

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject Title: Fluid Flow Operations

subject code: 17426

page **1** of **27**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations

subject code: 17426 page **2** of **27**

Q No.	Answer	Marks
1A	Attempt any SIX of the following	12
1A-a	Absolute Viscosity: Absolute viscosity or dynamic Viscosity is the property of	1
	the fluid by virtue of which it offers resistance to the movement of one layer of	
	fluid over an adjacent layer.	
	Kinematic viscosity	
	It is the ratio of viscosity of the fluid to its density.	1
1A-b	NRe = 15000	
	Since NRe is greater than 4000, flow is turbulent	
	For turbulent flow: $f = 0.078/(N_{Re})^{0.25}$	1
	$F=7.048 * 10^{-3}$	1
1A-c	Diagram of pipe fittings	¹∕₂ mark
		each for
		any 4
	Nipple Socket	
	Reducer Plug	

	diaphragm	
1A-f	Laminar flow and turbulent flow:	
	Laminar flow:	
	$\begin{array}{cccc} \rightarrow & & & & & & \\ \rightarrow & \rightarrow & & \rightarrow \\ \rightarrow & \rightarrow & \rightarrow$	1
	In laminar flow, the fluid flows without any lateral mixing. Ie flow is in the	
	form of parallel streams which do not mix with each other.	
	Turbulent flow:	
	20000	1
	It is characterized by eddies and cross currents in random direction. The fluid	
	layers overlap with each and there will be lateral mixing.	
lA-g	Vacuum:	2
	Pressure below atmospheric pressure is known as vacuum.	
1B	Attempt any TWO of the following	8
1B-a	Derivation of equation of continuity:	
	Mass balance states that for a steady state flow system, the rate of mass entering	
	the flow system is equal to that leaving the system provided accumulation is	
	either constant or nil.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject Title: Fluid Flow Operations subject code: 17426 page 6 of 27 Centrifugal pump **Positive displacement** pump 1 mark 1) Mode of delivery Continuous Pulsating each for 2)Priming Not required Required any 4 3)Efficiency More Less points 4) Liquids with solids Cannot handle Can handle suspended 5) Construction Complex Simple 6) Discharge ratio More Less 7) Suitability Higher head but low Smaller head but larger discharge discharge 8) Floor area More Less requirement 9)Wear and tear More Less 10) Maintenance cost More Less 11) Speed Cannot run at higher Higher speed speed Attempt any FOUR of the following 2 16 2-a Well type manometer Vertical tube Scale -Zero line Well-

	itle: Fluid Flow Op	erations	subject code:	17426		page
	rises rapidly with discharge at low discharge rate, reaches a maximum in the					
	region of the rate	d capacity and then falls. T	The duty point	ie the point wh	nere the	
	H-Q curve cuts t	the ordinate through the p	oint of maxim	num efficiency	shows	
	the optimum ope	rating conditions. The P_B -	Q curve gives	s us an idea re	garding	
	the size of motor	r required to operate the p	ump at the re-	quired condition	ons and	
	whether or not me	otor will be overloaded und	der any other o	perating condi	tions.	
2-c	Difference betwe	een Diaphragm valve & B	all valve:			2 marks
						each
		Diaphragm Valve	e B	all Valve		
	1. Pressure	More	less			
	Drop					
	2.Application	Corrosive Liquids	Compl	lete(shut-		
			off)on	/off service		
2-d	Derivation of Ha	agen Poiseuille's Equatior	n :		4	
	As per Newton's law of viscosity $\mu = -\frac{\tau}{\frac{du}{dr}}$ (1)					
	The negative sign in the above equation is due to the fact that in a pipe velocity					
	decreases with increase in radius.					
	Rearranging the eq.1					
	$\frac{du}{dr} = -\frac{\tau}{\mu} \qquad \dots \dots (2)$					
	As the linear relation between shear stress (τ) and radius (r) is $\frac{\tau_w}{\tau_w} = \frac{\tau}{\tau_w}$					
	Therefore	$\tau = \frac{\tau_w}{r_w} \cdot r \qquad \dots$	(3)			

Subject T	Title: Fluid Flow Operations subject code: 17426	page 10 of 27
	ΔL can be replaced as L	
	$\Delta P = \frac{32 L \mu v}{D^2} \qquad \dots \dots (8)$	
	Equation(8) is called as Hagen Poiseuille's equation which is used for	2
	determining viscosity of a fluid by measuring the pressure drop and the	
	volumetric flow rate of a tube of a given length and diameter.	
2-е	Construction of centrifugal pump	4
	Non return Value Value Value Storag Delivery pipe Grost Value Foot Value Foot Value Surp.	

ect Ti	itle: Fluid Flow Operations subject code: 17426	page
	The parts of a centrifugal pump are	
	(i) Impeller: It is the heart of a centrifugal pump. It is mounted on a shaft. The	
	function of impeller is to force the liquid in to a rotary motion so that the liquid	
	leaves the impeller at a higher velocity than at the entrance.	
	(ii) Casing: It is provided for housing the impeller and it has provision for	
	connecting with the delivery and suction pipe lines.	
	(iii) Suction pipe: It is a pipe whose upper end is connected with the pump on	
	suction side and lower end is submerged in the liquid in the sump. The lower	
	end is fitted with a foot valve and strainer.	
	(iv) Delivery pipe: it connects the discharge end of the pump and supply end of	
	the reservoir.	
2-f	Significance of terms used in Bernoulli's equation.	
	$\frac{P}{\rho} + gZ + \frac{u^2}{2} = \text{constant}$	1
	Where $\frac{P}{\rho}$ is the pressure energy in J /kg	
	gZ is the potential energy in J /kg	
	$\frac{u^2}{2}$ is the kinetic energy in J /kg.	
	Pressure energy is the work that must be done in order to introduce the fluid into the system without change in volume.	1
	Potential energy is the work that must be done on the fluid in order to raise it	
	to a certain position from some arbitrarily chosen datum level.	1
	Kinetic energy is the energy of the fluid by virtue of its motion with reference	1
	to some arbitrarily chosen body.	1
3	Attempt any FOUR of the following	16
3-a	Newton's law of viscosity	
	Newton law of viscosity states that shear stress is proportional to shear rate and	

ct Ti	tle: Fluid Flow Operations subject code: 17426	page
	the proportionality constant is the viscosity of the fluid	2
	Mathematical expression is $\frac{F}{A} = \mu \frac{dv}{dx}$	
	Where $\frac{F}{A}$ = Shear stress	
	$\mu = \text{viscosity}$	2
	$\frac{dv}{dx}$ = Shear rate.	
	A fluid, which does not obey Newton's law of viscosity is known as Non-	
	Newtonian Fluid.	
-b	Industrial application of	
	Blower:	¹∕₂ mark
	1. For combustion air supplies	each for
	2. On cooling and drying systems	any 4
	3. For fluid bed aerators	
	4. With air conveyor systems,	
	5. For sewage aeration	
	6. Filter flushing	
	7. for moving gases of all kinds in the petrochemical industries	
	Compressor:	
	1. Aerospace	
	2. Automotive	¹∕₂ mark
	3. Chemical Manufacturing	each for
	4. Electronics	any 4
	5. Food and Beverage	
	6. Glass Manufacturing	
	7. Mining	
	8. Pharmaceuticals	
	9. Plastics	

Subject T	tle: Fluid Flow Operations	subj	ect code:	17426		page	13 of 27
	10. Power Generation						
	11. To power pneumatic	tools like pneumati	ic drills an	d hammers on			
	construction site						
3-c	Rupture disc:						
	Diagram:						
	Rupture Disk		Insert Typ Holder	e		2	
	PRESSU	JRE					
	Working						
	The ultimate safety device u	ised in pressure ves	ssel to avo	id accident is	rupture		
	disc. Rupture disc, is a non-	reclosing pressure r	elief devid	ce. A rupture o	lisc is a		
	one-time-use membrane. The	ey can be used as s	single prot	ection devices	or as a		
	backup device for a convent	ional safety valve; i	if the pres	sure increases	and the		
	safety valve fails to operate	(or can't relieve en	ough pres	sure fast enou	gh), the		
	rupture disc will burst. Rupt	ture discs are very	often used	l in combinati	on with		
	safety relief valves, isolatin	g the valves from	the proces	ss, thereby say	ving on	2	
	valve maintenance and cre	eating a leak-tight	pressure	relief solution	on. The		
	membrane is generally made	up of metal.					
3-d	Differentiate between varia	ble head meter an	d variable	e area meter:		1 mark	
	Vari	iable head meter	Variable a	area meter		each for any 4	
	i. Area of flow Con	istant with flow	Varies with	th flow rate		points	
	rate						
	ii)Pressure drop Var	ies with flow rate	Constant	with flow			

Fluid Flow Operation	s sub	ject code:	17426	page 14
		rate		
iii) Measurement	Cannot give	Can give	volumetric	
of flow rate	volumetric flow rate	flow rate	directly	
	directly			
iv) Cost	Cheap	Costly		
v)Ease of	difficult	easy		
handling				
vi) Requirement	Needs straight pipe	Does not	need.	
of straight pipe	before and after the			
	meter			

Subject Ti	itle: Fluid Flow Operations	subject code:	17426]	page	16 of 27
	Comparing (1) and (2)					
	$NPSH + \frac{P_v}{\rho g} = \frac{P_1'}{\rho g} - Z_1 - h_{fs}$				2	
	NPSH = $\frac{P_1'}{\rho g} - \frac{P_v}{\rho g} - Z_1 - h_{fs}$				2	
	Where,					
	Z_1 = height of pump from the level of I_2	iquid in the tank				
	P'_1 = Pressure at the liquid surface in the	tank.				
	$P_v = Vapour pressure of liquid$					
	h _{fs} =Head loss due to friction on suction	side.				
3-f	Distinguish between Newtonian and r	on-Newtonian fl	uids		2 marks	
	Newtonian fluids	Non-Newtonian	fluids		each for any two	
	1. Fluids which obey Newton's	Fluids which do	not obey New	ton's	points	
	law of viscosity	law of viscosity				
	2. Plot of shear stress vs shear	Plot of shear stre	ess vs shear rate	e or		
	rate or velocity gradient gives	velocity gradient	does not give	a		
	a straight line	straight line				
	3. $\tau = \mu du / dr$	$\tau \# \mu du / dr$				
4	Attempt any FOUR of the following	1			16	
4-a	$\Delta hm = 175^* \ 10^{-3} m of Hg$					
	$\rho m = \rho Hg = 13600 \text{ Kg} / \text{m}^3$					
	$\rho f = \rho \ CCl_4 = 1600 \ Kg \ / \ m^3$					
	$\Delta P = \Delta hm (\rho m - \rho f) g = 175^* 10^{-3} (13600)$	-1600) *9.81 = 20	601 N /m ² .			
4-b	Diagram of rotameter					1

ibject I	itle: Fluid Flow Operations subject code: 17426	page 17 of
	Flow Out -90 -90 -90 -90 -90 -90 -90 -90	2
	Construction :	
	It consists of a tapered glass tube mounted vertically with smaller end on the	
	lower side. A float is installed in the tube after the meter is mounted in the flow	
	line. Floats are usually made of corrosion resistant metals like aluminium,	1
	bronze, Monel, nickel etc. Flow scale is marked on the glass tube. Rotameter	1
	is installed in the pipeline by means of flanges or threads along with the inlet	
	and outlet piping supported in bracket.	
	Working:	
	Fluid is allowed to flow through the rotameter. The entire fluid stream passes	
	through the annular space between the float and the tube wall. The reading of	1
	the meter is obtained from the scale reading at the reading edge of the float,	1
	which is taken as the largest cross section of the float. Greater the flow rate,	
	higher the float rides in the tube.	
4-c	Friction loss due to sudden contraction:	
	The frictional loss due to sudden contraction is proportional to velocity head of	
	the fluid in the small diameter pipe.	

ject T	itle: Fluid Flow Operations subject code: 17426	page 18
	$h_{fc} = K_c \frac{V_{2^2}}{2g}$	
	$ \begin{aligned} h_{fc} &= K_c \frac{V_{2^2}}{2g} \\ K_c &= 0.4 \left(1 - \frac{A_2}{A_1}\right) \end{aligned} $	2
	Where h_{fc} is the head loss due to sudden contraction.	
	A ₁ - area of larger pipe .	
	A ₂ - area of smaller pipe .	2
	V ₂ - velocity of fluid in the small diameter pipe.	
4-d	Specific application of Tee: For branching the pipe line in 3 directions	1 mark each
	Elbow: Changing direction of flow.	
	Cross : For branching the pipe line in 4 directions	
	Plug: Termination of pipe line.	
4-e	Air Binding :	
	The pressure developed by the pump impeller is proportional to the density of	
	fluid in the impeller. If air enters the impeller, the pressure developed is	2
	reduced by a factor equal to the ratio of the density of air to the density of	
	liquid. Hence, for all practical purposes the pump is not capable to force the	
	liquid through the delivery pipe. This is called Air binding	
	Priming:	
	Removal of air from the suction line and pump casing and filling it with the	
	liquid to be pumped is called priming.	2
	It is done by providing a non-return valve in the suction line so that suction	
	line and pump casing will be filled with the liquid to be pumped when the pump	
	is in shut down condition. If the non-return valve is not functioning, priming	
	has to be done from an external source.	
4-f	Gear Pump:	
	Diagram:	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

ibject Ti	itle: Fluid Flow Operationssubject code:17426	page 22 of
	The above equation is corrected by introducing an empirical factor Cv &	
	writing	
	$u_2 = Cv \left[\frac{2(P_1 - P_2)}{\rho} * \frac{1}{\alpha(1 - \beta^4)} \right]^{1/2} $ eq3	
	Cv = Coefficient of venturimeter & it takes into account the error introduced	
	by assuming no frictional losses & As $\frac{\alpha_2}{\alpha_1} = 1$ & $\alpha_1 = 1$	
	Volumetric flow rate Q is given by	
	$Q = u_2 A_T$ eq4	
	From eq3 & eq4	
	$Q = A_T C v \left[\frac{2(P_1 - P_2)}{\rho} * \frac{1}{(1 - \beta^4)} \right]^{1/2}$	
	$Q = \frac{C_{\nu}A_T}{\sqrt{(1-\beta^4)}} \sqrt{\frac{2(P_1 - P_2)}{\rho}}$	3
	Q = Actual discharge	5
	If pressure is measured by U-tube manometer, then discharge is calculated as	
	$Q = \frac{C_v A_T}{\sqrt{(1-\beta^4)}} \sqrt{2g\Delta} H$	
	Where $\Delta H = \Delta h(\frac{\rho_M - \rho}{\rho})$	
	ΔH = Difference in head across venture in terms of meters of flowing fluid.	
	Δh = Difference in head across venture in terms of meters of manometric fluid	
5-b	L= 100m	
	D = 50mm = 0.05m	
	Density $\rho = 1050 \text{ kg/m}^3$	
	Kinematic Viscosity = $\mu / \rho = 2.35 * 10^{-6} \text{ m}^2 / \text{ S}$	
	Volumetric flow rate $Q = 1.5m^3 / min = 0.025m^3 / S$	
	Area A= $\frac{\pi D^2}{4} = \frac{3.14*0.05^2}{4} = 1.9625*10^{-3} \text{ m}^2$	
	Velocity V = $\frac{Q}{A}$ = 0.025 / 1.9625*10 ⁻³ = 12.738 m / S	3

Subject Title: Fluid Flow Operations subject code: 17426	page	23 of 27
NRe = $\frac{DV\rho}{\mu}$ = 0.05 *12.738 / (2.35*10 ⁻⁶) = 271021		
Since $NRe > 4000$, flow is turbulent		
$f = 0.078 / NRe^{0.25} = 0.078 / 271021^{0.25} = 3.418 * 10^{-3}$	3	
$h_{fs} = 4 f l V^2 / 2D = 4 * 3.418 * 10^{-3} * 100 * 12.738^2 / (2*0.05) = 2218.37 J / Kg$		
$\Delta P = h_{fs} * \rho = 2218.37 * 1050 = 2329288.5 Pa = 2329.288 KPa$	2	
5-c Double acting reciprocating pump:		
Diagram		
3 Delivery port 4 Delivery port Port Piston	3	
suction port		
Working:		
Reciprocating pump consists of a piston or plunger which reciprocates in		
stationary cylinder. Suppose the piston is initially at extreme left position and		
when crank rotates through 180 0 , piston moves to extreme right position.		
Therefore due to outward movement of piston, a partial vacuum is created in		
cylinder, which enables the atmospheric pressure acting on the liquid surface in		
the sump below to force the liquid up the suction pipe & fill the cylinder by		
forcibly opening the suction valve(it is called as a suction stroke). When the		
crank rotates thro further 180 0 ,piston moves inwardly from its extreme right		
position towards left. The inward movement of piston causes the pressure of	5	
liquid in the cylinder to rise above atmospheric pressure, because of which the		

ject Ti	itle: Fluid Flow Operations subject code: 17426	page 24
	suction valve closes & delivery valve opens, the liquid is then forced up the	
	delivery valve & raised to the required height.(Delivery stroke) . In case of	
	double acting pump, the liquid is in contact with both the sides of a piston or	
	plunger. This pump has two suction valves & two delivery valves. During each	
	stroke ,the suction takes place on one side of piston & other side delivers the	
	liquid .The liquid is drawn into the pump & discharged from the pump during	
	backward & as well as forward stroke. In the backward stroke, the liquid is	
	drawn into the pump through the suction port (1) & liquid is discharged	
	through the delivery port(3) & in the forward stroke, the liquid is drawn into the	
	pump thro suction port (2) and liquid is discharged thro the delivery port (4) .So	
	in case of double acting pump in one complete revolution of the crank there are	
	two suction strokes & two delivery strokes.	
6	Attempt any TWO of the following	16
6-a	Derivation of Bernoulli's equation:	
	Statement:" For steady, irrotational flow of an incompressible fluid ,the sum	
	of pressure energy, kinetic energy & potential energy at any point is constant".	
	Bernoulli theorem is derived on the basis of Newton's Second law of	
	motion.(Force = Rate of change of momentum.)	
	P.A. A. P.A. ALg Z+AZ	
	Let us consider an element of length ΔL of a stream tube of	

Subject Title: Fluid Flow Operations subject code: 17426	page 25 of 27
constant cross sectional area as shown above.	
Let us assume that cross-sectional area of element be A & the density of the	
fluid be ρ . Let u & P be the velocity & pressure at the entrance & (u + Δu),	
$(P + \Delta P)$ are the corresponding quantities at the exit.	
The forces acting on the element are	
1) The force from upstream pressure = $P.A$ (acting in the direction of	
flow)	
2) The force from downstream pressure normal to the cross-section of the	
tube = (P + Δ P).A(in opposite direction of flow)	
3) The force from the weight of fluid (gravitational force acting	
downward) = ρ .A. Δ L.g	
The component of this force acting opposite to direction of flow =	
ρ.A.ΔL.gcosθ	3
The rate of change of momentum of the fluid along the fluid element =	
$\dot{m} \left[u + \Delta u - u \right] = \dot{m} \Delta u$	
As mass flow rate= $\dot{m} = \rho$. uA . Δu	
According to Newton's Second law of motion	
{sum of forces acting in the direction of flow} = {rate of change of momentum	
of a fluid}	
P.A - $(P + \Delta P)$.A - ρ .A. $\Delta L.gcos\theta = \rho$. uA . Δu	
$-\Delta P.A - \rho.A.\Delta L.gcos\theta = \rho. uA \cdot \Delta u$	
$\Delta P.A + \rho.A.\Delta L.gcos\theta + \rho. uA \cdot \Delta u = 0 \qquad Eq.I$	
Dividing each term of eq.I by A. Δ L. ρ we get	
$\frac{\Delta P}{\rho \Delta L} + g . \cos \theta + \frac{u . \Delta u}{\Delta L} = 0$	
As $\cos\theta = \frac{\Delta Z}{\Delta L}$, we can write	
	4

ject T	tle: Fluid Flow Operations subject code: 17426	page 2
	Application of steam jet ejector:	
	1. Used for handling corrosive gases that would damage mechanical vacuum	1 mark
	pump.	each for
	2. It is used for handling large volume of vapour at low pressure.	any 4
	3.Crude oil distillation	application
	4. Petrochemical processes	
	5. Edible oil deodorization	
	6. Organic motivated systems	
	7. Fertilizer plant operations	
	8. Thermal compressors	
6-c	.Data:	
	Q = 12 lit/s	
	D=3 cm = 0.03 m	
	$\rho = 870 \text{ kg} / \text{m}^3 = 0.87 \text{ kg/lit}$	
	i) Q in m^3/s	
	$Q = 12 \text{ lit/s} = 12 *10^{-3} \text{ m}^3/\text{s}$	2
	ii) (\dot{m}) in kg/s	
	$(\dot{m}) = Q * \rho = 12 * 10^{-3} * 870 = 10.44 \text{ Kg} / \text{S}$	2
	iii) U in m/s	
	Q = u * A	
	Area of pipe = $\pi/4 * D^2 = \pi/4 * (0.03)^2 = 7.065 * 10^{-4} m^2$	
	$U = 12 X 10^{-3} / 7.065 * 10^{-4} = 16.98 m / S$	2
	iv) G in kg $/m^2$.s	
	G = Mass flow rate / Area of pipe = $10.44 / 7.065 * 10^{-4} =$	
	14777.07 Kg /m ² .S	2