

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operation

Subject code: 17426

page **1** of **26**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

Model Answer

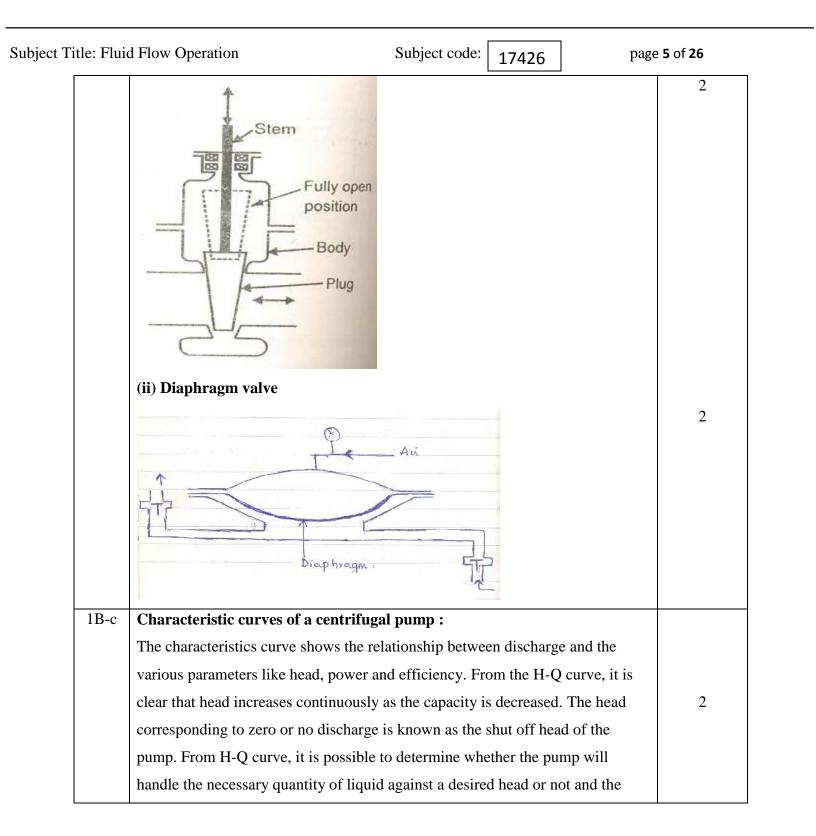
Subject Title: Fluid Flow Operation

Subject code: 17426

page **2** of **26**

Q No.	An	Answer	
1A	Attempt any SIX of the following		
1A-a	Newton's law of viscosity		2
	Newton law of viscosity states that shea	ar stress is proportional to shear rate and	
	the proportionality constant is the visco	sity of the fluid	
	$\frac{F}{A} =$ Where F / A is the shear stress τ	$\mu \frac{dv}{dx}$	
	$\frac{dv}{dx}$ is the shear rate or velocity gradie	nt.	
	$\mu = $ viscosity.		
1A-b	Difference between ideal fluid and ac	tual fluid (four points):	¹∕₂ mark
	Ideal fluid	Actual fluid	each
	1. Offers no resistance to flow/	1. Offers resistance to flow/	
	deformation ie no viscosity	deformation ie it has viscosity	
	2. Frictionless	2. Exhibits friction	
	3. Incompressible	3. Compressible or incompressible	
	4. Imaginary fluid	4. Real fluid	
1A-c	Significance of Reynold's Number		2
	t is a dimension less number which indi	cates the nature of flow.	
	If , $N_{Re} < 2100$ flow is laminar		
	$N_{Re} < 4000$ flow is turbulent		
	$2100 < N_{Re} < 4100 -$ flow is transition		
	It is the ratio of inertial force to viscous force.		
1A-d	Friction loss due to sudden contraction	on:	1
	The frictional loss due to sudden contraction is proportional to velocity head of		
	the fluid in the small diameter pipe.		

bject Title: Flui	d Flow Operation	Subject code:	17426	page	3 of 26
	$h_{fc} = K_{c} \frac{V_{2^{2}}}{2g}$ $K_{c} = 0.4 \left(1 - \frac{A_{2}}{A_{1}}\right)$				
	Friction loss due to sudden expan	ision			
	Friction loss due to sudden expan	nsion (h _{fe}) is contr	action is p	roportional to	
	velocity head of the fluid in the small	all diameter pipe.			1
	$(\mathbf{h}_{\rm fe}) = \frac{u_1^2}{2} K e$				
	And $K_e = [1 - \frac{A_1}{A_2}]^2$				
1А-е	Equivalent length of pipe fittings				2
	Frictional loss in fittings and valves	s is expressed as equ	uivalent len	gth of fittings.	
	The equivalent length of fitting is	that length of straig	ght pipe of	same nominal	
	size as that of fitting which would	cause the same frac	tional loss	as that caused	
	by the fitting.				
1A-f	Reason for priming in centrifuga	l pump:			2
	If the pump is initially full of air, ai	r binding occurs an	d the pump	is not	
	capable to deliver the liquid. To ave	oid air binding, the	centrifugal	pump needs	
	priming.				
1A-g	Application of jet ejectors (4 point	nts):			¹∕₂ mark
	1. Used for handling corrosive ga	ses that would dan	nage mecha	anical vacuum	each
	pump.				
	2. It is used for handling large volu	me of vapour at low	pressure.		
	3.Crude oil distillation				
	4. Petrochemical processes				
	5. Edible oil deodorization				
	6. Organic motivated systems				
	7. Fertilizer plant operations				



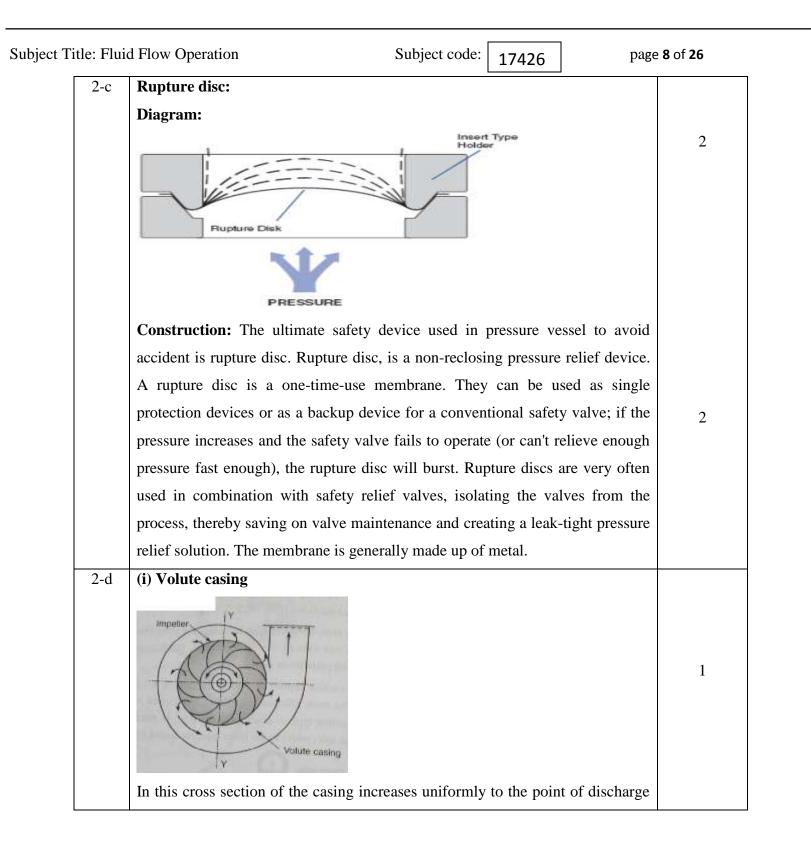
d Flow Operation Subject code: 17426 page	4 of 26
8. Thermal compressors	
Attempt any TWO of the following	8
Derivation of equation of continuity:	
Mass balance states that for a steady state flow system, the rate of mass entering	
the flow system is equal to that leaving the system provided accumulation is	
either constant or nil.	
A. V. A.	
Let v_1 , ρ_1 & A_1 be the avg. velocity, density & area at entrance of tube & v_2 ,	
ρ_2 & A ₂ be the corresponding quantities at the exit of tube.	2
Let \vec{m} be the mass flow rate	
Rate of mass entering the flow system = $v_1 \rho_1 A_1$	
Rate of mass leaving the flow system = $v_2 \rho_2 A_2$	
Under steady flow conditions	
$\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$	-
$\dot{m} = \rho v A = constant$ Equation of continuity	2
Sketches of (i) Gate valve	
	8. Thermal compressors Attempt any TWO of the following Derivation of equation of continuity: Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil. \overbrace{v} Let v_1 , ρ_1 & A_1 be the avg. velocity, density& area at entrance of tube & v_2 , ρ_2 & A_2 be the corresponding quantities at the exit of tube. Let m be the mass flow rate Rate of mass entering the flow system = $v_1 \rho_1 A_1$ Rate of mass leaving the flow system = $v_2 \rho_2 A_2$ Under steady flow conditions $\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$ $\dot{m} = \rho v A = constant$ Equation of continuity

(ISO/IEC - 27001 - 2005 Certified)

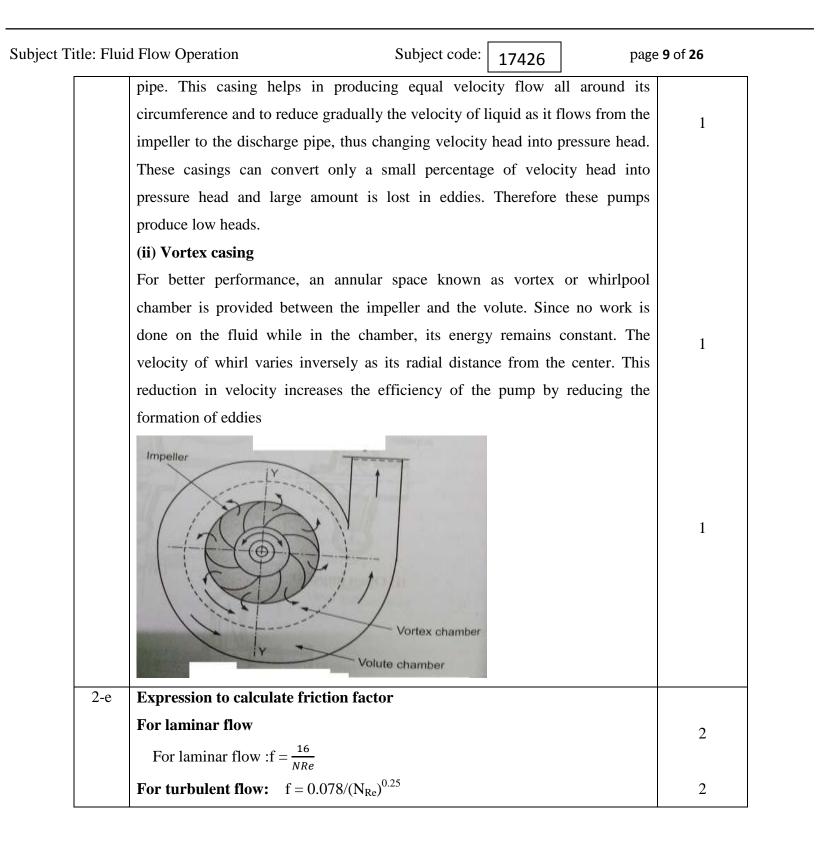
SUMMER-18 EXAMINATION

bject Title: Flui	d Flow Operation Subject code: 17426 page	6 of 26
	effect of increase or decrease of head. The η -Q curve shows the relationship between pump efficiency and capacity. It is clear from η -Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The duty point ie the point where the H-Q curve cuts the ordinate through the point of maximum efficiency shows the optimum operating conditions. The P _B - Q curve gives us an idea regarding the size of motor required to operate the pump at the required conditions and whether or not motor will be overloaded under any other operating conditions.	2
2	Attempt any TWO of the following	16
2-a	Density of flowing fluid = $1.6*1000=1600 \text{ kg} / \text{m}^3$ Density of manometric fluid = $13.6*1000=13600 \text{ kg} / \text{m}^3$ Pressure along the horizontal plane (common surface) is same.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


SUMMER-18 EXAMINATION

Subject Title: Flui	d Flow Operation	Subject code:	17426	page 7 of 26
	Pa Pa Common surface			1
	In the left limb, pressure above the con Pa +pgh = Pa + $1600*9.81*(0.15-0.030)$ In the right limb, pressure above the co Pgh = $13600 * 9.81 * 0.15 = 20012.4$ Equating (i) and (ii)	D = Pa + 1883.2	52(i)	2
	Pa + 1883.52 = 20012.4 Pa = 18128.88 N / m² Pressure in the pipe = 18128.88 N / n	1 ²		1
2-b	Hagen-Poiseuille's equation $\Delta P =$	$\frac{32 L \mu v}{D^2}$		2
	Where ΔP – Pressure drop across le μ – Viscosity of fluid (Pa.s)	ngth L (Pa)		
	v- Velocity of fluid (m / s) D- Diameter of pipe (m)	L – Length of	f pipe (m)	2



(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Difference between venturimeter an	d orificemeter	1 mark
	Venturimeter	orificemeter	each for any 4
1. Construction is complex		1. Simple	points
	2. Costly	2. Cheap	
	3. More space	3. Less space	
	4. Coefficient of discharge $Cv > 0.9$	4. Coefficient of discharge Co is 0.6	
	5. Pressure loss is less	5. Pressure loss is more	
	6. Pressure recovery is more	6. Pressure recovery is less	
	7. can be used when only small	7. can be used when only small	
	pressure head is available	pressure head is available	
	8. Change of area is gradual.	8. Area changes suddenly	
3	Attempt any FOUR of the following		16
3-a	$\Delta P = h (\rho_m - \rho)g(\text{Derivation})$		
	Process fluid R	anometric fluid.	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Fluid Flow Operation	Subject code:	17426	page	11 of 26
$P_2 = Pressure acting due to pro-$	cess at point 2			
(if right leg is open to atmospl	here, P ₅ is atmospheric p	ressure)		
ρ_m - density of manometric flux	id			
ρ - Density of flowing fluid				
The differential pressure actin	ng across the manomet	er can be d	letermined by	
using principle of hydrostatic	equilibrium.			
As per this principle, pressu	re exerted by height of	of liquid co	olumn can be	
expressed as $P = \rho g h$	(1)			
Where h is the height of liquid	l column (m)			
By applying this principle, pre	essure acting at point 1 c	an be expre	ssed as	
$\mathbf{P} = \mathbf{P}_1 \dots \dots$	(2)			
At point 2 in left limb				
$P_2 = P_1 + (x + \Delta h) \rho g \dots \dots (3)$)			
By using the principle that f	luid exert same pressur	re at same	level, we can	
write $P_2 = P_3 \dots (4)$				
$P_3 = P_2 = P_1 + (x + \Delta h) \rho g \dots$	(5)			
Similarly pressure exerted at p	point 4 will be less than	P ₃ by magn	itude equal to	
pressure exerted by mercury c	olumn of height Δh			
$\mathbf{P}_4 = \mathbf{P}_{3}\text{-} \Delta \mathbf{h} \rho_{\mathrm{m}} \mathbf{g} \dots \dots (6)$				3
Using similar procedure, we ca	an write P ₅ as			
$P_5 = P_4 - x \rho g \dots (7)$				
Substituting the value of P_3 and	d P_4 from equation (5) as	nd (6) ,		
$P_5 = P_3 - \Delta h \rho_m g - x \rho g = P_1 - P_2 - P_$	+ $(x+\Delta h) \rho g - \Delta h \rho_m g - x$	κρg		
P_1 is upstream pressure and P_5	5 is downstream pressure	e		
$P_1 > P_5$				
Simplifying the above equation	h, we get $P_1 - P_5 = \Delta h$ (ρm- ρ)g		
$\Delta \mathbf{P} = \Delta \mathbf{h} \ (\rho \mathbf{m} \mathbf{-} \ \rho) \mathbf{g}$				

Subject Title: Flui	d Flow Operation Subject code: 17426	6 page 12 of 26	
3-b	Diagram of fittings with their application		7
	(i) Plug		
		1	
	Plug is used for termination of pipeline.	1	
	(ii) Cross		
	Handred Handre	1	
	It is used to join 4 pipes of same diameter connected to form 4	pipelines at 90° 1	
	to each other. In other word, cross connects 4 pipes of same dia	ameter.	
3-с	Working of double acting reciprocating pump :	One mark	1
	The working could be explained as follows.	for each	
	(i) Before starting pump, discharge valve is opened. It is impo	ortant as failure to step.	
	do so may result in unsafe condition leading to pressure rise.		

et Title: Flu	id Flow Operation	Subject code	: 17426 p	age 13 of 26
	(ii) Double acting has fluid in contact on both sides of the piston. Due to two			
	suction and two delivery	valve, when left chamber of	f pump is in suction strok	e,
	at the same time discharg	e of fluid takes place from t	he right chamber.	
	(iii) During operation, or	ne chamber gets filled and	second gets emptied ar	nd
	vice versa.			
	(iv) Fixed rpm of crank	and single cylinder gives f	ixed volume of discharg	e.
	The discharge can be var	ied either by changing the	rpm or length of the strol	ke
	or by using either duplex	or triplex pump.		
3-d	Comparison between co	mpressor and fan on the b	asis of following points	1 mark
	Criteria	Compressor	Fan	each
	Speed	High speed machines	Low speed machines	
	Pressure developed	Can develop pressure	Pressure developed is	8
		up to several hundred	low up to 0.04	1
		atmospheres.	atmosphere.	
	Flow rate	Flow rate of gas	Fan can handle large	2
		handled by compressor	volume of fluid	,
		depends upon pressure	however due to low	7
		developed and	pressure developed; the	e
		requirement; however	capacity is limited	1
		compressor can handle	compared to	
		very large volume of	compressor.	
		fluid.		
	Efficiency	Around 80 to 85% for	Around 70%	
		reciprocating		
		compressors and up to		
		90% for centrifugal		

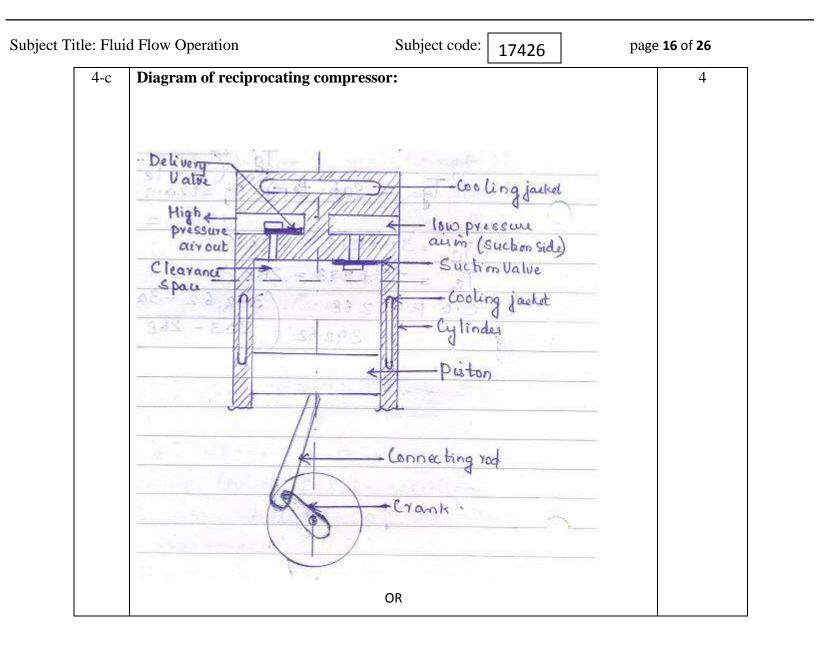
tle: Flui	d Flow Operation Subject code: 17426 pa	ige 14 of 2
	compressors.	
3-е	Newtonion fluids:	
	Fluids which obey Newton's law of viscosity are known as Newtonion fluids.	1
	Generally low viscosity fluids exhibit Newtonion flow behavior.	
	Eg : Gases, water and low viscosity liquids.]
	Non -Newtonion fluids:	
	Fluids which does not obey Newton's law of viscosity are known as Non -	
	Newtonion fluids.	
	Eg Sewage and sludge, rubber latex, polymer solutions, starch solutions,	
	toothpaste, tomato ketch up.	
3-f	NPSH	
	Net Positive suction Head (NPSH) is the pressure required at the pump inlet i	n
	excess of the vapour pressure of the liquid. In order to avoid cavitation i	n ž
	pump, NPSH provides the guideline about positive pressure to be maintained.	
	For small pumps, the required value is around 2 to 3 m; however it can var	y
	with impeller speed, discharge and liquid temperature.	
	Equation:	
	The available NPSH is calculated by following formula	
	$NPSH = (Pa - Pv)/\rho g - h^{1}fs - Za$	
	Where Pa - Pressure acting on liquid surface in reservoir(N/m^2)	
	ρ - Density of liquid (kg / m ³)	
	g- Acceleration due to gravity (m/s^2)	
	Pv- Vapour pressure at the given temperature (N/m^2)	
	$h^{1}fs = head loss due to friction in suction pipe (m).$	
	Za - height difference between level of liquid in the reservoir and pump inlet	
	(m).	
4	Attempt any FOUR of the following	1

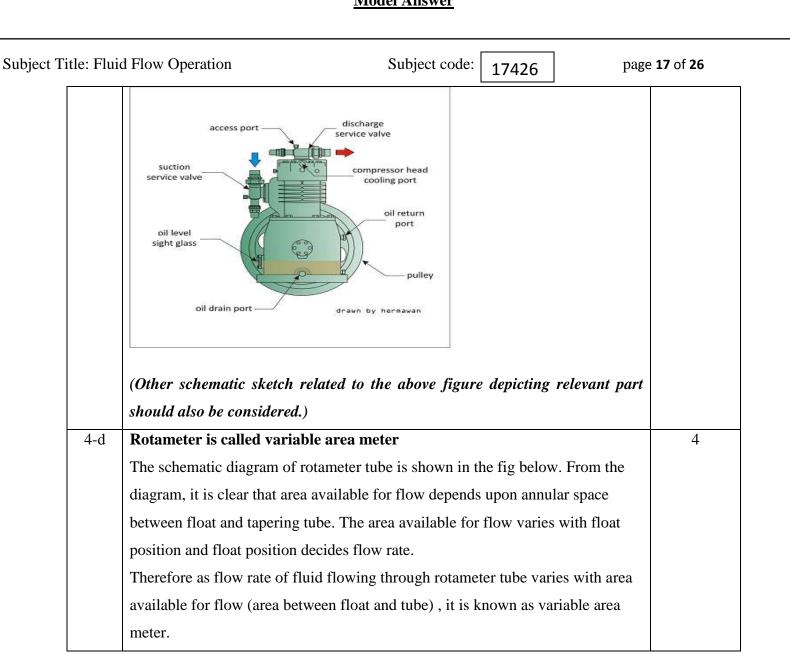
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Fluid Flow Operation

Subject code: 17426


page **15** of **26**


Sr.No.	Pipes	Tubes	each for
1)	Thick walled	Thin walled.	any 4 points
2)	Available in standard length of	Available in coils several	
	about 6m.	meter long.	
3)	Pipes materials : ferrous	Tubes made from non-	
		ferrous materials like brass,	
		copper, aluminum	
4)	Pipe inner surface is usually	Tube inner surface is very	
	rough	smooth	
5)	Pipe sections are joined by	Tube pieces are joined by	
	screwing ,flanging or welding	brazing ,soldering or flared	
		fitting	
6)	Pipe sizes are decided by	Tube sizes are expressed by	
	schedule number	BWG (Birmingham Wire	
		Gauge)	
D = 25n	mm = 0.025m		
$\mu = 0.00$	08 Pa.s		
ρ = 100	kg / m^3		
At critic	al velocity, transition from laminar	to turbulent flow starts and value	of
N_{Re} is	aken as 2100.		
	$N_{Re} = \frac{Du}{\mu}$	ι <u>-</u> ι	1
2100 =	$(0.025 * u_c * 1000) / 0.0008$		2
$u_c = 0.$	0672 m / s		
Critical	velocity = 0.0672 m / s		1

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

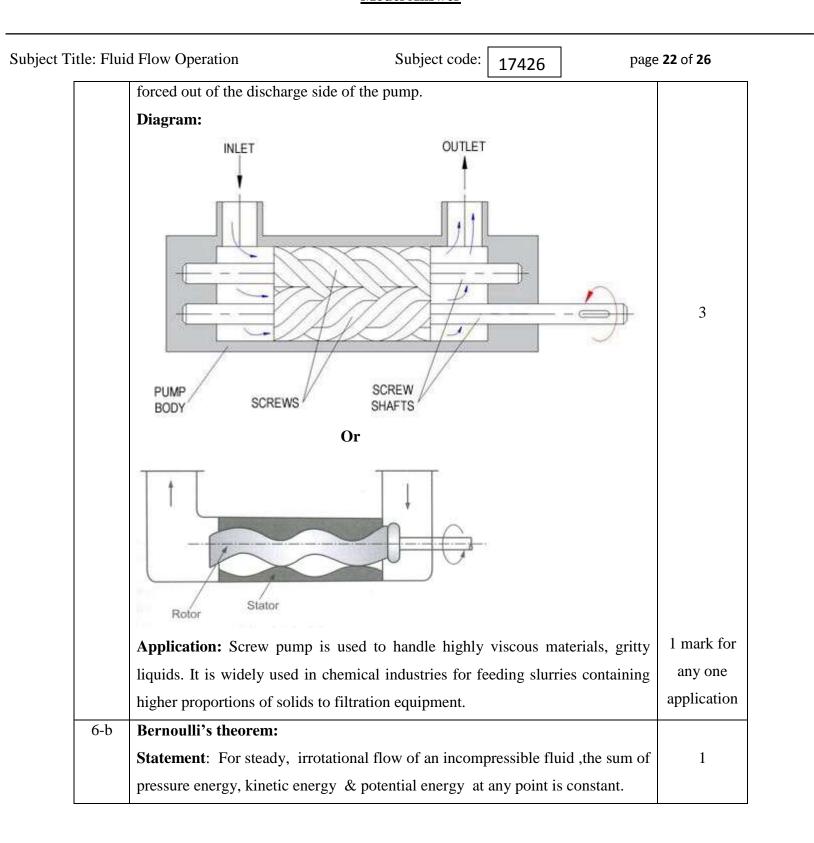
Subject Title: Flu	ject Title: Fluid Flow Operation		26 pa	age 18 of 26
	apering. glass tube		fort flow float position)	
4-е	Difference between form friction and	skin friction:		2 marks
	Form friction	Skin fri	iction	each
	1. When boundary layer separates	1. The friction due to	o unseparated	
	and form eddies or wake, then the	boundary layer is kn	own as skin	
	associated friction is known as form	friction.		
	friction.			
	2. In turbulent flow, loss due to	2. In laminar flow or	r viscous flow,	-
	turbulent flow is dominant	loss due to skin frict	ion is dominant	
4-f	Atmospheric pressure:			
	Pressure exerted by 760mm of mercury	column at sea level is	s considered as 1	
	atmosphere. In equation $P = \rho gh$, by sul	bstituting $h=0.76m$, ρ	$= \rho_{Hg}$ and g, we	1
	get value of atmospheric pressure in N	m^2		
	Gauge pressure:			
	Pressure indicated by a pressure gauge	either above or below	atmospheric	
	pressure is considered as gauge pressure	е.		1
	Sketch			

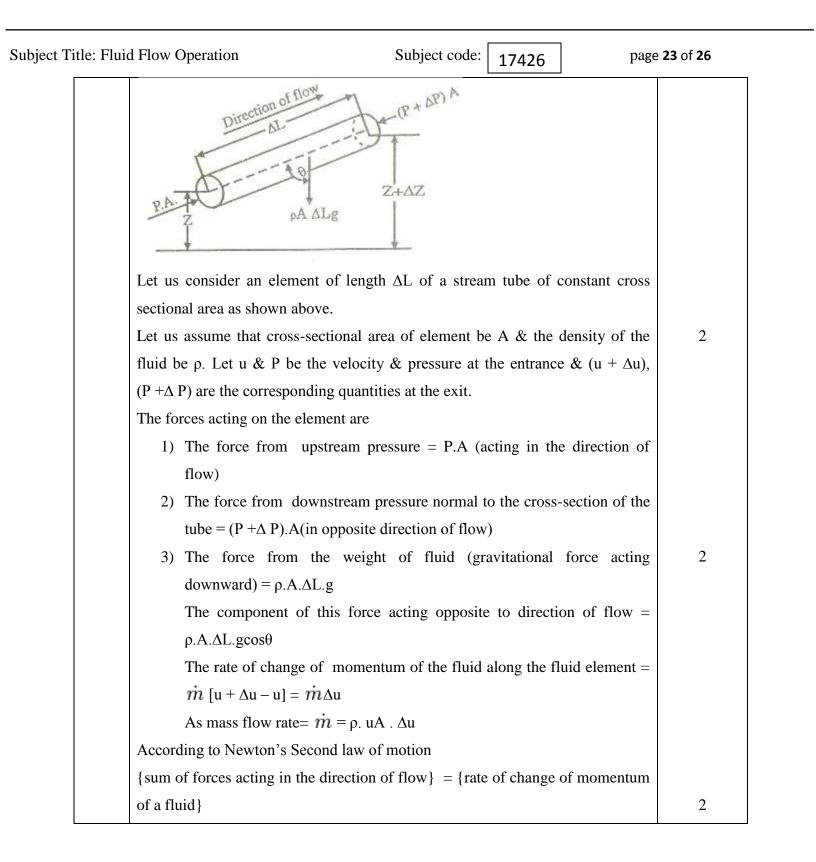
SUMMER-18 EXAMINATION

bubject Title: Flu	bject Title: Fluid Flow Operation		17426	page 19 of 26
		a auge pres	7126 (+ NE)	2
	hauge pro	essure	pressure.	
	(Vacuu		Hosolute Vacuum	
5	Attempt any TWO of the follow	wing		16
	D =25mm = 0.025m Density ρ =1000 kg/m ³ Viscosity μ = 8 * 10 ⁻⁴ Pa.s Mass flow rate \dot{m} = 1kg /s L = 100 m			
	Area A= $\frac{\pi D^2}{4} = \frac{3.14 \times 0.025^2}{4} = 4.906$	$5 * 10^{-4} m^2$		2
	Velocity V = $\frac{\dot{m}}{A\rho}$ = 1/(1000*4. f = 0.0001			2
	$h_{fs} = 4 f I V^2 / 2D = 4*0.0001 *100$ $\Delta P = h_{fs} * \rho = 3.3237*1000 = 332$ Pressure drop = 3.3237 KPa			4
5-b	Data: Q = 12 lit/s D = 3 cm = 0.03 m $\rho = 870 \text{ kg}/\text{m}^3 = 0.87 \text{ kg/lit}$			
	i) Q in m^3/s			

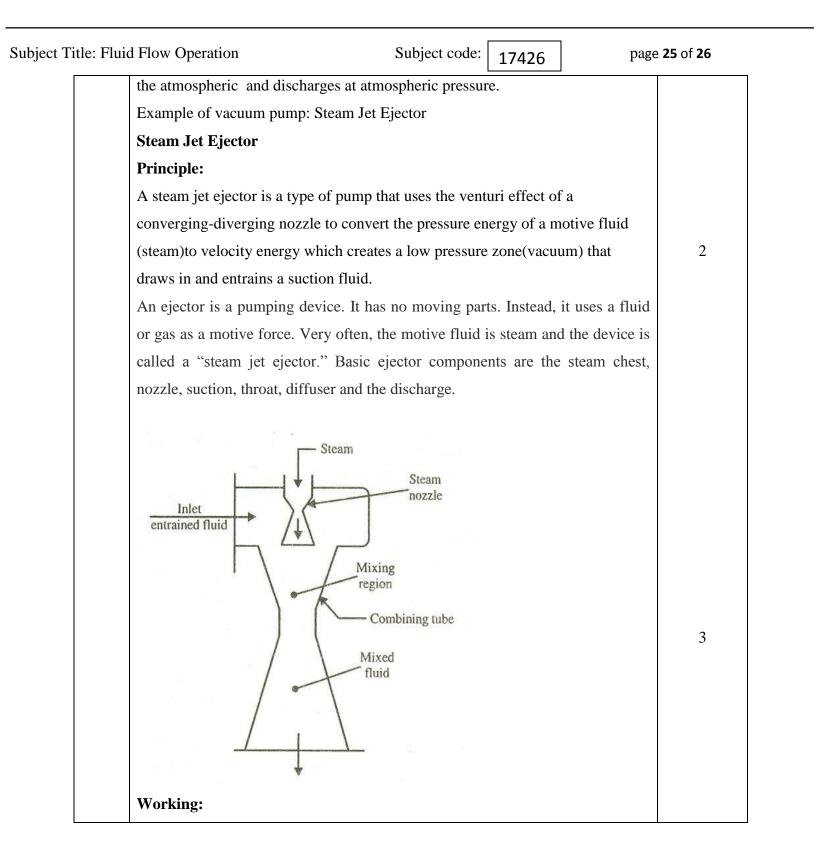
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer


Subject Title: Fluid Flow Operation Subject code: page 20 of 26 17426 $Q = 12 \text{ lit/s} = 12 *10^{-3} \text{ m}^{3}/\text{s}$ 2 (\dot{m}) in kg/s ii) 2 $(\dot{m}) = Q * \rho = 12 * 10^{-3} * 870 = 10.44 \text{ Kg} / \text{S}$ U in m/s iii) Q = u * AArea of pipe = $\pi/4 * D^2 = \pi/4 * (0.03)^2 = 7.065 * 10^{-4} m^2$ 2 $U = 12 X 10^{-3} / 7.065 * 10^{-4} = 16.98 m / S$ G in kg $/m^2$.s iv) G = Mass flow rate / Area of pipe = $10.44 / 7.065 * 10^{-4} =$ 2 14777.07 Kg/m².S **Pitot Tube** 5-c **Diagram:** Pitot tube h 2 **Construction and working:** It consists of glass tube, large enough for capillary effects to be negligible and bent at right angles .The tube is dipped vertically in the flowing stream of fluid with its open end A directed to face the flow & the other open end projecting above the liquid surface. The fluid enter the tube & the level of the fluid in the tube exceeds that of the fluid surface because the end A of the tube is a


ubject Title: Flui	d Flow Operation Subject code: 17426 page	21 of 26		
	stagnation point where the fluid is at rest & the fluid approaching end A			
	divides at this point & passes around the tube. As at stagnation point, the			
	kinetic energy is converted into pressure energy, the fluid in the tube rises			
	above the surrounding fluid surface by a height that corresponds to the velocity	4		
	of fluid approaching the end A of the tube.			
	Hence, the velocity at any point in the flowing stream can be determined by			
	dipping the pitot tube to the required point and measuring the height h of the			
	fluid raised in the tube above the free surface.			
	Considering loss of energy, the above equation is modified to get actual flow			
	velocity as			
	$u = C\sqrt{2gh}$			
	C = Coefficient of pitot tube (C = 0.98)			
	Application:			
	It is used for finding the air speed of an air craft, water speed of a boat, liquid			
	flow in pipes and channels.	2		
6	Attempt any TWO of the following	16		
6-a	Screw pump			
	Construction:			
	It consists of a rotor that rotates in stator made of rubber or other similar			
	Material. The rotor is a true helical metal screw while the stator has a double	2		
	helical thread pitched opposite to the spiral on the rotor. The liquid to be			
	pumped moves continuously towards a discharge through the voids between the			
	rotor and stator.			
	Working:			
	As the rotor rotates, a reduced pressure is created on the inlet side, the liquid is	2		
	forced into the pump, it is trapped between the rotor and stator and finally is			

(ISO/IEC - 27001 - 2005 Certified)



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: | 17426 Subject Title: Fluid Flow Operation page 24 of 26 P.A - $(P + \Delta P)$.A - ρ .A. ΔL .gcos θ = ρ .uA. Δu $-\Delta P.A - \rho.A.\Delta L.gcos\theta = \rho. uA . \Delta u$ $\Delta P.A + \rho.A.\Delta L.gcos\theta + \rho.uA \cdot \Delta u = 0$ Eq.I Dividing each term of eq.I by A. Δ L. ρ we get $\frac{\Delta P}{\rho \Lambda L} + g \cdot \cos\theta + \frac{u \cdot \Delta u}{\Lambda L} = 0$ As $\cos\theta = \frac{\Delta Z}{\Delta L}$, we can write $\frac{1}{\rho}\frac{\Delta P}{\Delta L} + g\frac{\Delta Z}{\Delta L} + u\frac{\Delta u}{\Delta L} = 0$ Eq.II If we express the changes in the pressure, velocity, height etc. in the differential form ,eq .II becomes $\frac{1}{\rho}\frac{dP}{dL} + g \frac{dZ}{dL} + \frac{d\left(\frac{u^2}{2}\right)}{dI}$ Which can be written as $\frac{dP}{\rho} + g \cdot dZ + d\left(\frac{u^2}{2}\right) = 0$ Eq.III Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli Equation. For incompressible fluid, density is independent of pressure & hence ,the integrated form of eq.III is 1 $\frac{P}{\rho} + gZ + \frac{u^2}{2} = constant$ Hence proved that low of conservation of energy is applicable for flowing fluid. The Bernoulli Equation relates the pressure at a point in the fluid to its position & velocity. Vacuum pump: 6-c A vacuum pump is any compressor which takes the suction at a pressure below

Subject Title: Fluid Flow Operation	Subject code: 17426 page 26 of 26	
Steam at about 7 atm is admitted	a converging-diverging nozzle, from which it	
issues at supersonic velocity in	diffuser cone. The air or other gas to be moved is 3	
mixed with the steam in the fir	rt of the diffuser, lowering the velocity to acoustic	
velocity or below. In the dive	s section of the diffuser, the kinetic energy of the	
mixed gas is converted to press	energy so that the mixture can be discharged	
directly to atmosphere.		