

Winter-16 EXAMINATION Model Answer

Subject code :

17427

Page **1** of **22**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based one quivalent concept.

Winter-16 EXAMINATION <u>Model Answer</u>

Subject code :

17427

Page **2** of **22**

Q No.	Answer	Marks
1a	Attempt any six	12
i)	Fermentation: The chemical breakdown of a substance by bacteria, yeasts, or	2
	other microorganisms, typically involving effervescence and the giving off of	
	heat.	
ii)	Sources of cellulose Pulp	¹∕₂ mark
	• Babmoo	each
	Agricultural residue	for any
	• Bagasse,	four
	• Cereal straw	
	• Reeds	
	• Esparto grass	
	• Jute	
	• Flax	
	• Sisal	
	• Softwood (spruce, pine, fir, larch, aspen, eucalyptus)	
iii)	Saponification value	1 mark
	It is the no. of milligrams of KOH required to saponify one gram of an oil or	each
	fat.	
	Iodine value	
	Iodine value is the no. Of grams of iodine absorbed by 100 grams of oil or fat	
	for its complete saturation.	
iv)	Various Methods for phenol manufacturing	¹∕₂ mark
	1. Cumene peroxidation – hydrolysis	each
	2. Toluene two – stage oxidation.	for any

	Subject code : 17427	Page 3 of 22
	3. Rasching : vapour phase hydrochlorination & hydrolysis.	four
	4. Chlorobenzene - caustic hydrolysis.	
	5. Benzene sulfonate – caustic fusion.	
	6. Benzene – direct oxidation.	
v)	Uses of :	¹∕₂ mark
	Polyester: Textile, fishing nets, filter cloth. Conveyor belt	for 2
	Poly vinyl chloride: Pipes, raincoats, cables, vinyl flooring	uses of
		each
vi)	Constituents of paint	¹∕₂ mark
	Pigments	each.
	Drying oil	
	Thinners or solvent	
	Plasticizer	
vii)	Vinegar is a liquid consisting of about 5–20% acetic acid (CH ₃ COOH), water,	1
	and other trace chemicals, which may include flavorings.	
	It is used as a cooking ingredient, or in pickling. It is also used for medicinal	
	purpose, antimicrobial, cleansing agent.	1
1b	Attempt any two	8
i)	Alcohol from molasses	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Subject code : 17427	Page 5 of 2 2
iii)	Polymer: A substance which has a molecular structure built up chiefly or	1
	completely from a large number of similar units bonded together, e.g. many	
	synthetic organic materials used as plastics and resins.	
	Polymerization is the process of connecting these monomers together and	
	creating large macromolecules of different sizes and shapes. Polymerization is	
	similar to constructing a large building out of the same type of Lego blocks.	
	The blocks can be connected in various ways to create a larger, more	1
	intricately shaped structure than the original Lego block on its own.	
	The two major types of polymerization are addition polymerization and	
	condensation polymerization.	
	Addition Polymerization	
	Polymerization that occurs through the coupling of monomers using their	
	multiple bonds is called addition polymerization. The simplest example	
	involves the formation of polyethylene from ethylene molecules. In this	1
	reaction, the double bond in each ethylene molecule opens up, and two of the	
	electrons originally in this bond are used to form new carbon-carbon single	
	bonds with two other ethylene molecules.	
	Condensation Polymerization and Hydrolysis	
	The chemical mechanism that cells use to make and break polymers are	
	basically the same in all cases. Monomers are connected by a reaction in which	
	two molecules are covalently bonded to each other through loss of a water	1
	molecule; this is called a condensation polymerization because the lost	
	molecule is water. When a bond forms between two monomers, each monomer	
	contributes part of the water molecule that is lost; one molecule provides a	
	hydroxyl group, while the other provides a hydrogen. To make a polymer, this	
	reaction is repeated as monomers are added to the chain one by one.	

	Subject code : 17427	Page 6 of 22
2	Attempt any four	16
a)	Manufacturing process of acetic acid from acetaldehyde	2
	The continuous oxidation of CH ₃ CHO in liq. phase is carried out by using air	
	or O ₂ in presence of manganous acetate. The reaction mix cantaining	
	CH3CHO diluted with crude acid & manganous acetate solution is circulated	
	upward through oxidation tower. Reaction condition when air is used 55°C-	
	$65^{\circ}\!\mathrm{C}$ & 5 atm. Press and when O_2 used then temp 700c-800c and press	
	sufficient to keep the acetaldehyde in liq.state. The reaction mix is drawn off	
	from top of oxidation tower and distilled continuously in three distillation	
	columns. The crude acetic acid is fed to the top of distillation column and	
	other volatile components are withdrawn as overhead and residue containing	
	manganous acetate is removed at the bottom.	
	Reaction	
	$CH_3CHO + \frac{1}{2}O2 = CH_3COOH$	
	CH ₃ CHO storage COOLET H ₂ O COOLET H ₂ O CH ₃ CHO CH ₃ CHO CH ₃ CHO CH ₃ CHO CH ₃ CHO COOLET COOLET COOLET COOLET CH ₃ CHO CH ₃ CHO CH ₃ CHO COOLET COOLET COOLET CH ₃ CHO CH ₃ CHO CH ₃ CHO COOLET COOLET COOLET CH ₃ CHO CH ₃ CHO CH ₃ CHO COOLET COOLET COOLET CH ₃ CHO CH ₃ CHO CHO COOLET COOLET COOLET CH ₃ CHO CH ₃ CHO COOLET COOLET COOLET CH ₃ CHO CHO COOLET COOLET COOLET COOLET CH ₃ CHO COOLET COOLET CH ₃ CHO CHO COOLET COOLET COOLET CHO CHO CHO CHO COOLET COOLET COOLET CHO CHO CHO COOLET COOLET CHO CHO CHO COOLET COOLET COOLET COOLET CHO CHO CHO CHO COOLET COOLET CHO CHO CHO COOLET CHO CHO CHO COOLET CHO CHO CHO CHO CHO COOLET COOLET CHO CHO CHO CHO CHO COOLET COOLET CHO CHO CHO CHO CHO CHO CHO CHO CHO CHO	2

	Subject code : 17427	Page 7 of 22
b)	Types of plastic	
	Thermoplastics which are softened by heat and can be moulded. (Injection	
	moulded, blow moulded or vacuum formed). Good examples are acrylic,	2
	polypropylene, polystyrene, polythene and PVC.	
	Thermosets which are formed by ha heat process but are then set (like	2
	concrete) and cannot change shape by reheating. Good examples are melamine	
	(kitchen worktops), Bakelite (black saucepan handles), polyester and epoxy	
	resins.	
2)	Phenol from Cumene	4
	Alkali	
d)	Types of Papers	1 mark
	Printing Paper:- To use in office printing ,Xeroxing	each
	Wrapping Paper:- To make bags, cartoon wrapping	for any
	Book paper:- To make text books, handbooks	4
	Tissue Paper:- to make cigarette, toilet paper, napkin papers	

		Subject code :	17427		Page 8 of 2
	Groundwood printing paper:- To m Paperboard:- boxes_cartoons	ake catalogue, newsprint	t, poster		
e)	Difference between sulphate and sulphite process			1 mark	
,	Sulphate Process	Sulphite Process			for
	This process is alkaline in	This process is acidic	in nature		each
	nature due to use of caustic and	due presence of sulfur of	dioxide.		point in
	sodium carbonate				both
	Cooking chemicals are	Sulfur dioxide is recove	ered.		process
	recovered from black liquor				es. (any
	Pulp produced by the kraft	Acidic sulfite processe	s degrade		four)
	process is stronger than that	cellulose more than	the kraft		
	made by other pulping processes	process, which leads t	o weaker		
		fibers.			
	Fiber yield is less.	Fiber yield is more.			
	Comparatively difficult to	Can be bleached easily.			
	bleach the pulp.				
f)	Cleansing action of soap	I			
	The dirt on skin or cloth sticks du	e to greasy matter. When	n rubbed wit	th soap	3
	solution, it is easily washed away	. Soap molecule has a	polar end (-COO-	
	Na+) and a non polar end (a long c	arbon chain of 12 to 18	carbons). Th	e polar	
	end is water soluble while	the non polar end	is oil s	oluble.	
	Normally oil droplets in contact w	ith water tend to coalese	ce to form o	il layer	
	and aqueous layer. The non polar	ends of soap molecules	dissolve in	the oil	
	droplet leaving the carboxyl ate e	ends projecting into the	surrounding	water.	
	Due to the presence of negatively	charged carboxylic grou	ups, each of	the oil	
	droplets surrounded by an ionic at	mosphere. Oil droplets d	lo not coales	sce due	

	7 Page 9 of 2 2
to the repulsion between similar charges thus stable emulsion of o formed. In this way soap cleans by emulsifying the fat or greas dirt.	bil in water is se containing
Water Ionic end [polar and hydrophilic] Hydro carbon chain [non-polar and hydrophobic]	1
Attempt any four	16
 Hot Process : Glycerides plus catalyst are added at the bottom of the hydrolysis high pressure water at 230-250oC is passed counter currently to the hydrolysis 	tower where he glycerides.

		Subject code : 17427	Page 1	13 of
	$n \begin{bmatrix} H & CI \\ C = C \\ H & H \end{bmatrix}$	$\left] \xrightarrow{H \ Cl}_{f^{C} \ C} \xrightarrow{h \ H}_{h \ H} \right]$		
1	In emulsion polymerisation, a typ	bical formulation is100 parts of wate	r, 100	
	parts of vinyl monomer,1 part of catalyst per sulfate and 1.5 parts of detergent			
	emulsifier. This is fed to a pressure reactor, either cont. or batch operating at		ting at	
	50 deg. C for periods as long as 72	2 hrs. The micellular polymer particle	es can 2	
	be further stabilized by addition of	more emulsifying agent and solid as	vinyl	
	latex. For solid polymer, mixture ac	cid coagulated and dried or spray dried	1.	
4	Attempt any four		10	6
a)	Difference between varnish and lacquer		1 ma	ark
	Varnish	Lacquer	eac	ch
	Varnish is a homogenous	Lacquers are dispersion of	for a	any
	colloidal dispersion solution of	cellulose or other cellulose	tw	0
	resin in oils or thinner or both.	derivatives, resins and		
		plasticizers in solvents		
	Solvent used-Oil	plasticizers in solvents Solvent used – Ether, alcohol,		
	Solvent used-Oil	plasticizers in solvents Solvent used – Ether, alcohol, ketones		
	Solvent used-Oil Manufacturing- Cooking	plasticizers in solvents Solvent used – Ether, alcohol, ketones Manufacturing - Mixing		
	Solvent used-Oil Manufacturing- Cooking Mode of drying – Oxidation or	plasticizers in solvents Solvent used – Ether, alcohol, ketones Manufacturing - Mixing Mode of drying - Evaporation		
	Solvent used-Oil Manufacturing- Cooking Mode of drying – Oxidation or polymerisation	plasticizers in solvents Solvent used – Ether, alcohol, ketones Manufacturing - Mixing Mode of drying - Evaporation		
b)	Solvent used-OilManufacturing- CookingMode of drying – Oxidation orpolymerisationHydrogenation of Oil	plasticizers in solvents Solvent used – Ether, alcohol, ketones Manufacturing - Mixing Mode of drying - Evaporation		
b)	Solvent used-Oil Manufacturing- Cooking Mode of drying – Oxidation or polymerisation Hydrogenation of Oil The dry pure oil and nickel catalys	plasticizers in solventsSolvent used – Ether, alcohol, ketonesManufacturing - MixingMode of drying - Evaporationst is taken in an iron cylinder. The cy	linder 4	
b)	Solvent used-Oil Manufacturing- Cooking Mode of drying – Oxidation or polymerisation Hydrogenation of Oil The dry pure oil and nickel catalys has two inlets & outlets. One inlet	plasticizers in solventsSolvent used – Ether, alcohol, ketonesManufacturing - MixingMode of drying - Evaporationst is taken in an iron cylinder. The cy et is used for the introduction of oil	linder 4 & the	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified) Winter-16 EXAMINATION

Model Answer

	Subject code : 17427	Page 14 of 2 2
	upper outlet, while lower outlet is used to take the hydrogenated oil. The	
	cylinder is provided with stirrer inside it. The temp. is regulated	
	between1400C-180oC. From the second inlet, pure hydrogen gas is well mixed	
	with the oil. In the cylinder oil &dry hydrogen gas are well mixed with	
	mechanical stirrer.	
	After certain time a sample of hydrogenated oil is taken through outlet is	
	situated at the bottom of the cylinder. The iodine value of the hydrogenated oil	
	is determined. If it is 60, the process of hydrogenation is stopped. And all the	
	hydrogenated oil is taken out It is passed through cooler then filter pressed to	
	remove nickel particles.	
c)	1) Decorative and building paints Application- Flat wall paint, interior,	2
	Floor paints, heat and fire resisting	
	2) Industrial and marine paints Application- ship paints, anti-fouling	
	paints, urethane oils	2
d)	Saponification value of oil: It is the number of milligrams of KOH required to	2
	saponify one gram of oil.	
	Acid Value: The acid number is defined as the number of milligram of KOH	2
	required to neutralize one gram of oil or fat.	
e)	Phenol production from toluene	
	(a) Oxidation to benzoic acid :	
		2
	CH ₃ + 1-1/2O ₂ + 1-1/2O ₂ Cobait naphthenate Benzoic acid	

	Subject code : 17427	Page 15 of 22
	(b) Oxidation of benzoic acid to phenol :	
	+ 1/2O ₂ + 1/2O ₂ Cupric benzoate C ₀ H ₅ OH + CO ₂	2
f)	Thermocol	4
	First, styrene is made by combining ethylene and benzene. Next, the styrene is	
	subjected to suspension polymerization and treated with a polymerization	
	initiator, which together convert it into polystyrene. Once a polymer chain of	
	the desired length has formed, technicians stop the reaction with terminating	
	agents. The resulting polystyrene beads are then cleaned, and anomalous beads	
	filtered out. To make thermocol, workers then melt, add a blowing agent to,	
	and extrude the beads. To produce smooth-skinned thermocol, they pre-expand	
	the beads, dramatically reducing their density. Next they heat and expand them	
	before allowing them to sit for 24 hours so that they can cool and harden. The	
	beads are then fed into a mold of the desired shape.	
5	Attempt any two	16
a)	Raw materials for butanol	
	Propylene, Hydrogen, Synthesis gas	1
	Reaction	
	(a) Aldehyde step $C_{3}H_{6} + CO + H_{2} \xrightarrow{\sim} (CH_{3} \cdot CH_{2} \cdot CH_{0}) \cdot CH_{0}$	1
	(b) Alcohol step $C_3H_7CHO + H_2 \xrightarrow{\text{Ni catalyst}} C_3H_7CH_2OH$ 150°C 100 atms.	

	Subject code : 17427	Page 18 of 22
	pressure into 24 meter high spray tower, counter to hot air from furnace. Dried	
	granules are transferred to an upper story again by an air lift which cools them	
	from 115°C and stabilizes the granules. The granules are separated in cyclone	
	separator, screened, perfumed and packed.	
c)	Phenol from chlorobenzene-Caustic process	
	Dry benzene and catalyst of iron turning are charged continuously into a	
	chlorinator. The partially chlorinated mixture boils up into a fractionating	
	column. Benzene is fractionated from the top and returns as cycle recycle	
	while mono chloro benzene is withdrawn near the bottom plate of the column.	
	Chlorobenzene and dilute caustic soda (10% solution) are mixed in a pump in	
	a mole ratio of 1:1.25. Diphenyl oxide is added to repress the formation of	
	more diphenyl oxide and mixture is pumped through a preheater, then to multi	
	tube reactor where causticisation occurs at 425°C and 350 atm. Residence time	2
	is around 15 minutes. Heat is removed from reactor reflux by exchange in the	
	feed pre heater. The cooled hydrozylate is acidified in neutralizer to liberate	
	phenol and sodium chloride which must be separated by distillation.	
	Reaction	
	(a) Chlorination : $ \begin{array}{c} $	2

Winter-16 EXAMINATION <u>Model Answer</u>

_

		Subject code :	17427	Page 20 of 2 2
b)	Product	ion of paper from pulp		
	Convers	ion of fibre suspension into paper sheet incorpor	rates three prin	ncipal
	steps.			
	i)	Forming wet-web :		4
		A wet sheet is formed by running 99.5% wate	r-fibre slurry e	evenly
		into a moving endless belt of wire cloth at spee	ed of 50 m/min	for a
		fine paper to 500 m/min for newsprint. Wate	er drain by gra	vity,
		apart is next removed by a pressure roll and t	then by suction	n roll.
		The screen also has a side wise shaking me	otion to give	better
		interlocking of fibre on the mat. The water coll	lected in this se	ection
		of machine is called white water and is reused	to obtain maxi	imum
		recovery of fibre.		
	ii)	Pressing the wet sheet :		
		The wet paper wheet containing about 80% was	ter is fed via fe	lt roll
		to the press section where water is removed	by mild pressu	ure to
		reduce content to 60-65% water. Bond or water	er mark, if need	ded is
		formed on sheet during pressing.		
	iii)	Drying of sheet :		
		The sheet from the press section has sufficient	strength to can	rry its
		own weight as it passed through smoothing ro	olls, then a ser	ies of
		steam heated metal cylinders where heat	and moisture	e are
		transferred to a felting or canvas belt running	on top of the p	paper.
		As the sheet leaves the east drying roll with 5	-6% water, it p	passes
		through final series of pressure or calendaring	g rolls to prod	luce a
		smooth well-finished paper. It is wound	on large roll	and
		transferred to finishing department where it ma	y be cut, coate	and and

