------------------------------------------------------------------------|-------------|
|     |            | Physical Address Byte                                                       |             |
|     |            | FFFFF H Highest Address                                                     |             |
|     |            | 8FFFF H Extra ES = 8000 H                                                   |             |
|     |            | segment 64 k                                                                |             |
|     |            | 80000 H                                                                     |             |
|     |            | 6FFFF H Stack SS = 6000 H                                                   |             |
|     |            | segment 64 k                                                                |             |
|     |            | 60000 H                                                                     |             |
|     |            | 2FFFF H Code CS = 2000 H                                                    |             |
|     |            | 20000 H Segment 64 k                                                        |             |
|     |            | 1EEEE N                                                                     |             |
|     |            | Data DS = 1000 H                                                            |             |
|     |            | 10000 H Segment 64 k                                                        |             |
|     |            |                                                                             |             |
|     |            | 00000 H                                                                     |             |
|     |            |                                                                             |             |
| 0.4 |            | Attempt any FOUR of the following :                                         | 16M         |
| ו • | 9)         | Identify the addressing modes for following instructions:                   | AM          |
|     | a)         | (i) MOV AX, 2034H                                                           |             |
|     |            | (ii) MOV AL,[6000H]                                                         |             |
|     |            | (iii) ADD AL, CL                                                            |             |
|     |            | (iv) MOV AX, 50H [BX] [SI]                                                  |             |
|     | •          |                                                                             | <b>C</b> 1  |
|     | Ans:       | (i) MOV AX, 2034H : Immediate addressing mode                               | Correct     |
|     |            | (iii) ADD AL, CL. Resister addressing mode                                  | Mode 1M     |
|     |            | (iv) MOV AX, 50H [BX][SI] : Relative Base Index addressing mode             | each        |
|     | <b>b</b> ) | Explain the following instruction of 8086 :                                 | 4M          |
|     |            | (i) XLAT                                                                    |             |
|     |            | (ii) XCHG                                                                   |             |
|     | Ans:       | (i)XLAT                                                                     | (Each       |
|     |            | ALAT replaces a byte in AL register with a byte from 250 byte flookup table | Correct     |
|     |            | Degining at [DA].                                                           | operation : |
|     |            | AL is used as offset fillo this table.                                      | 2M)         |
|     |            | • Flags are not affected                                                    |             |
|     |            | • operation :- ALT[BA+AL]                                                   |             |
|     |            | Example :                                                                   |             |
|     |            | data segment                                                                |             |
|     |            | Table db '0123456789ABCDEF'                                                 |             |
|     |            | CODE DB 11                                                                  |             |
|     |            | data ends<br>Code segment                                                   |             |
|     |            |                                                                             |             |
|     |            | MOV BX,offset Table                                                         |             |



|                  | MOV al,CODE<br>XLAT ;AL will output code 0BH<br>Code ends                                                                                                                                                |              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                  | <ul> <li>(ii) XCHG Destination, Source</li> <li>This instruction exchanges the contents of a register with the contents of another register or memory location.</li> <li>Operation performed:</li> </ul> |              |
|                  | Destination $\longleftrightarrow$ Source<br>None of flag affected                                                                                                                                        |              |
|                  | <b>Example:</b><br>XCHG BL, CL ; Exchange the byte in BL with byte in CL.                                                                                                                                |              |
| <b>c</b> )       | Write an ALP to count of zero's in BL register                                                                                                                                                           | 4M           |
| Δns <sup>2</sup> | DATA SEGMENT                                                                                                                                                                                             | Correct      |
| 11150            | $NUM DB 0F3H :BINARY { 1111 0011 }$                                                                                                                                                                      | Program      |
|                  | ZEROS DB 0                                                                                                                                                                                               | :4M          |
|                  | DATA ENDS                                                                                                                                                                                                | (Any Other   |
|                  | CODE SEGMENT                                                                                                                                                                                             | logic can be |
|                  | START: ASSUME CS:CODE,DS:DATA                                                                                                                                                                            | considered)  |
|                  | MOV AX,DATA                                                                                                                                                                                              |              |
|                  | MOV DS,AX                                                                                                                                                                                                |              |
|                  | MOV CX,8 ;rotation counter<br>MOV BL,NUM                                                                                                                                                                 |              |
|                  | UP:                                                                                                                                                                                                      |              |
|                  | KOK BL, I ; KCK, KOL , KCL can be used                                                                                                                                                                   |              |
|                  | JUDN ; IF CARRY 100p<br>INC ZEBOS : also increment 0's count : ANSWEB 02                                                                                                                                 |              |
|                  | DN:LOOP UP : decrement rotation counter                                                                                                                                                                  |              |
|                  |                                                                                                                                                                                                          |              |
|                  | EXIT: MOV AH,4CH                                                                                                                                                                                         |              |
|                  | INT 21H                                                                                                                                                                                                  |              |
|                  | CODE ENDS                                                                                                                                                                                                |              |
|                  | END START                                                                                                                                                                                                |              |
| (h               | Write an ALP to subtract two 8 bit numbers.                                                                                                                                                              | 4M           |
| Ans              | DATA SEGMENT                                                                                                                                                                                             | Correct      |
|                  | NUM1 DB 10H                                                                                                                                                                                              | Program      |
|                  | NUM2 DB 20H                                                                                                                                                                                              | :4M          |
|                  | DIFFDB ?                                                                                                                                                                                                 | (Any other   |
|                  | DATA ENDS                                                                                                                                                                                                | logic also   |
|                  | CODE SEGMENT                                                                                                                                                                                             | considered)  |
|                  | START: ASSUME CS:CODE,DS:DATA                                                                                                                                                                            |              |
|                  | MOV AX,DATA                                                                                                                                                                                              |              |
|                  | MOV DS,AX                                                                                                                                                                                                |              |
|                  | MOV AL,NUM1                                                                                                                                                                                              |              |



|      | MOV BL,NUM2                                                                          |             |
|------|--------------------------------------------------------------------------------------|-------------|
|      | SUB AL,BL                                                                            |             |
|      | MOV DIFF,AL                                                                          |             |
|      |                                                                                      |             |
|      | MOV AH,4CH                                                                           |             |
|      | INT 21H                                                                              |             |
|      | CODE ENDS                                                                            |             |
|      | END START                                                                            |             |
|      |                                                                                      |             |
|      | <u>(OR)</u>                                                                          |             |
|      |                                                                                      |             |
|      | DATA SEGMENT                                                                         |             |
|      | NUMI DB 85H                                                                          |             |
|      | NUM2 DB 92H                                                                          |             |
|      | DIFFERENCE DB I DUP(0)                                                               |             |
|      | DATA ENDS                                                                            |             |
|      | CODE SEGMENT                                                                         |             |
|      | ASSUME CS:CODE,DS:DATA                                                               |             |
|      |                                                                                      |             |
|      | MOV DX,DATA                                                                          |             |
|      | MOV DS,DX                                                                            |             |
|      | MOV AL,NUMI                                                                          |             |
|      | MOV BL,NUM2                                                                          |             |
|      | SUB AL,BL                                                                            |             |
|      | MOV DIFFERENCE, AL                                                                   |             |
|      | JNU EXII<br>MON DIFFERENCE, 1.01                                                     |             |
|      | MOV DIFFERENCE+1,01                                                                  |             |
|      | EXII:MOV AH,4CH                                                                      |             |
|      | INT 21H                                                                              |             |
|      | CODE ENDS                                                                            |             |
| ``   |                                                                                      | 43.4        |
| e)   | Write an ALP to add two 16 bit numbers.                                              | 4M          |
| Ans: | DATA SEGMENT<br>NUMPERT DW 5522 H                                                    | Correct     |
|      | NUMBERI DW 5522 H                                                                    | Program     |
|      | NUMBERZ DW 5511H                                                                     | :4NI        |
|      | SUM DW 2 DUP(0)<br>DATA ENDS                                                         | (Any other  |
|      | DATA ENDS<br>CODE SEGMENT                                                            | logic also  |
|      | $\begin{array}{c} \text{CODE SEGMENT} \\ \text{ASSLIME CS:CODE DS:DATA} \end{array}$ | considered) |
|      | ASSOME CS.CODE, DS.DATA                                                              |             |
|      | ΔΟΥ ΟΥ ΟΑΤΑ                                                                          |             |
|      | MOV DS DY                                                                            |             |
|      | MOV DS,DX                                                                            |             |
|      | MOV AX.NUMBER1                                                                       |             |
|      | MOV BX.NUMBER2                                                                       |             |
|      | ADD AX BX                                                                            |             |
|      | MOV SUM,AX                                                                           |             |
|      |                                                                                      |             |
|      | MOV AH,4CH                                                                           |             |
|      |                                                                                      |             |



|     |       | INT 21H                                                                                                                                                                                                                                                                                                                                        |                    |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     |       | CODE ENDS                                                                                                                                                                                                                                                                                                                                      |                    |
|     |       |                                                                                                                                                                                                                                                                                                                                                |                    |
|     |       |                                                                                                                                                                                                                                                                                                                                                |                    |
|     |       | <u>(OR</u> )                                                                                                                                                                                                                                                                                                                                   |                    |
|     |       | DATA SEGMENT<br>NUMBER1 DW 5522 H<br>NUMBER2 DW 8311H<br>SUM DW 2 DUP(0)<br>DATA ENDS<br>CODE SEGMENT<br>ASSUME CS:CODE,DS:DATA<br>START:<br>MOV DX,DATA<br>MOV DX,DATA<br>MOV DS,DX<br>MOV AX,NUMBER1<br>MOV BX,NUMBER2<br>ADD AX,BX<br>MOV SUM,AX<br>JNC EXIT ;EXIT IF CARRY<br>MOV SUM+2,01 ;STORE CARRY BIT IN MS DIGIT<br>EXIT:MOV AH,4CH |                    |
|     |       | INT 21H<br>CODE ENDS                                                                                                                                                                                                                                                                                                                           |                    |
|     |       | END START                                                                                                                                                                                                                                                                                                                                      |                    |
|     | f)    | Define MACRO with its syntax. Also give two advantages of it.                                                                                                                                                                                                                                                                                  | 4M                 |
|     | Ans:  | Macro                                                                                                                                                                                                                                                                                                                                          | (Definition :      |
|     | 11150 | • Small sequence of the codes of the same pattern are repeated frequently at different                                                                                                                                                                                                                                                         | (Denimori )<br>1M) |
|     |       | places which perform the same operation on the different data of same data type, such                                                                                                                                                                                                                                                          | ,                  |
|     |       | repeated code can be written separately called as macro                                                                                                                                                                                                                                                                                        |                    |
|     |       | 1) Maero Syntay.                                                                                                                                                                                                                                                                                                                               | (Syntax :1         |
|     |       | Macro name MACRO[aro1 aro2 $aroN$ )                                                                                                                                                                                                                                                                                                            | <b>M</b> )         |
|     |       |                                                                                                                                                                                                                                                                                                                                                |                    |
|     |       |                                                                                                                                                                                                                                                                                                                                                |                    |
|     |       | ENDM                                                                                                                                                                                                                                                                                                                                           |                    |
|     |       | Advantages of Macro:                                                                                                                                                                                                                                                                                                                           |                    |
|     |       | • The speed of the execution of the program is increased.                                                                                                                                                                                                                                                                                      | (Any ?             |
|     |       | • It saves a lot of time that is spent by the compiler for invoking / calling the functions.                                                                                                                                                                                                                                                   | advantages •       |
|     |       | • It reduces the length of the program.                                                                                                                                                                                                                                                                                                        | 2M)                |
| Q.5 |       | Attempt any FOUR of the following ;                                                                                                                                                                                                                                                                                                            | 16M                |
|     | a)    | Write an ALP to find sum of series 0BH, 05H, 07H, 0AH,01H.                                                                                                                                                                                                                                                                                     | 4M                 |
|     | Ans:  | DATA SEGMENT                                                                                                                                                                                                                                                                                                                                   | (Correct           |
|     |       | NUM1 DB 0BH,05H,07H,0AH,01H                                                                                                                                                                                                                                                                                                                    | program- 4         |



|            | RESULT DB 1 DUP(0)<br>CARRY DB 0H<br>DATA ENDS<br>CODE SEGMENT<br>START:ASSUME CS:CODE,DS:DATA<br>MOV DX,DATA<br>MOV DS,DX<br>MOV CL,05H<br>MOV SI,OFFSET NUM1<br>UP:MOV AL,[SI]<br>ADD RESULT,AL ;Answer : AL : 22H<br>JNC NEXT<br>INC CARRY<br>NEXT:INC SI<br>LOOP UP<br>MOV AX,4C00H<br>INT 21H<br>CODE ENDS<br>END START                                                      | M, Any<br>other logic<br>may be<br>considered)                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| <b>b</b> ) | Write ALP to compute, whether the number in BL register is even or odd.                                                                                                                                                                                                                                                                                                           | <b>4</b> M                                                              |
| Ans:       | DATA SEGMENT<br>NUM DB 9H<br>ODD DB 0<br>EVEN_NO DB 0<br>DATA ENDS<br>CODE SEGMENT<br>START: ASSUME CS:CODE,DS:DATA<br>MOV AX,DATA<br>MOV DS,AX<br>MOV BL,NUM<br>ROR BL,1 ;or RCR<br>JNC DN ; check ENEN or ODD<br>ROL BL,1 ; restore number<br>MOV ODD,BL ; odd<br>JMP EXIT<br>DN: ROL BL,1<br>MOV EVEN_NO,BL ; even no<br>EXIT: MOV AH,4CH<br>INT 21H<br>CODE ENDS<br>END START | (Correct<br>program-<br>4M, Any<br>other logic<br>may be<br>considered) |
| <b>c</b> ) | Write an ALP to reverse the string.                                                                                                                                                                                                                                                                                                                                               | <b>4</b> M                                                              |
| Ans:       | DATA SEGMENT<br>STRING DB 'GOOD MORNING\$'<br>REV DB 0FH DUP(?)<br>DATA ENDS<br>CODE SEGMENT                                                                                                                                                                                                                                                                                      | (Correct<br>program-<br>4M, Any<br>other logic<br>may be                |



|            | START:AS<br>MOV<br>MOV<br>LEAS<br>MOV<br>LEAS<br>ADD<br>UP:M<br>MOV<br>INC S<br>DEC<br>LOOF<br>MOV<br>INT 2<br>CODE EN<br>END STAN | SSUME CS:CODE,DS:DATA<br>DX,DATA<br>DS,DX<br>SI,STRING<br>CL,0FH<br>DI,REV<br>DI,0FH<br>OV AL,[SI]<br>[DI],AL<br>SI<br>DI<br>P UP<br>AH,4CH<br>21H<br>DS<br>RT |                                                                                                                 | considered)                                                                                                           |
|------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>d</b> ) | Write an a<br>(i) Initializ<br>(ii) Multip                                                                                         | appropriate 8086 instruction to perfo<br>ze stock of 4200H<br>Jy AL by 05H                                                                                     | orm following operation                                                                                         | 4M                                                                                                                    |
| Ans:       | I) MO<br>MO<br>MO<br>II) MO<br>MU                                                                                                  | V AX,,4200h<br>V SS,AX<br>V SP,0000H<br>V BL,05h<br>L BL                                                                                                       |                                                                                                                 | (Instruction<br>to initialize<br>stack<br>segment 1<br>M,<br>instruction<br>to initialize<br>stack<br>pointer 1<br>M) |
| <b>e</b> ) | Explain N                                                                                                                          | EAR and FAR procedure.                                                                                                                                         |                                                                                                                 | 4M                                                                                                                    |
| Ans:       | Sr.no                                                                                                                              | Near procedure                                                                                                                                                 | Far Procedure                                                                                                   | (Any 4<br>points , 1M<br>each)                                                                                        |
|            | 1.                                                                                                                                 | A near procedure refers to a procedure which is in the same code segment from that of the call instruction                                                     | A far procedure refers to a procedure which is in the different code segment from that of the call instruction. |                                                                                                                       |
|            | 2.                                                                                                                                 | It is also called intra-segment procedure                                                                                                                      | It is also called inter-segment procedure call                                                                  |                                                                                                                       |
|            | 3                                                                                                                                  | A near procedure call replaces the old IP with new IP.                                                                                                         | A far procedure call replaces the<br>old CS:IP pairs with new CS:IP<br>pairs                                    |                                                                                                                       |



|            | 4.             | The value of old IP is pushed on to       | The value of the old CS:IP pairs         |             |
|------------|----------------|-------------------------------------------|------------------------------------------|-------------|
|            |                | the stack.                                | are pushed on to the stack               |             |
|            |                | SP=SP-2 ;Save IP on stack(address         | SP=SP-2 ;Save CS on stack                |             |
|            |                | of procedure)                             | SP=SP-2 ;Save IP (new offset             |             |
|            |                |                                           | address of called procedure)             |             |
|            | 5.             | Less stack locations are required         | More stack locations are required        |             |
|            | 6.             | Example :- Call Delay                     | Example :- Call FAR PTR Delay            |             |
| <b>f</b> ) | Explain t      | <br>he directives used for defining MACI  | RO. Give an example.                     | 4M          |
| Ans:       | 1)Macro o      | definition or (Macro directive):          | •                                        | (Any 2-     |
|            | The direct     | ive MACRO informs the assembler the       | beginning of MACRO.                      | Directives  |
|            | It consist of  | of name of macro followed by keyword      | MACRO and MACRO arguments if             | 1M each –   |
|            | any.           |                                           |                                          | Example :2  |
|            | <u>Syntax:</u> |                                           |                                          | <b>M</b> )  |
|            | Macro_na       | me MACRO[arg1,arg2,argN)                  |                                          |             |
|            | Endm           |                                           |                                          | (Any other  |
|            |                |                                           |                                          | example     |
|            | 2)ENDM         | Directive :END OF MACRO                   |                                          | also        |
|            | Th             | e directive ENDM informs the assembl      | er the end of macro.                     | considered) |
|            | Syntax: El     | NDM                                       |                                          |             |
|            | 3)LOCAI        |                                           |                                          |             |
|            | Macro          | s are expanded directly in code, therefo  | re if there are labels inside the macro  |             |
|            | definit        | ion vou may get "Duplicate declaration    | " error when macro is used for twice or  |             |
|            | more.          | To avoid such problem, use <b>LOCAL</b> d | irective followed by names of variables, |             |
|            | labels         | or procedure names.                       | •                                        |             |
|            | Syntax: L      | OCAL <label></label>                      |                                          |             |
|            | Example        | with MACRO ,ENDM,LOCAL Direc              | ctive                                    |             |
|            | MyMacro        | 2 MACRO                                   |                                          |             |
|            | I              | LOCAL label1, label2                      |                                          |             |
|            | (              | CMP AX, 2                                 |                                          |             |
|            | J              | IE label1                                 |                                          |             |
|            |                | CMP AX, 3                                 |                                          |             |
|            | J              | abel1:                                    |                                          |             |
|            | 1              | INC AX                                    |                                          |             |
|            | 1              | abel2:                                    |                                          |             |
|            |                | ADD AX, 2                                 |                                          |             |
|            | ENDM           |                                           |                                          |             |
|            | data segme     | ent                                       |                                          |             |
|            | data ends      |                                           |                                          |             |
|            | code segm      | ient                                      |                                          |             |
|            | start: as      | sume cs:code,ds:data                      |                                          |             |
|            | mc             | ov ax,data                                |                                          |             |



| Q.6       Mrow as, 02h<br>MyMacro2<br>MyMacro2<br>mov ah, 4ch<br>int 21h       16M         Q.6       Attempt any two of the following       16M         Ans:       Image: Control of the following       16M         I.h the maximum mode, the working of 8086 is operated by strapping the MN/MX pin to ground.       1.1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.       1.1. In the maximum mode, there may be more than one microprocessor in the system configuration.       4.1. the maximum mode, there may be more than one microprocessor in the system.         3. Another chip called bus control er chip IC3288, is to derive control signals like RD and WR (for memory and I/O devices). DEN, DT/R, ALE etc. using the information by the processor on the status lines.         4.1. The maximum mode, the optimum status lines.       6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.         The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.       7. The significance of the MCE/PDEN optin is usaulit lide to +5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           | more do ore                                                                                    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|------------------------------------------------------------------------------------------------|-------------|
| 1000 a3,0210<br>MyMacro2<br>MyMacro2<br>MyMacro2<br>mov ah,4ch<br>end start       16M         2.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | mov as 02h                                                                                     |             |
| MyMacro2<br>mov ah.4ch<br>int 21h       16M         Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:       Image: the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |           | mov ax,02n<br>MyMagre2                                                                         |             |
| Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:       Image: Constraint of the following of 8086 in maximum mode.       8M         Ans:       Image: Constraint of the following of 8086 in maximum mode.       8M         Ans:       Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in maximum mode.       8M         Image: Constraint of the following of 8086 in genrated by strapping the MN/MX pin to ground.       1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.         1. In the maximum mode, there may be more than one microprocessor in the system configuration.       4. In the maximum mode, there may be more than one microprocessor in the system.         3. Another chip called bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.         6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 ared trive by CPU.         1. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |           | MyMacro2                                                                                       |             |
| Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:       Image: Color and Color Color and and Color and and Color and and Color and Color and Color and Color and ano                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |           | mymacio2<br>mov.sh.4sh                                                                         |             |
| Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:       Important of the following of 8086 in maximum mode.       8M         Ans:       Important of the following of 8086 in maximum mode.       8M         Ans:       Important of the following of 8066 in maximum mode.       8M         Important of the following of the fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           | int 21h                                                                                        |             |
| Code ends         Indext the working of 8086 in maximum mode.         Ans:         Ans:         Upd colspan="2">Code ends         Maximum mode.         Ans:         Upd colspan="2">Code ends         Option of the following         Code ends         Option of the following         Ans:         Upd colspan="2">Code ends         Option of the following         Intervention of the following         Intervention of the following         Intervention of the following         Intervention of the bus controller chip tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | liit 2111                                                                                      |             |
| Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |           | code ends                                                                                      |             |
| Q.6       Attempt any two of the following       16M         a)       Draw and explain the working of 8086 in maximum mode.       8M         Ans:       Image: Construction of the following of the follo                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 ( |           |                                                                                                | 101         |
| <ul> <li>a) Draw and explain the working of 8086 in maximum mode.</li> <li>Ans:</li> <li>An:</li> <l< th=""><th>Q.6</th><th></th><th>Attempt any two of the following</th><th>16M</th></l<></ul>                                                                                                                                                                                                                           | Q.6 |           | Attempt any two of the following                                                               | 16M         |
| Ans:<br>Ans:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | <u>a)</u> | Draw and explain the working of 8086 in maximum mode.                                          | 8M          |
| <ul> <li>and the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>a. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>b. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>c. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>a. Another chip called bus controller chip IC8228, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status find romation by the processor on the status find romation by the processor on the status find romation by the processor on the status lines.</li> <li>The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pins usually tied to +5V.</li> <li>The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.JORC, IOWC are IOP read command and I/O write command signals respectively. These signals used to issue two interrupt command and memory write command signals respectively. These signals used to issue two interrupt command and memory write command signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Ans:      |                                                                                                | (Diagram :  |
| <ul> <li>Explanation</li> <li>I.In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2.In this mode, the rocessor derives the status signal S2, S1, S0.</li> <li>3.Another chip called bus controller derives the control signal using this status information.</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status findermation by the processor on the destatus lines.</li> <li>6. The bus controller chip as input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>II derives the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. JORC, IOW Care IO read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. 10. The MRDC, MWTC are memory read command and memory write command signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |           |                                                                                                | 4M,         |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor of the status lines.</li> <li>6. The bus controller chip has input lines \$2, \$1, \$0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWCC, IORC, IOWC and AIOWCC. The AED, IOB and QLC EN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals and be an IO interface to read or write kignals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           |                                                                                                | Explanatio  |
| In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.2. In this mode, the processor derives the status signal S2, S1, S0.3. Another chip called bus controller derives the control signal using this status information4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.5. The basic function of the bus controller derives the control signal using the information by the processor on the status lines.6. The bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.6. The bus controller chip is sually useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +55V.7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.9.ORC, IOWC are I/O read command and I/O write command signals respectively.These signals enable an IO interface to read or write the data from or to the address port.10. The MRDC, MWTC, AWTC, MWTC, or to the address port.10. The MRDC, MWTC are memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                                                                                                | n:4M)       |
| Maximum<br>Maximum<br>Maximum<br>Maximum<br>Maximum<br>Maximum<br>Maximum<br>Maximum<br>Maximum<br>mesories<br>provided pin<br>description<br>provided pin<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description<br>description |     |           | $\begin{array}{c c} + \\ \hline \\ + \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$ | 14          |
| <ul> <li>and the processor of the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signal like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The basic controller chip tas system are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals anable an IO interface to read or write the signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           | BOB6                                                                                           | Maximum     |
| <ul> <li>a set of the set of the</li></ul>                                                                                                                                                                                                                                                                                                              |     |           |                                                                                                | moae pin    |
| <ul> <li>and the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>a. I. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>b. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>c. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. IO. The MRDC, MWTC are memory read orwrite signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           |                                                                                                | aescription |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. IO. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           | GENERATOR                                                                                      | opiionai    |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. NTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           |                                                                                                |             |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. 10. The MRDC, MWTC are memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | AD <sub>0</sub> AD <sub>15</sub> AD <sub>16</sub> OE ADDRESS BUS                               |             |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. 10. The MRDC, MWTC are memory read command and memory write command signals respectively.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |                                                                                                |             |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable an IO interface to read or write the data from or to the address port. 10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |                                                                                                |             |
| <ul> <li>1.In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2.In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3.Another chip called bus controller derives the control signal using this status information</li> <li>4.In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5.The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>If derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively . These signals enable an IO interface to read or write the data from or to the address port. 10.The MRDC, MWTC are memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |           |                                                                                                |             |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively . These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |           |                                                                                                |             |
| <ul> <li>1. In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2. In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3. Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |           |                                                                                                |             |
| <ul> <li>1.In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.</li> <li>2.In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3.Another chip called bus controller derives the control signal using this status information</li> <li>4.In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5.The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR ( for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port. IO.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                                                                                                |             |
| <ul> <li>2.In this mode, the processor derives the status signal S2, S1, S0.</li> <li>3.Another chip called bus controller derives the control signal using this status information</li> <li>4.In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5.The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |           | 1.In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.              |             |
| <ul> <li>3.Another chip called bus controller derives the control signal using this status information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |           | 2.In this mode, the processor derives the status signal S2, S1, S0.                            |             |
| <ul> <li>information</li> <li>4. In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively.</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           | 3. Another chip called bus controller derives the control signal using this status             |             |
| <ul> <li>4.In the maximum mode, there may be more than one microprocessor in the system configuration. The components in the system are same as in the minimum mode system.</li> <li>5.The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |           | information                                                                                    |             |
| <ul> <li>configuration. The components in the system are same as in the minimum mode system.</li> <li>5. The basic function of the bus controller chip IC8288, is to derive control signals like</li> <li>RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information</li> <li>by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are</li> <li>driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and</li> <li>AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.</li> <li>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or</li> <li>to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           | 4.In the maximum mode, there may be more than one microprocessor in the system                 |             |
| <ul> <li>5.The basic function of the bus controller chip IC8288, is to derive control signals like<br/>RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information<br/>by the processor on the status lines.</li> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are<br/>driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and<br/>AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.<br/>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or<br/>to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals<br/>respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |           | configuration. The components in the system are same as in the minimum mode system.            |             |
| <ul> <li>RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           | 5. The basic function of the bus controller chip IC8288, is to derive control signals like     |             |
| <ul> <li>by the processor on the status lines.</li> <li>6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.</li> <li>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           | RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information              |             |
| <ul> <li>6.The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           | by the processor on the status lines.                                                          |             |
| <ul> <li>driven by CPU.</li> <li>It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.</li> <li>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |           | 6. The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are        |             |
| It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and<br>AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.<br>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.<br>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.<br>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or<br>to an interrupting device.<br>9.IORC, IOWC are I/O read command and I/O write command signals respectively .<br>These signals enable an IO interface to read or write the data from or to the address port.<br>10.The MRDC, MWTC are memory read command and memory write command signals<br>respectively and may be used as memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |           | driven by CPU.                                                                                 |             |
| <ul> <li>AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.</li> <li>AEN and IOB are generally grounded. CEN pin is usually tied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |           | It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and                        |             |
| <ul> <li>AEN and IOB are generally grounded. CEN pin is usually fied to +5V.</li> <li>7.The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8.INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively .</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |           | AIOWC. The AEN, IOB and CEN pins are specially useful for multiprocessor systems.              |             |
| <ul> <li>7. The significance of the MCE/PDEN output depends upon the status of the IOB pin.</li> <li>8. INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9. IORC, IOWC are I/O read command and I/O write command signals respectively.</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           | AEN and IOB are generally grounded. CEN pin is usually fied to +5V.                            |             |
| <ul> <li>8.IN I A pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.</li> <li>9.IORC, IOWC are I/O read command and I/O write command signals respectively.</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |           | /. I ne significance of the MCE/PDEN output depends upon the status of the IOB pin.            |             |
| to an interrupting device.<br>9.IORC, IOWC are I/O read command and I/O write command signals respectively .<br>These signals enable an IO interface to read or write the data from or to the address port.<br>10.The MRDC, MWTC are memory read command and memory write command signals<br>respectively and may be used as memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |           | 8.11N I A pin used to issue two interrupt acknowledge pulses to the interrupt controller or    |             |
| <ul> <li>9.10KC, IOWC are 1/0 read command and 1/0 write command signals respectively.</li> <li>These signals enable an IO interface to read or write the data from or to the address port.</li> <li>10.The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |           | to an interrupting device.                                                                     |             |
| 10. The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |           | 9.10KC, 10WC are I/O read command and I/O write command signals respectively.                  |             |
| respectively and may be used as memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           | I nese signals enable an IO interface to read or write the data from or to the address port.   |             |
| respectively and may be used as memory read or write signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           | 10.1 ne wikDC, wiw IC are memory read command and memory write command signals                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | respectively and may be used as memory read or write signals.                                  |             |



11.All these command signals instructs the memory to accept or send data from or to the bus.

## **Pin Discription:**

AD15-AD0:-These pins acts as multiplexed address and data bus of the microprocessor. Whenever the ALE pin is high these pins carry the address, when the ALE pin is low it carry the data.

A19/S6-A16/S3:- These pins are multiplexed to provide the address signals A19-A16 and the status bits S6-S3. When ALE=1 these pins carry the address and when ALE=0, they carry the status lines.

| <b>S4</b> | <b>S</b> 3 | Segment Accessed |
|-----------|------------|------------------|
| 0         | 0          | Extra Segment    |
| 0         | 1          | Stack Segment    |
| 1         | 0          | Code Segment     |
| 1         | 1          | Data Segment     |

NMI: - The non-mask able interrupt input is a hardware interrupt. It can not be disable by software.

INTR: - The interrupt request is a level-triggered hardware interrupt, which depends on the status of IF. When IF=1, INTR is held high then 8086 get interrupted. When IF=0, INTR is disabled.

CLK: The clock signal must have a duty cycle of 33% to provide proper internal timing for the

8086. Its maximum frequency can be 5, 8 and 10 MHz for different version of microprocessor.

Vcc: This is power supply pin and provide +5V signals to 8086.

**BHE**/S7: The bus high enable pin used in 8086 to enable the most significant data bus (D15-D8) during a read/write operation. The state of the states line S7 is always logic 1 or high.

MN/MX: The MN/MX pin is used to select either the minimum mode or maximum mode operation of the 8086. This is achieved by connecting this pin to either +5V directly (for minimum mode) or to the ground (for maximum mode).

 $\overline{RD}$ : Whenever the Read Signals is at logic o, the 8086 reads the data from the memory or I/O device through the data bus.

**TEST**: The **TEST** pin is an input that is tested by the WAIT instruction. If the **TEST** pin is at logic 0, the WAIT instruction functions as NOP instruction. If the **TEST** pin is at logic 1, the WAIT instruction waits for the **TEST** pin to become logic 0.

**READY:** This input is used to insert wait state into the timing cycle of the 8086. If the ready pin is at logic 1, it has no effect on the operation of the microprocessor. If it is logic 0, the 8086 enters the waits state and remains the idle. This pin is used to interface the operating peripherals with the 8086.

RESET: This input is used to reset the 8086.

GND: The 8086 has two GND pins and both must connected to ground for proper operations.

The pins that have a function in maximum mode are as given follows.

 $\overline{S2}$ ,  $\overline{S1}$   $\otimes$   $\overline{S0}$ : The states bits indicate the function of current cycle. These signals are normally decoded by the 8288.



|      | S2 S1 S0 Function         0 0 0 INTR         0 0 1 I/O Read         0 1 0 I/O Write         0 1 1 Halt         1 0 0 Op-code Fetch         1 0 1 Memory Read         1 1 0 Memory Write         1 1 1 Passive         IOCK: The IOCK output is used to look peripheral off the system. This pin is activated by using         IOCK prefix on any instruction. |                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|      | RQ/GT0&RQ/GT1:- The request/grant pins request DMA during the maximum mode operations                                                                                                                                                                                                                                                                         |                                                    |
|      | of 8086. These lines are bi-directional and are used to request and grant a DMA operation.                                                                                                                                                                                                                                                                    |                                                    |
|      | QS1 & QS0:- The queue states bit show the states of the internal instruction queue in 8086.                                                                                                                                                                                                                                                                   |                                                    |
| b)   | Write an ALP to transfer 10 bytes of data from one memory location to another<br>Also draw the flow chart for the same.                                                                                                                                                                                                                                       | 8M                                                 |
| Ans: | DATA SEGMENT<br>block1 db 10 dup(10h)<br>block2 db 10 dup(0)<br>DATA ENDS<br>CODE SEGMENT<br>ASSUME CS:CODE,DS:DATA ,ES: EXTRA<br>START:MOV DX,DATA ;initialize data seg<br>MOV DS,DX<br>MOV DS,DX<br>MOV DX, EXTRA<br>MOV ES,DX<br>LEA SI,BLOCK1<br>LEA DI,BLOCK2<br>MOV CX,000AH<br>CLD<br>REP MOVSB<br>MOV AH,4CH<br>INT 21H<br>CODE ENDS<br>END START     | (Correct<br>Program :<br>5M,<br>Flowchart :<br>3M) |
|      | <u>(OR)</u>                                                                                                                                                                                                                                                                                                                                                   |                                                    |
|      | DATA SEGMENT<br>block1 db 10 dup(10h)<br>block2 db 10 dup(0)<br>DATA ENDS                                                                                                                                                                                                                                                                                     |                                                    |



|  | CODE SEGMENT                           |  |
|--|----------------------------------------|--|
|  | ASSUME CS:CODE,DS:DATA                 |  |
|  | START:MOV DX,DATA ;initialize data seg |  |
|  | MOV DS,DX                              |  |
|  | MOV ES,DX                              |  |
|  |                                        |  |
|  | LEA SI,BLOCK1                          |  |
|  | LEA DI,BLOCK2                          |  |
|  | MOV CX,000AH                           |  |
|  | CLD                                    |  |
|  | BACK:MOV AL,[SI] ; REP MOVSB           |  |
|  | MOV [DI],AL                            |  |
|  | INC SI                                 |  |
|  | INC DI                                 |  |
|  | DEC CX                                 |  |
|  | JNZ BACK                               |  |
|  | MOV AH.4CH                             |  |
|  | INT 21H                                |  |
|  | CODE ENDS                              |  |
|  | END START                              |  |
|  |                                        |  |
|  |                                        |  |
|  |                                        |  |
|  |                                        |  |







| SMALLEST_NO PROC                                                                |           |
|---------------------------------------------------------------------------------|-----------|
| MOV CX,04H                                                                      |           |
| MOV SI, OFFSET ARRAY                                                            |           |
| MOV AL.[SI]                                                                     |           |
| UP:INC SI                                                                       |           |
| CMP AL [SI]                                                                     |           |
| IC NFXT                                                                         |           |
| MOV AL [SI]                                                                     |           |
| NFXT·DEC CX                                                                     |           |
| INZ IIP                                                                         |           |
| MOV SMALLEST AL : AL -08H                                                       |           |
| DET                                                                             |           |
| KEI<br>SMALLEST NO ENDD                                                         |           |
| SMALLESI_NO ENDP                                                                |           |
| CODE ENDS                                                                       |           |
| END START                                                                       |           |
|                                                                                 |           |
| ii) A procedure to find the factorial.                                          |           |
| DATA SEGMENT                                                                    |           |
| NUM DB 04H                                                                      | (Correct  |
| DATA ENDS                                                                       | Program : |
|                                                                                 | 4M)       |
| CODE SEGMENT                                                                    | •••••     |
| START: ASSUME CS:CODE, DS:DATA                                                  |           |
| MOV AX DATA                                                                     |           |
| MOV DS AX                                                                       |           |
| CALL FACTORIAL                                                                  |           |
| MOV AH 4CH                                                                      |           |
| INT 21H                                                                         |           |
|                                                                                 |           |
| PROC FACTORIAL                                                                  |           |
| MOV BL NUM · TAKE NO IN BL REGISTER                                             |           |
| $MOV CL BI \qquad TAKE CL AS COUNTER$                                           |           |
| WOYCL, DL , TAKE CLAS COUNTER                                                   |           |
| DEC CL DECREMENT CL BV 1                                                        |           |
| MOV AL BI                                                                       |           |
|                                                                                 |           |
| UP. DEU DL ; DEUKEWIEN I DL IU GEI N-I<br>MUL DL : MULTIDLY CONTENT OF N DY N 1 |           |
| WIUL DL ;WIULIIFLI CUNTENI UF N BI N-1<br>DEC CL DECDEMENT COUNTED              |           |
| DEUCL ;DEUKEMENT CUUNTEK                                                        |           |
| JINZ UP ;KEPEAT TILL ZEKU                                                       |           |
|                                                                                 |           |
| FACTORIAL ENDP                                                                  |           |
| CODE ENDS                                                                       |           |
| END START                                                                       |           |
| (OR)                                                                            |           |
|                                                                                 |           |
| DATA SEGMENT                                                                    |           |



| A DW 0005H                      |
|---------------------------------|
| FACT_LSB DW ?                   |
| FACT_MSB DW ?                   |
| DATA ENDS                       |
| CODE SEGMENT                    |
| ASSUME DS:DATA,CS:CODE          |
| START:MOV AX,DATA               |
| MOV DS,AX                       |
| CALL FACTORIAL                  |
| MOV AH,4CH                      |
| INT 21H                         |
| FACTORIAL PROC                  |
| MOV AX,A                        |
| MOV BX,AX                       |
| DEC BX                          |
| UP: MUL BX ; MULTIPLY AX * BX   |
| MOV FACT_LSB,AX ;ANS DX:AX PAIR |
| MOV FACT_MSB,DX                 |
| DEC BX                          |
| CMP BX,0                        |
| JNZ UP                          |
| RET                             |
| FACTORIAL ENDP                  |
| CODE ENDS                       |
| END START                       |
|                                 |