

WINTER- 16 EXAMINATION Model Answer

(Subject Code: 17431)

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	a)	Attempt any <u>SIX</u> of following	12-Total Marks
1	i)	Describe the four salient features of 8085.	2 M
	Ans:	 Features of 8085: 1. 16 address line so 2¹⁶=64 Kbytes of memory can be addressed. 2. Operating clock frequency is 3MHz and minimum clock frequency is 500 KHz. 3. On chip bus controller. 4. Provide 74 instructions with five addressing modes. 5. 8085 is 8 bit microprocessor. 6. Provides 5 level hardware interrupts and 8 software interrupts. 7. It can generate 8 bit I/O address so 2⁸ =256 input and 256 output ports can be accessed. 8. Requires a single +5 Volts power supply. 9. Requires 2 phase, 50% duty cycle TTL clock 10. Provide 2 serial I/O lines, so peripheral can be interfaced with 8085 μp. 	Any Four Features [½ Mark each]
	ii)	State the function of following pins of 8086. 1) ALE 2) WR	2 M
	Ans:	 ALE- This output signal is used to indicate availability of valid address on address/data lines and is connected to latch enable input of latches (8282 or 74LS373) .This signal is active high and never tristate. 	(1 Mark each)

	 WR The signal write WR indicates that a write bus cycle is in progress. The 8086 switches WR to logic 0 to signal external device that valid write or output data are on the bus. 	
iii)	Explain the functions of following instruction with one example.1) XLAT2) LEA	2 M
Ans:	 1) XLAT XLAT replaces a byte in AL register with a byte from 256 byte lookup table beginning at [BX]. AL is used as offset into this table. Operation :- AL←[BX+AL] 2) LEA- This instruction indicates the offset of the variable or memory location named as the source and put this offset in the indicated 16 – bit register. Example: LEA BX, PRICE ; Load BX with offset of PRICE in DS 	(1 Mark each)
iv)	Define the terms: algorithm and flowchart.	2 M
Ans:	Algorithm:The formula or sequence of operations to be performed by the program can be specified as a step in general English is called algorithm.Flowchart:The flowchart is a graphically representation of the program operation or task.	(Correct Definition: Mark each)
v)	List maskable and non-maskable interrupts of 8085.	2 M
Ans:	Maskable Interrupt : TRAP Non-maskable Interrupts : INTR, RST 7.5, RST 6.5, RST 5.5	(Maskable Interrupt :1 Mark) (Non- Maskable interrupt :ANY 2 : ½ Mark each)

Ans:	1)	It is a	16 bit µp.		(Any Four Features –
	2)	8086 h	has a 20 bit address bus can acces	ss upto 2^{20} memory locations (1 MB).	¹ / ₂ Mark
	3)	It can	support upto 64K I/O ports.		each)
	4)	It prov REGIS	•	X,DX,CS,SS,DS,ES,BP,SP,SI,DI,IP & FLAG	
	5)	It has a	multiplexed address and data bus	$AD_{0}-AD_{15} \text{ and } A_{16}-A_{19}.$	
	6)	It requ	ires single phase clock with 33%	duty cycle to provide internal timing	
	7)	8086 i	s designed to operate in two mod	les, Minimum and Maximum.	
	8)	-	prefetches up to 6 instruction by up instruction execution.	tes from memory and queues them in order to	
	9)	Interru	pts:-8086 has 256 vectored inter	rupts.	
		,	les separate instructions for string		
	11) Opera	ting clock frequencies 5MHz, 8	MHz, 10MHz.	
vii)	St	ate the 1 1) Pr 2) EN		25	2 M
Ans:	1)	or far i assemi Gener 2)ENI end of	is used to specify the type of the bler assumes NEAR as a type Sp ral Form: Procedure_name PRO	C [NEAR/FAR] ith the name of the procedure to indicate the	(Correct Function: 1 Mark each)
viii)		-	the following 8086 instruction TEST (Any four points)	s:	2 M
Ans		Sr. No	AND	TEST	(Correct comparison
		1	This instruction AND's bit- by-bit the source operand with destination operand and the result is stored in the destination specified in the	This instruction AND's the contents of source byte or word with the contents of specified destination byte or word and flags are updated ,but neither operands are changed.	4 points :2M)

	2	General Form:	General Form :	
		AND	TEST DESTINATION, SOURCE	
	2	DESTINATION, SOURCE		
	3	Ex:- AND BH,CL	Ex:- TEST BH,CL	
	4	Flag affected: PF,SF,ZF	Flag affected: CF, OF, PF,SF,ZF	
b)	Attempt a	ny <u>TWO</u> of following:		8 M
i)	Describe 1) DI	the functions of the following)	directives:	4 M
	2) DI	3		
	3) IN	CLUDE		
	4) DU	JP		
Ans:	1) DI	D - (Define Double Word or Da	ta Double Word)	
		is used to define a double word		
		-	s for unsigned numbers. -2^{32-1} to $+2^{32-1} - 1$ for	Connect
	U	numbers		(Correct Use of each
	• This	can be used to define a single c	double word or multiple double word.	:1 Mark)
	2) DI	B - Define byte (8 bits)		
			ariable of 8 bit. It also can be used to declare an	
		ay of bytes.		
		the range of values that can be st d $-128 + 127$ for signed number	ored in a byte is 0 to 255 for unsigned numbers ers.	
	3) IN	CLUDE –		
	• Th	is INCLUDE directive is used	to insert a block of source code from the named	
	file	e into the current source module	е.	
			the assembler to include the statement defined	
	in	the include file. The name of th	ne include file follows the statement INCLUDE.	
	4) D U	UP: Duplicate memory location	:-	
		-	erate multiple bytes or words with known as well	
	as	un-initialized values.		
ii)	Describe	Linker and Debugger with re	spect to their functions and usages	4 M
Ans:	Linker:			(Description
			convert Object code into executable program	: 2 Mark
		lled .EXE module.		each)
		-	an one separated assembled modules into one	
			more assembly programs or an assembly	
	lar	guage with C program.		

	iii) Ans:	 Debugger: - Debugger is a program that allows the execution of program in single step mode under the control of the user. The errors in program can be located and corrected using a debugger. Write an ALP to find sum of 10 numbers. (Assume numbers as 8 bits) 							4 M	
	Ans:	MOV MOV MOV UP:MOV A ADD JNC I INC NEXT:INC LOC MO INT CODE ENI DATA SEG NUI 05H,06H,0 RES	SUME CS:COE DX,DATA DS,DX CL,10 ; COU SI,OFFSET NU L,[SI] RESULT,AL NEXT CARRY SI OP UP V AX,4C00H 21H OS SMENT M DB D3H,04H,02H OULT DB 1 DU RY DB 0H OS	JNTER 10 UM1 ,07H,02H,						(Correct Program -4 Marks,(Any other logic may be considered)
Q 2		Attempt any <u>FOUR</u> of the following:						16 M		
	a)	i. Aux	lag register Killiary carry ry flag		nd explain the	functio	n of :			4M
	Ans:		85: ALU conditions of r Dc Z Zero Flag		flip-flop, which D ₄ AC Auxiliary Carry Flag	Di	or reset after o D: P Parity Flag	D ₁	n, according Da CY Carry Flag	(Diagram: 2 Mark, Description of each flag : 1 Mark each)

	(i)Auxiliary Carry Flag (AC): 1= it is set when carry/borrow is generated from lower nibble(bit D3) to higher nibble(bit D4)in 8- bit operations. Not used in 16 bit operation. It is used in BCD operation.	
	(ii)Carry Flag (CY): It is set when carry/borrow is generated from MSB(D7 bit). It is reset when no such carry/borrow is generated.	
b)	Explain the concept of segmentation in 8086.	4M
Ans:	Segmentation: The memory in an 8086 microprocessor is organized as a segmented memory.	(Correct Description 4 Mark)
	The physical memory is divided into 4 segments namely,- Data segment, Code Segment, Stack Segment and Extra Segment.	
	 Description: 1.Data segment is used to hold data 2. Code segment for the executable program 3. Extra segment also holds data specifically in strings. 4. stack segment is used to store stack data. Each segment is 64Kbytes & addressed by one segment register. The 16 bit segment 	
	register holds the starting address of the segment The offset address to this segment address is specified as a 16-bit displacement (offset) between 0000 to FFFFH. Since the	
	memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes.	
c)	memory size of 8086 is 1Mbytes, total 16 segments are possible with each having	4 M
	memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes.	(List : Mark
	 memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes. Name the general purpose registers of 8086 giving brief description of each. General Purpose Register:- The registers AX, BX, CX and DX are the general purpose 	(List :
c) Ans:	 memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes. Name the general purpose registers of 8086 giving brief description of each. General Purpose Register:- The registers AX, BX, CX and DX are the general purpose 16-bit registers. AX- AX is used as 16-bit accumulator. The lower 8-bit is designated as AL and higher 8- 	(List Mark Descriptior of any 3
	 memory size of 8086 is 1Mbytes, total 16 segments are possible with each having 64Kbytes. Name the general purpose registers of 8086 giving brief description of each. General Purpose Register:- The registers AX, BX, CX and DX are the general purpose 16-bit registers. AX- AX is used as 16-bit accumulator. The lower 8-bit is designated as AL and higher 8-bit is designated as AH. AL can be used as an 8-bit accumulator for 8-bit operation. BX-All data register can be used as either 16 bit or 8 bit. BX is a 16 bit register, but BL 	(List Mark Descriptior of any 3

-	f)	Compare minimum mode and maximum mode.(Any four points)					
	Ans:	Sr. No	Minimum mode	Maximum mode	(Any 4 Points: 1		
		1.	MN/\overline{MX} pin is connected to V _{CC} . i.e. $MN/\overline{MX}=1$.	MN/\overline{MX} pin is connected to ground. i.e. $MN/\overline{MX} = 0.$	Mark each)		
		2.	Control system M/\overline{IO} , \overline{RD} , \overline{WR} is available on 8086 directly.	Control system M/\overline{IO} , \overline{RD} , \overline{WR} is not available directly in 8086.			
		3.	Single processor in the minimum mode system.	Multiprocessor configuration in maximum mode system.			
		4.	In this mode, no separate bus controller is required.	Separate bus controller (8288) is required in maximum mode.			
		5.	Control signals such as \overline{IOR} , \overline{IOW} , \overline{MEMW} , \overline{MEMR} can be generated using control signals M/\overline{IO} , \overline{RD} , \overline{WR} which are available on 8086 directly.	Control signals such as $\overline{\text{MRDC}}$, $\overline{\text{MWTC}}$, $\overline{\text{AMWC}}$, $\overline{\text{IORC}}$, $\overline{\text{IOWC}}$ and $\overline{\text{AIOWC}}$ are generated by bus controller 8288.			
		6.	ALE, $\overline{\text{DEN}}$, $\overline{\text{DT}/\text{R}}$ and $\overline{\text{INTA}}$ signals are directly available.	ALE, $\overline{\text{DEN}}$, $\overline{\text{DT/R}}$ and $\overline{\text{INTA}}$ signals are not directly available and are generated by bus controller 8288.			
		7.	HOLD and HLDA signals are available to interface another master in system such as DMA controller.	$\overline{RQ}/\overline{GT0}$ and $\overline{RQ}/\overline{GT1}$ signals are available to interface another master in system such as DMA controller and coprocessor 8087.			
		8.	Status of the instruction queue is not available.	Status of the instruction queue is available on pins QS_0 and QS_1 .			
Q. 3		Atten	Attempt any <u>FOUR</u> of the following:				
	a)		our machine control instructions a	nd state their functions.	16M 4M		
	Ans:	This execu it, or I NOP This cycles add de WAI This i	ting instructions. CPU is brought ou NMI is given or INTR pin goes high. (No Operation) instruction is used to add wait state s, CPU does not perform anything. elay loops <u>F</u> nstruction causes the processor to en	enter to halt state. CPU stops fetching and at of the halt state when reset signal is given to as of 3 clock cycles. During these three clock This instruction is useful in delay programs to ther into an idle state or a wait state. Processor valid INTR or NMI or a TEST pin goes high. It	(Any Four Instruction with function-1M each)		

	LOCKThis instruction causes the processor to take control of the shared resources. This is used as an instruction prefix to some critical instructions which has to be executed. While LOCKED, it prevents the resources to be shared by other processors.ESCThis instruction is used to pass instructions to a coprocessor, such as the 8087 Math coprocessor, which shares the address and data bus with 8086. Instructions for the coprocessor are represented by a 6-bit code embedded in the ESC instruction.		
b)	Describe how 20 bit physical address is formed in 8086 microprocessor with one suitable example		
Ans:	suitable example. Generation of 20 bit physical address in 8086 :- Segment registers carry 16 bit data, which is also known as base address. BIU appends four 0 bits to LSB of the base address. This address becomes 20-bit address. Any base/pointer or index register carries 16 bit offset. Offset address is added into 20-bit base address which finally forms 20 bit physical address of memory location. Example : Given CS = 3500H and IP = 1234H The given code segment base address is appended by four 0 bits. And IP offset is added to it. CS 35000 H 0 is appended by BIU (or Hardwired zero) IP + 1234 H		
c)	Draw and explain the architecture of 8288 Bus Controller.	4M	

	STATUS STATUS DECODER STATUS DECODER COMMAND SIGNAL GENERATOR COMMAND SIGNAL GENERATOR DT/R ADDRESS LATCH, DATA TRANSCEIVER, AND INTERRUPT CONTROL LOGIC CONTROL LOGIC CONTROL CONTRO	
d)	Explain any four rotation instructions with example.	4M
Ans:	Rotate instructions ROR (Rotate Right without Carry) Syntax : ROR destination, count 1) This instruction rotates the destination bit by bit to the right excluding the carry 2) The bit moved out of LSB is rotated around into the MSB and also copied to CF. 3) The count can be either 1 or specified by CL register. 4) The destination can be a byte or a word in register or a memory location, but not an immediate data. Operation Performed : MSB LSB → CF E.g: ROR If CF = 0, BH = 54H MOV CL, 02 ; Load CL register for the count ROR BH, CL ; Rotate the contents of BH register by twice towards right After two times ROR, 01010100 → 00101010 → 00010101 = 15H ROL (Rotate Left without Carry) 15	(Any four instruction with example; Each 1Mark)
	Syntax :ROL destination, count1) This instruction rotates the destination bit by bit to the left excluding the carry	
	2) The bit moved out of MSB is rotated around into the LSB and also copied to CF.	
	3) The count can be either 1 or specified by CL register.	
	4) The destination can be a byte or a word in register or a memory location, but not an	

	into the LSB.	
	c. The count can be either 1 or specified by CL register.	
	d. The destination can be a byte or a word in register or a memory location,	
	but not an immediate data.	
	e. Flags affected : OF ,CF	
	On susting Daufanna du	
	Operation Performed : CF ← MSB ← LSB	
	E.g: RCL	
	If $CF = 0$, $BH = 54H$	
	MOV CL, 02 ; Load CL register for the count	
	RCL BH, CL ; Rotate the contents of BH register by twice towards left through carry	
	After two times ROL,	
	$01010100 \rightarrow 10101000 \rightarrow 01010001 = 51H$	
e)	Write an assembly language program to perform word by byte division of two	4M
e)	Write an assembly language program to perform word by byte division of two unsigned number.	4M
e) Ans:		4M (Data
-		(Data Declaratio
-	unsigned number.	(Data Declaratio 1Mark;
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H	(Data Declaratio 1Mark; Correct
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H	(Data Declaratio 1Mark; Correct
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0)	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS,DX MOV AX ,NUMBER1 MOV BL ,NUMBER2 DIV BL ; Ans AH :Quotient ,AL :Remainder in AX	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX MOV AX ,NUMBER1 MOV BL ,NUMBER2 DIV BL ; Ans AH :Quotient ,AL :Remainder in AX MOV Quotient, AL	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) Remainder DB 1 DUP(0) CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX MOV AX ,NUMBER1 MOV BL ,NUMBER2 DIV BL ; Ans AH :Quotient ,AL :Remainder in AX MOV Quotient, AL MOV Remainder, AH	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) Remainder DB 1 DUP(0) CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX MOV AX ,NUMBER1 MOV BL ,; Ans AH :Quotient ,AL :Remainder in AX MOV Quotient, AL MOV Remainder, AH MOV AH , 4CH	(Data Declaratio 1Mark; Correct Program:3
-	unsigned number. Program for word by byte division. DATA SEGMENT NUMBER1 DW 4359H NUMBER2 DB 99H Quotient DB 1 DUP(0) Remainder DB 1 DUP(0) Remainder DB 1 DUP(0) CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX MOV AX ,NUMBER1 MOV BL ,NUMBER2 DIV BL ; Ans AH :Quotient ,AL :Remainder in AX MOV Quotient, AL MOV Remainder, AH	(Data Declaration 1Mark; Correct Program:3

	f) Ans:	Draw the neat interfacing diagram in minimum mode of 8086.	4M (Correct labeled Diagram :4 Mark)					
Q. 4		Attempt any <u>FOUR</u> of following:	16 M					
~ , , ,	a)							
		(i)DAA (ii)ADC (iii)MUL (iv)XCHG						
	Ans:	 (i) DAA (Decimal Adjust Accumulator) Syntax :- DAA 1. This instruction is used to convert the result of the addition of two packed BCD numbers to a valid BCD number. 2. The result has to be only in AL. 3. After addition if the lower nibble is greater than 9 or AF =1, it will add 06H to the lower nibble in AL. 4. After this addition, if the upper nibble is greater than 9 or if CF = 1, DAA instruction adds 60H to AL. 5. DAA instruction affects AF,CF,PF and ZF. OF is undefined. <u>Operation Performed :</u> 6. If lower nibble of AL > 9 or AF =1 then AL = AL +06 7. If higher nibble of AL > 9 or CF =1 then AL = AL +60 <u>Numeric Examples</u> AL = 53H, CL = 29H ADD AL,CL ; AL ← AL + CL ; AL ← 53 + 29 ; AL ← 7C +06 (as C>9) ; AL ← 82 (ii) ADC Destination, Source 	(Each Instruction: 1Mark)					

	(**Note : Register D is considered as DX)	(Each
)	Write 8086 assembly language instruction for the following: (i)Move 5000H to register D (ii)Multiply AL by 05H	4 M
		4.54
	XCHG AL,[9800]	
	E.g.: XCHG DX, AX XCHG BL, CH	
	4. No segment registers can be used. $E_{\alpha} : X \subseteq DX \land X$	
	location, but not two locations simultaneously.	
	3. The source and destination can be any of the general purpose register or memory	
	2.It cannot exchange two memory locations directly.	
	1. This instruction exchanges Source with Destination.	
	(iv)XCHG Destination, Source	
	3. MUL Byte PTR [SI] ; $AX \leftarrow AL * [SI]$	
	2. MUL CX ; Multiply AX by CX & the result in DX,AX	
	1. MUL BL ; Multiply AL by BL & the result in AX	
	Examples:	
	b. If source is word then DX, AX \leftarrow AX $\stackrel{*}{\leftarrow}$ unsigned 16 bit source	
	a. If source is byte then AX \leftarrow AL * unsigned 8 bit source	
	Operation Performed :	
	6 All other flags are modified depending upon the result	
	5. If MS Byte or Word of the result is zero, CF and OF both will be set.	
	of the result is stored in DX and the LSW (Least Significant Word) of the result is stored in AX.	
	4. When a word is multiplied with a word in AX, the MSW (Most Significant Word) of the result is stored in DX and the LSW (Least Significant Word) of the result is	
	3. When a byte is multiplied with a byte in AL, the result is stored in AX.	
	2. The source can be a register or memory location but cannot be an immediate data. 3. When a but a is multiplied with a but a in ΔL , the result is stored in ΔX .	
	Unsigned word from source with an unsigned word in AX register.	
	or	
	in AL register	
	1. This instruction multiplies an unsigned byte from source with an unsigned byte	
	Syntax : MUL source	
	(iii)MUL (Unsigned multiplication)	
	ADC AX, [BX]	
	ADC DX, AX	
	ADC AL, 74H	
	It effects AF, CF, OF, PF, SF, ZF flags. E.g.:	
	adds a byte to byte or a word to word. It adds the two operands with CF.	
	6) The source and the destination must be of the same data type i.e., ADD instruction	
	5) Both operands cannot be immediate data or memory location.	
	4) The destination can be a register or a memory location, but not an immediate data.	
	any of the 24 addressing modes.	
	3) The source operand can be a immediate, a register or a memory location addressed by	
	2) The result is stored in the destination.	

	(i) Move 5000H to register D	Instruction:
	MOV DX, 5000H	2 Marks)
	(ii)Multiply AL by 05	
	MOV BL, 05H	
	MUL BL	
c)	Write an ALP to perform addition of two 16 bit BCD number.	4 M
Ans:	DATA SEGMENT	(Correct
	N1 DW 2804H	Program:4
	N2 DW 4213H	Mark)
	BCD_SUM DW ?	
	DATA ENDS	
	CODE SEGMENT	
	ASSUME CS: CODE, DS:DATA	
	START: MOV AX, DATA	
	MOV DS, AX	
	MOV AX, N1	
	MOV BX, N2	
	ADD AL,BL	
	DAA ; LOWER BYTE ADDITION	
	MOV CL,AL	
	MOV AL,AH	
	ADD AL,BH	
	DAA ; HIGHER BYTE ADDITION	
	MOV CH,AL	
	MOV BCD_SUM, CX	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	
d)	Describe the model of assembly language programming.	4 M
Ans:	Note : Any one model can be considered.	(Description
	<u>Model 1 :</u>	1Mark;
	1) Using SEGMENT, ASSUME and ENDS directives	Model
	2) In this Data_Seg is the name of the data segment where data are declared	Format : 3
	3) Code_Seg is the name of the code segment where code is written	Marks)
	4) Start is the label name used to initialize the CS register.	
	5) ENDS to indicate the ends of code and data segment	
	6) END marks the end of the program.	
	Example	
	Data_Seg SEGMENT	
	:	
	:	
	Data declaration	

: Data_Seg **ENDS**

:

Code_Seg SEGMENT ASSUME CS:Code_Seg, DS:Data_Seg Start: MOV AX, Data_Seg MOV DS,AX

: Program code

:

:

Code_Seg ENDS

END Start

Model 2 :

- c. Using .Data and .code directive
- d. In this, .model small is used to indicate small memory model is used in the program
- e. .Stack 100 to indicate 100 word memory locations reserved for stack
- f. .Data indicates start of the data segment where data declaration of the program is made.
- g. .Code indicates the beginning of the code segment
- h. END to indicate the termination of the program.

.MODEL SMALL

STA	CK	100	
51 A	CN	100	

.DATA

Data Declaration :

:

:

.CODE MOV AX, @DATA MOV DS,AX

: Program code :

•

:

END

	e)	Write an ALP to count number of 1's in register DL.	4 M
	Ans:	DATA SEGMENT N DB 43H COUNT DB 0H DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START:MOV DX , DATA MOV DS ,DX MOV DL ,N MOV CX ,08H UP: SHR DL,01 ; any other shift/rotate instruction is also correct JNC NEXT INC COUNT NEXT: LOOP UP MOV AH , 4CH INT 21H CODE ENDS END START	(Data Declaration 1Mark; Correct Program:3 Marks)
	f)	What is recursive and re-entrant procedure.	4 M
	Ans:	Recursive Procedures: A recursive procedure is a procedure which calls itself. Here, the program sets aside a few locations in stack for the storage of the parameters which are passed each time the computation is done and the value is returned. Each value returned is then obtained by popping back from the stack at every RET instruction when executed at the end of the procedure. Re-entrant Procedures : A procedure is said to be re-entrant, if it can be interrupted, used and re-entered without losing or writing over anything.	(Recursive Procedure 2 Marks; Re- entrant Procedure 2 Marks)
		 To be a re-entrant, 1) Procedure must first push all the flags and registers used in the procedure. 2) It should also use only registers or stack to pass parameters. 	
Q.5		Attempt any <u>FOUR</u> of following:	16 M
	a)	Write an ALP to arrange five 8 bit numbers in ascending order.	4 M
	Ans:	Data segment;start of data segmentArray db 15h,05h,08h,78h,56h;end of data segmentData ends;end of data segmentCode segment;start of code segment	(Correct Program -4 Mark, Any other logic may be used)
		Start: assume cs: code, ds:data initialize data segment mov dx, data ; initialize data segment mov ds, dx ; initialize data segment mov bl,05h ; initialize pass counter to read numbers from array step1: mov si,offset array ; initialize memory pointer to read number mov cl,04h ; initialize byte counter	, <i>se</i> used)

	step: mov al,[si] cmp al,[si+1] jc down xchg al,[si+1] xchg al,[si] Down: add si,1 loop step dec bl jnz step1 Code ends End start	 ; compare two numbers ; if number <next down<="" go="" li="" no.="" then="" to=""> ; interchange numbers ; increment memory pointer to point next ;decrement byte counter if count is ? 0 then step ; decrement pass counter if ? 0 then step1 </next>	
b)	Write an ALP to convert BCD to	HEX.	4 M
Ans:	DATA SEGMENT DEC_NUM DB 56 HEX_NUM DW 0 MULT_FAC DW 3e8H DIGIT_COUNT DW 2 DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START:MOV AX,DATA MOV DS,AX MOV BX,0AH MOV CX,DIGIT_COUNT MOV SI,OFFSET DEC_NUM UP: MOV AL,[SI] AND AX,000FH MUL MULT_FAC ADD HEX_NUM,AX MOV AX,MULT_FAC MOV DX,00 DIV BX MOV MULT_FAC,AX INC SI LOOP UP ENDS END START		(Correct Program -4 Marks, Any other logic may be considered)
c)	Write an ALP to reserve a string	of 8 characters.	4 M
Ans:	Data segment string db 'goodmorn' rev db 0fh dup(?) Data ends Code segment assume cs:code, ds:data start: mov dx, data		(Correct Program -4 Marks, Any other logic may be considered)

	mov ds,dx	
	lea si, string	
	mov cx,0fh	
	lea di, rev	
	add di,0fh	
	up: mov al, [si]	
	mov [di], al	
	Inc si	
	dec di	
	loop up	
	code ends	
	end start	
d)	State the function of following instruction of 8086	4 M
	i. STC	
	ii. CMC	
	iii. CLD	
	iv. STI	
Ans:	i) STC : This instruction indicates the set CARRY FLAG.	(Each
	CF=1	instructio
	ii) CMC: It will complement the carry flag. CF=~CF	function
	iii) CLD : In this instruction is indicating the clear DIRECTION FLAG	Mark)
	DF=0	
	iv) STL STL the instruction indicates the set INTERRUPT FLAG	
	iv) STI :STI the instruction indicates the set INTERRUPT FLAG. IF = 1	
e)		4 M
-	IF = 1 What is meant by macro's? Describe their uses.	
-	IF = 1 What is meant by macro's? Describe their uses. Macro	(Correct
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places	(Correct Definitio
-	 IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated	(Correct Definitio 2 Marks,
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro.	(Correct Definitio 2 Marks, Any 2 us
-	 IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. 	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	 IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR)	(Correct Definitio 2 Marks, Any 2 us
e) Ans:	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR) Macro definition or (Macro directive):	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	 IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR)	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR) Macro definition or (Macro directive): Syntax:	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR) Macro definition or (Macro directive): Syntax: Macro _name MACRO[arg1,arg2,argN) ENDM	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR) Macro definition or (Macro directive): Syntax: Macro_name MACRO[arg1,arg2,argN) 	(Correct Definitio 2 Marks, Any 2 us 1 Mark
-	IF = 1 What is meant by macro's? Describe their uses. Macro Small sequence of the codes of the same pattern are repeated frequently at different places which perform the same operation on the different data of same data type, such repeated code can be written separately called as Macro. Macro is also called as open subroutine. (OR) Macro definition or (Macro directive): Syntax: Macro _name MACRO[arg1,arg2,argN) ENDM Uses of Macro:	(Correct Definition 2 Marks, Any 2 use 1 Mark

		2 Malta nuanom mana nadahla				
		3. Make program more readable.4. Reduce the Execution time as compare to procedure as no extra instructions are				
		required.				
		Tequileu.				
	f)	What is procedure? What are the two advantages of using procedure in our program.	4 M			
	Ans:	 Procedure is a series of instructions is to be executed several times in a program, and called whenever required. Program control is transferred to the procedure, when CALL instruction is executed at run time. Memory required is less, as the program control is transferred to procedure. Stack is required at Procedure CALL. Extra overhead time is required for linkage between the calling program and called procedure. Parameters passed in registers, memory locations or stack. 	(Correct Description : 2 Mark, Any 2 Advantages :1 Mark each)			
		 7) RET is required at the end of the Procedure. 8) Procedure is called using: CALL <procedure_name></procedure_name> 9) Directives used: PROC, ENDP, FAR,NEAR 				
		<u>General Form :</u>				
		Procedure Name PROC				
	Procedure Statements					
		Procedure Name ENDP.				
		Advantages:1) Modular programming2) Reduced to work load and development time3) Debugging of program easier4) Reduction of line of code5) Reusability of code6) Library of procedure can be implemented.				
Q.6		Attempt any <u>TWO</u> of following:	16 M			
	a)	Draw the functional block diagram of 8086 microprocessor and describe instruction	8 M			
		queue in detail.				
	Ans:	To implement any instruction first it is to be fetched, then decoded and then executed. The fetching of an instruction involves its address to be sent out to the system memory and then the memory sending back the instruction. While the EU is busy decoding or executing certain instructions which do not need the buses, the BIU fetches next six instruction bytes and stores them in a first-in-first-out (FIFO) register set called queue. The processor doesn't have to wait for the next instruction to be fetched as it is	(Block diagram :4 Marks, Description of instruction queue :4 Marks)			

	Iready made available in the queue registers. Thus, the speed of operation is enhanced. This prefetching of next instruction while another instruction is still being executed is known as pipelining.	
	BIU L L L L L L L L L L L L L	
b) V	Write an ALP to count odd numbers in an array of five 8 bit numbers.	8 M
I	DATA SEGMENT ARRAY DB 02H,05H,06H,07H,03H ODD DB 00H DATA ENDS CODE SEGMENT START:ASSUME CS:CODE,DS:DATA MOV DX,DATA MOV DX,DATA MOV DS,DX MOV CL,05H MOV SI,OFFSET ARRAY NEXT:MOV AL,[SI] ROR AL,1 ;or RCR JNC DN ; Check for Odd	(Correct Program - Marks, Any other logic may be considered

c)	Write an ALP using procedure for performing the operation Z= (A+B) * (C+D) A,B,C,D, are of 8 bit number. Draw flowchart and write result.	8 M
Ans:	DATA SEGMENT	(Correct
		Program -4
	A DB 02H	Marks,
	B DB 03H	Any other
	C DB 04H	logic may
	D DB 05H	be
	Z DW ?	considered,
	DATA ENDS	flowchart 3
	CODE SEGMENT	Marks,
	ASSUME CS:CODE, DS: DATA	Result : 1
	MOV AX, DATA	Mark)
	MOV DS, AX	
	CALL FIND_RES	
	FIND_RES PROC NEAR	
	PUSHF	
	PUSH AX	
	PUSH BX	
	MOV AL, A	
	ADD AL, B	
	MOV BL, C	
	ADD BL, D	
	MUL BL	
	MOV Z, AX	
	POP BX	
	POP AX	
	POPF	
	RET	
	FIND_RES ENDP	
	MOV AX,4C00H	
	INT 21H	
	CODE ENDS	
	END START OR	
	ADD_NO1 MACRO A, B, RES_ADD1 ; MACRO DECLARATION (A+B)	
	MOVAL, A	
	ADD AL, B	
	MOV RES_ADD1, AL	
	ENDM	
	ADD_NO2 MACRO C, D, RES_ADD2 ; MACRO DECLARATION (C+D)	
	MOV AL, C	
	ADD AL, D	
	MOV RES_ADD1, AL	
	ENDM	
	MULTIPLY MACRO RES_ADD1, RES_ADD2,X; MACRO DECLARATION	
	$X = (A+B)^*(C+D)$	
	MOV AL, RES_ADD1	

MUL RES_ADD2	
MOV Z,AL	
MOV Z+1,AH	
ENDM	
DATA SEGMENT	
A DB 02H	
B DB 03H	
C DB 04H	
D DB 05H	
RES_ADD1 DB ? ; RESULT OF A+B	
RES_ADD2 DB ? ; RESULT OF C+D	
X DW ?; RESULT OF $(A+B) \times (C+D)$	
DATA ENDS	
CODE SEGMENT	
START:ASSUME CS: CODE,DS: DATA	
MOV AX, DATA ; INITIALIZE DATA SEGMENT	
MOV DS, AX	
ADD_NO1 A, B, RES_ADD1; CALL MACRO TO ADD	
ADD_NO2 C, D, RES_ADD2;CALL MACRO TO ADD	
MULTIPLY RES_ADD1, RES_ADD2,X ;CALL MACRO TO MULTIPLY	
MOV AX, 4C00H	
INT 21H	
ENDS	
END START	
<u>OR</u>	
OPERATION MACRO A, B,C,D, RES_ADD1,RES_ADD2,X ; MACRO	
DECLARATION (A+B)*(C+D)	
MOV AL, A	
ADD AL, B	
MOV RES_ADD1, AL	
MOV AL,C	
ADD AL,D	
MOV RES_ADD2, AL	
MOV AL, RES_ADD1	
MUL RES_ADD2	
MOV X,AL	
MOV X+1,AH	
ENDM DATA SECMENT	
DATA SEGMENT	
A DB 02H B DB 03H	
C DB 04H	
D DB 05H RES ADD1 DB 2 · RESULT OF A · R	
RES_ADD1 DB ? ; RESULT OF A+B RES_ADD2 DB ? ; RESULT OF C+D	
X DW ?; RESULT OF $(A+B) \times (C+D)$	
DATA ENDS CODE SEGMENT	
CODE SEGMENT	
 ASSUME CS: CODE,DS: DATA	

<u>17431</u>

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

