MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
SUMMER-17 EXAMINATION
Model Answer

Subject Title: Fluid Flow Operations
subject code: 17426
page $\mathbf{1}$ of $\mathbf{2 7}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
subject code:
17426

\begin{tabular}{|c|c|c|}
\hline Q No. \& Answer \& Marks \\
\hline 1A \& Attempt any SIX of the following \& 12 \\
\hline 1A-a \& \begin{tabular}{l}
Absolute Viscosity: Absolute viscosity or dynamic Viscosity is the property of the fluid by virtue of which it offers resistance to the movement of one layer of fluid over an adjacent layer. \\
Kinematic viscosity \\
It is the ratio of viscosity of the fluid to its density.
\end{tabular} \& 1

1

\hline 1A-b \& | $\mathrm{NRe}=15000$ |
| :--- |
| Since NRe is greater than 4000, flow is turbulent For turbulent flow: $\mathrm{f}=0.078 /\left(\mathrm{N}_{\mathrm{Re}}\right)^{0.25}$ $F=7.048 * 10^{-3}$ | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\]

\hline 1A-c \& Diagram of pipe fittings \& $1 / 2$ mark each for any 4

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations subject code: 17426 page $\mathbf{3}$ of 27

	Bend Tee Elbow Cross	
1A-d	Significance of Reynold's Number It is a dimension less number which indicates the nature of flow. It is the ratio of inertial force to viscous force.	2
1A-e		2

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 4 of 27

\begin{tabular}{|c|c|c|}
\hline \& diaphragm \& \\
\hline 1A-f \& \begin{tabular}{l}
Laminar flow and turbulent flow: \\
Laminar flow: \\
In laminar flow, the fluid flows without any lateral mixing. Ie flow is in the form of parallel streams which do not mix with each other. \\
Turbulent flow: \\
It is characterized by eddies and cross currents in random direction. The fluid layers overlap with each and there will be lateral mixing.
\end{tabular} \& 1

1

\hline 1A-g \& | Vacuum: |
| :--- |
| Pressure below atmospheric pressure is known as vacuum. | \& 2

\hline 1B \& Attempt any TWO of the following \& 8

\hline 1B-a \& | Derivation of equation of continuity: |
| :--- |
| Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil. | \&

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 5 of $\mathbf{2 7}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(A_{1}\) \\
Let \(\mathrm{v}_{1}, \rho_{1} \& A_{1}\) be the avg. velocity, density\& area at entrance of tube \& \(\mathrm{v}_{2}\), \(\rho_{2} \& \mathrm{~A}_{2}\) be the corresponding quantities at the exit of tube. \\
Let \(\dot{m}\) be the mass flow rate \\
Rate of mass entering the flow system \(=v_{1} \rho_{1} A_{1}\) \\
Rate of mass leaving the flow system \(=v_{2} \rho_{2} A_{2}\) \\
Under steady flow conditions
\[
\begin{aligned}
\& \dot{m}=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{v}_{2} \mathrm{~A}_{2} \\
\& \dot{m}=\rho v \mathrm{~A}=\mathrm{constant}
\end{aligned}
\] \\
Equation of continuity
\end{tabular} \& 2

2

\hline 1B-b \& Diagram of Gate valve: \& 4

\hline 1B-c \& Difference between positive displacement pump and centrifugal pump \&

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426

		Positive displacement pump	Centrifugal pump	1 mark each for any 4 points
	1) Mode of delivery	Pulsating	Continuous	
	2)Priming	Not required	Required	
	3)Efficiency	More	Less	
	4) Liquids with solids suspended	Cannot handle	Can handle	
	5) Construction	Complex	Simple	
	6) Discharge ratio	More	Less	
	7) Suitability	Higher head but low discharge	Smaller head but larger discharge	
	8) Floor area requirement	More	Less	
	9)Wear and tear	More	Less	
	10) Maintenance cost	More	Less	
	11) Speed	Cannot run at higher speed	Higher speed	
2	Attempt any FOUR of t	following		16
2-a	Well type manometer	Vertical tuibe		

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page $\mathbf{7}$ of $\mathbf{2 7}$

| | Inclined tube manometer | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426

Integrating eq. 4 with the boundary condition ,at $\mathrm{r}=r_{w .}: \mathrm{u}=0$ we get

$$
\begin{gather*}
\int_{0}^{u} d_{u}=-\frac{\tau_{w}}{r_{w} \cdot \mu} \int_{r_{w}}^{r} r \cdot d r \\
u=-\frac{\tau_{w}}{r_{w} \cdot \mu}\left[\frac{r^{2}}{2}\right]_{r_{w}}^{r} \\
u=\frac{\tau_{w}}{2 \cdot r_{w} \cdot \mu}\left[r_{w}^{2}-r^{2}\right] \quad \ldots . \tag{5}
\end{gather*}
$$

At the center of the pipe : $\mathrm{r}=0 \quad . u=u_{\max }$.

$$
\begin{equation*}
u_{\max .}=\frac{\tau_{w} r_{w}}{2 \cdot \mu} \tag{6}
\end{equation*}
$$

Substituting the value of shear stress as
$\tau_{w}=\frac{\Delta P . r_{w}}{2 \Delta L} \quad$ in eq. 6

$$
u_{\max .}=\frac{\Delta P \cdot r_{w}^{2}}{4 \cdot \mu \cdot \Delta L}
$$

As $\mathrm{D}=r_{w} / 2$

$$
u_{\max .}=\frac{\Delta P \cdot D^{2}}{16 \cdot \mu \cdot \Delta L}
$$

But average velocity v is 0.5 times the maximum velocity
Therefore $\frac{v}{u_{\max }}=0.5$

$$
\begin{equation*}
v=\frac{\Delta P \cdot D^{2}}{32 \cdot \mu \cdot \Delta L} \tag{7}
\end{equation*}
$$

Equation 7 can be rearranged as

$$
\Delta P=\frac{32 \Delta L \mu v}{D^{2}}
$$

SUMMER-17 EXAMINATION

Model Answer
Subject Title: Fluid Flow Operations subject code: 17426 page $\mathbf{1 0}$ of $\mathbf{2 7}$

	ΔL can be replaced as L $\begin{equation*} \Delta P=\frac{32 L \mu v}{D^{2}} \tag{8} \end{equation*}$ Equation(8) is called as Hagen Poiseuille's equation which is used for determining viscosity of a fluid by measuring the pressure drop and the volumetric flow rate of a tube of a given length and diameter.	2
2-e	Construction of centrifugal pump	4

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
 subject code:
 17426
 page 11 of 27

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
The parts of a centrifugal pump are \\
(i) Impeller: It is the heart of a centrifugal pump. It is mounted on a shaft. The function of impeller is to force the liquid in to a rotary motion so that the liquid leaves the impeller at a higher velocity than at the entrance. \\
(ii) Casing: It is provided for housing the impeller and it has provision for connecting with the delivery and suction pipe lines. \\
(iii) Suction pipe: It is a pipe whose upper end is connected with the pump on suction side and lower end is submerged in the liquid in the sump. The lower end is fitted with a foot valve and strainer. \\
(iv) Delivery pipe: it connects the discharge end of the pump and supply end of the reservoir.
\end{tabular} \& \\
\hline 2-f \& \begin{tabular}{l}
Significance of terms used in Bernoulli's equation.
\[
\frac{P}{\rho}+g Z+\frac{u^{2}}{2}=\text { constant }
\] \\
Where \(\frac{P}{\rho}\) is the pressure energy in \(\mathrm{J} / \mathrm{kg}\) \\
gZ is the potential energy in \(\mathrm{J} / \mathrm{kg}\) \\
\(\frac{u^{2}}{2}\) is the kinetic energy in \(\mathrm{J} / \mathrm{kg}\). \\
Pressure energy is the work that must be done in order to introduce the fluid into the system without change in volume. \\
Potential energy is the work that must be done on the fluid in order to raise it to a certain position from some arbitrarily chosen datum level. \\
Kinetic energy is the energy of the fluid by virtue of its motion with reference to some arbitrarily chosen body.
\end{tabular} \& 1

1
1
1
1

\hline 3 \& Attempt any FOUR of the following \& 16

\hline 3-a \& | Newton's law of viscosity |
| :--- |
| Newton law of viscosity states that shear stress is proportional to shear rate and | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
the proportionality constant is the viscosity of the fluid \\
Mathematical expression is \(\frac{F}{A}=\mu \frac{d v}{d x}\) \\
Where \(\frac{F}{A}=\) Shear stress
\[
\begin{array}{r}
\mu=\text { viscosity } \\
\frac{d v}{d x}=\text { Shear rate }
\end{array}
\] \\
A fluid, which does not obey Newton's law of viscosity is known as NonNewtonian Fluid.
\end{tabular} \& 2

2

\hline 3-b \& | Industrial application of |
| :--- |
| Blower: |
| 1. For combustion air supplies |
| 2. On cooling and drying systems |
| 3. For fluid bed aerators |
| 4. With air conveyor systems, |
| 5. For sewage aeration |
| 6. Filter flushing |
| 7. for moving gases of all kinds in the petrochemical industries |
| Compressor: |
| 1. Aerospace |
| 2. Automotive |
| 3. Chemical Manufacturing |
| 4. Electronics |
| 5. Food and Beverage |
| 6. Glass Manufacturing |
| 7. Mining |
| 8. Pharmaceuticals |
| 9. Plastics | \& | $1 / 2$ mark each for any 4 |
| :--- |
| $1 / 2$ mark each for any 4 |

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

	10. Power Generation 11. To power pneumatic tools like pneumatic drills and hammers on construction site		
3-c	Rupture disc: Diagram:	Working The ultimate safety device used in pressure vessel to avoid accident is rupture disc. Rupture disc, is a non-reclosing pressure relief device. A rupture disc is a one-time-use membrane. They can be used as single protection devices or as a backup device for a conventional safety valve; if the pressure increases and the safety valve fails to operate (or can't relieve enough pressure fast enough), the rupture disc will burst. Rupture discs are very often used in combination with safety relief valves, isolating the valves from the process, thereby saving on valve maintenance and creating a leak-tight pressure relief solution. The membrane is generally made up of metal.	
3-d			

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426

			rate	
	iii) Measurement of flow rate	Cannot give volumetric flow rate directly	Can give volumetric flow rate directly	
	iv) Cost	Cheap	Costly	
	v)Ease of handling	difficult	easy	
	vi) Requirement of straight pipe	Needs straight pipe before and after the meter	Does not need.	

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 15 of 27

3-e	Derivation for NPSH. NPSH stands for Net positive Suction Head. It is the amount by which the pressure (sum of velocity and pressure head) at the suction point of the pump is in excess of vapour pressure of the liquid. $\begin{equation*} N P S H=\frac{u_{1}^{2}}{2 g}+\frac{P_{1}}{\rho g}-\frac{P_{v}}{\rho g} \ldots \ldots \tag{1} \end{equation*}$ where $\mathrm{Pv}=$ vapour pressure of liquid at pumping temp. The Bernoulli equation in terms of m of liquid between stations 1 ' \& 1 is $\frac{P_{1}^{\prime}}{\rho g}+\frac{u_{1}^{\prime 2}}{2 g}+Z_{1}^{\prime}=\frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}+Z_{1}+h_{f s}$ where $\mathrm{h}_{\mathrm{fs}}=$ head loss due to friction in suction line If $Z_{1}^{\prime}=0 \& \mathrm{u}_{1}{ }^{\prime}=0$ $\frac{P_{1}^{\prime}}{\rho g}=\frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}+Z_{1}+h_{f s}$ Rearranging we get $\begin{equation*} \frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}=\frac{P_{1}^{\prime}}{\rho g}-Z_{1}-h_{f s} \ldots . .(2 \tag{2} \end{equation*}$	2

	Comparing (1) and (2) $\begin{aligned} & \mathrm{NPSH}+\frac{P_{v}}{\rho g}=\frac{P_{1}^{\prime}}{\rho g}-Z_{1}-h_{f s} \\ & \mathrm{NPSH}=\frac{P_{1}^{\prime}}{\rho g}-\frac{P_{v}}{\rho g}-Z_{1}-h_{f s} \end{aligned}$ Where, $\mathrm{Z}_{1}=$ height of pump from the level of liquid in the tank $P_{1}^{\prime}=$ Pressure at the liquid surface in the tank. $\mathrm{P}_{\mathrm{v}}=$ Vapour pressure of liquid $\mathrm{h}_{\mathrm{fs}}=$ Head loss due to friction on suction side.		2
3-f	Distinguish between Newtonian and non-Newtonian fluids		2 marks each for any two points
	Newtonian fluids	Non-Newtonian fluids	
	1. Fluids which obey Newton's law of viscosity	Fluids which do not obey Newton's law of viscosity	
	2. Plot of shear stress vs shear rate or velocity gradient gives a straight line	Plot of shear stress vs shear rate or velocity gradient does not give a straight line	
	3. $\tau=\mu \mathrm{du} / \mathrm{dr}$	$\tau \# \mu \mathrm{du} / \mathrm{dr}$	
4	Attempt any FOUR of the following		16
4-a	$\begin{aligned} & \Delta \mathrm{hm}=175^{*} 10^{-3} \mathrm{~m} \text { of Hg } \\ & \rho \mathrm{m}=\rho \mathrm{Hg}=13600 \mathrm{Kg} / \mathrm{m}^{3} \\ & \rho \mathrm{f}=\rho \mathrm{CCl}_{4}=1600 \mathrm{Kg} / \mathrm{m}^{3} \\ & \Delta \mathrm{P}=\Delta \mathrm{hm}(\rho \mathrm{~m}-\rho \mathrm{f}) \mathrm{g}=175^{*} 10^{-3}(13600-1600) * 9.81=\mathbf{2 0 6 0 1} \mathrm{N} / \mathbf{m}^{2} . \end{aligned}$		
4-b	Diagram of rotameter		

SUMMER-17 EXAMINATION

Model Answer

	Construction : It consists of a tapered glass tube mounted vertically with smaller end on the lower side. A float is installed in the tube after the meter is mounted in the flow line. Floats are usually made of corrosion resistant metals like aluminium, bronze, Monel, nickel etc. Flow scale is marked on the glass tube. Rotameter is installed in the pipeline by means of flanges or threads along with the inlet and outlet piping supported in bracket. Working: Fluid is allowed to flow through the rotameter. The entire fluid stream passes through the annular space between the float and the tube wall. The reading of the meter is obtained from the scale reading at the reading edge of the float, which is taken as the largest cross section of the float. Greater the flow rate, higher the float rides in the tube.	$2{ }^{2}$
4-c	Friction loss due to sudden contraction: The frictional loss due to sudden contraction is proportional to velocity head of the fluid in the small diameter pipe.	

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 18 of $\mathbf{2 7}$

	$\mathrm{h}_{\mathrm{fc}}=\mathrm{K}_{\mathrm{c}} \frac{\mathrm{V}_{\mathrm{L}^{2}}}{2 \mathrm{~g}}$ $\mathrm{~K}_{\mathrm{c}}=0.4\left(1-\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)$ Where h_{fc} is the head loss due to sudden contraction. $\mathrm{A}_{1^{-}}$area of larger pipe . $\mathrm{A}_{2^{-}}$area of smaller pipe . $\mathrm{V}_{2^{-}}$velocity of fluid in the small diameter pipe.	2
4-d	Specific application of Tee: For branching the pipe line in 3 directions Elbow: Changing direction of flow. Cross : For branching the pipe line in 4 directions Plug: Termination of pipe line.	2
4-e	Air Binding : The pressure developed by the pump impeller is proportional to the density of fluid in the impeller. If air enters the impeller, the pressure developed is reduced by a factor equal to the ratio of the density of air to the density of liquid. Hence, for all practical purposes the pump is not capable to force the liquid through the delivery pipe. This is called Air binding Priming: Removal of air from the suction line and pump casing and filling it with the liquid to be pumped is called priming. It is done by providing a non-return valve in the suction line so that suction line and pump casing will be filled with the liquid to be pumped when the pump is in shut down condition. If the non-return valve is not functioning, priming has to be done from an external source.	2
4-f	Gear Pump: Diagram:	each

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 19 of 27

5	Attempt any TWO of the following	16
5-a	Derivation for calculating volumetric flow rate using venturimeter: Let $\mathrm{P}_{1}, \mathrm{P}_{2} \& \mathrm{u}_{1 \&} \mathrm{u}_{2}$ be the pressures \& velocities at section $1 \& 2$ respectively. Let $\mathrm{A}_{1} \& \mathrm{~A}_{\mathrm{T}}$ be the flow areas at section $1 \& 2$ respectively. Section 1 is at the pipe \& section 2 is at the throat. Let the fluid be incompressible \& no frictional losses between station $1 \& 2$. Applying the Bernoulli equation between the shown stations (1) and (2) along	2

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426

$$
\frac{P_{1}}{\rho}+\frac{\alpha_{1} u_{1}^{2}}{2}+g Z_{1}=\frac{P_{2}}{\rho}+\frac{\alpha_{2} u_{2}^{2}}{2}+g Z_{2}
$$

The venturimerer is connected in a horizontal pipe ,so $\mathrm{Z}_{1}=\mathrm{Z}_{2}$

$$
\frac{P_{1}}{\rho}+\frac{\alpha_{1} \cdot u_{1}^{2}}{2}=\frac{P_{2}}{\rho}+\frac{\alpha_{2} \cdot u_{2}^{2}}{2}
$$

From equation of continuity

$$
m=\rho u_{1} A_{1}=\rho u_{2} A_{2}
$$

Where $A_{1}=\pi / 4 \quad D^{2} \& A_{T}=\pi / 4 \quad D_{T}^{2}$
$\mathrm{D} \& \mathrm{D}_{\mathrm{T}}$ are the diameter of pipe \& throat .

$$
\left.u_{1(\pi / 4 \cdot} \cdot D^{2}\right)=u_{2\left(\pi / 4 \cdot D_{T}^{2}\right)}
$$

Let $\quad \frac{D_{T}}{D}=\beta$
$u_{1}=\beta^{2} u_{2} \quad \ldots \ldots \ldots . . \quad$ eq 2
Putting value of u_{1} from eq 2 in eq 1 , we get
$\frac{P_{1}}{\rho}+\frac{\alpha_{1} \cdot\left(\beta^{2} u_{2}\right)^{2}}{2}=\frac{P_{2}}{\rho}+\frac{\alpha_{2} \cdot u_{2}^{2}}{2}$
Rearranging we get

$$
\begin{gathered}
\frac{\alpha_{2} u_{2}^{2}}{2}-\frac{\alpha_{1} \beta^{4} u_{2}^{2}}{2}=\frac{P_{1}-P_{2}}{\rho} \\
\alpha_{2} u_{2}^{2}-\alpha_{1} \beta^{4} u_{2}^{2}=\frac{2\left(P_{1}-P_{2}\right)}{2} \\
\alpha_{1}\left[\frac{\alpha_{2}}{\alpha_{1}} u_{2}^{2}-\beta^{4} u_{2}^{2}\right]=\frac{2\left(P_{1}-P_{2}\right)}{\rho}
\end{gathered}
$$

As $\frac{\alpha_{2}}{\alpha_{1}}=1$

$$
\begin{gathered}
\alpha_{1\left[u_{2}^{2}-\beta^{4} u_{2}^{2}\right]}=2\left(\frac{P_{1}-P_{2}}{\rho}\right) \\
u_{2}=\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho} * \frac{1}{\alpha\left(1-\beta^{4}\right)}\right]^{1 / 2} \ldots \ldots \ldots . \text { eq } 3
\end{gathered}
$$

	The above equation is corrected by introducing an empirical factor Cv \& writing $u_{2}=C v\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho} * \frac{1}{\alpha\left(1-\beta^{4}\right)}\right]^{1 / 2} \quad \text { eq } 3$ $\mathrm{Cv}=$ Coefficient of venturimeter $\&$ it takes into account the error introduced by assuming no frictional losses $\&$ As $\frac{\alpha_{2}}{\alpha_{1}}=1 \& \alpha_{1}=1$ Volumetric flow rate Q is given by $Q=u_{2} A_{T} \quad \ldots \ldots \ldots . \text { eq } 4$ From eq3 \& eq4 $\begin{aligned} Q & =A_{T} C v\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho} * \frac{1}{\left(1-\beta^{4}\right)}\right]^{1 / 2} \\ Q & =\frac{C_{v} A_{T}}{\sqrt{\left(1-\beta^{4}\right)}} \sqrt{\frac{2\left(P_{1}-P_{2}\right)}{\rho}} \\ \mathrm{Q} & =\text { Actual discharge } \end{aligned}$ If pressure is measured by U-tube manometer, then discharge is calculated as $Q=\frac{C_{v} A_{T}}{\sqrt{\left(1-\beta^{4}\right)}} \sqrt{2 g \Delta} H$ Where $\quad \Delta H=\Delta h\left(\frac{\rho_{M}-\rho}{\rho}\right)$ $\Delta H=$ Difference in head across venture in terms of meters of flowing fluid. $\Delta h=$ Difference in head across venture in terms of meters of manometric fluid	3
5-b	$\mathrm{L}=100 \mathrm{~m}$ $\mathrm{D}=50 \mathrm{~mm}=0.05 \mathrm{~m}$ Density $\rho=1050 \mathrm{~kg} / \mathrm{m}^{3}$ Kinematic Viscosity $=\mu / \rho=2.35 * 10^{-6} \mathrm{~m}^{2} / \mathrm{S}$ Volumetric flow rate $\mathrm{Q}=1.5 \mathrm{~m}^{3} / \mathrm{min}=0.025 \mathrm{~m}^{3} / \mathrm{S}$ Area $\mathrm{A}=\frac{\pi D^{2}}{4}=\frac{3.14 * 0.05^{2}}{4}=1.9625^{*} 10^{-3} \mathrm{~m}^{2}$ Velocity $\mathrm{V}=\frac{Q}{A}=0.025 / 1.9625 * 10^{-3}=12.738 \mathrm{~m} / \mathrm{S}$	3

	$\operatorname{NRe}=\frac{D V \rho}{\mu}=0.05 * 12.738 /\left(2.35 * 10^{-6}\right)=271021$ Since $\mathrm{NRe}>4000$, flow is turbulent $\begin{aligned} & \mathrm{f}=0.078 / \mathrm{NRe}^{0.25}=0.078 / 271021^{0.25}=3.418 * 10^{-3} \\ & \mathrm{~h}_{\mathrm{fs}}=4 \mathrm{flV} \mathrm{~V}^{2} / 2 \mathrm{D}=4 * 3.418 * 10^{-3} * 100^{*} 12.738^{2} /(2 * 0.05)=2218.37 \mathrm{~J} / \mathrm{Kg} \\ & \quad \Delta \mathrm{P}=\mathrm{h}_{\mathrm{fs}} * \rho=2218.37 * 1050=\mathbf{2 3 2 9 2 8 8 . 5} \mathbf{P a}=\mathbf{2 3 2 9 . 2 8 8} \mathbf{~ K P a} \end{aligned}$	3 2
5-c	Double acting reciprocating pump: Diagram Working: Reciprocating pump consists of a piston or plunger which reciprocates in stationary cylinder. Suppose the piston is initially at extreme left position and when crank rotates through 180°, piston moves to extreme right position. Therefore due to outward movement of piston, a partial vacuum is created in cylinder, which enables the atmospheric pressure acting on the liquid surface in the sump below to force the liquid up the suction pipe \& fill the cylinder by forcibly opening the suction valve(it is called as a suction stroke). When the crank rotates thro further 180°,piston moves inwardly from its extreme right position towards left. The inward movement of piston causes the pressure of liquid in the cylinder to rise above atmospheric pressure, because of which the	3

SUMMER-17 EXAMINATION

Model Answer

| | suction valve closes \& delivery valve opens, the liquid is then forced up the
 delivery valve \& raised to the required height.(Delivery stroke) . In case of
 double acting pump, the liquid is in contact with both the sides of a piston or
 plunger. This pump has two suction valves \& two delivery valves. During each
 stroke ,the suction takes place on one side of piston \& other side delivers the
 liquid .The liquid is drawn into the pump \& discharged from the pump during
 backward \& as well as forward stroke. In the backward stroke, the liquid is
 drawn into the pump through the suction port (1) \& liquid is discharged
 through the delivery port(3) \& in the forward stroke, the liquid is drawn into the
 pump thro suction port (2) and liquid is discharged thro the delivery port (4) .So
 in case of double acting pump in one complete revolution of the crank there are
 two suction strokes \& two delivery strokes. |
| :--- | :--- | :--- |
| $\mathbf{6}$ | Attempt any TWO of the following
 6-a

 Statement:" For steady, irrotational flow of an incompressible fluid ,the sum
 of pressure energy, kinetic energy \& potential energy at any point is constant".
 Bernoulli theorem is derived on the basis of Newton's Second law of
 motion.(Force = Rate of change of momentum.) |

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page 26 of 27

	$\frac{1}{\rho} \frac{\Delta P}{\Delta L}+g \frac{\Delta Z}{\Delta L}+u \frac{\Delta u}{\Delta L}=0$ If we express the changes in the pressure, velocity, height etc. in the differential form ,eq .II becomes $\frac{1}{\rho} \frac{d P}{d L}+g \frac{d Z}{d L}+\frac{d\left(\frac{u^{2}}{2}\right)}{d L}$ Which can be written as $\frac{d P}{\rho}+g \cdot d Z+d\left(\frac{u^{2}}{2}\right)=0$ Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli Equation. For incompressible fluid, density is independent of pressure \& hence ,the integrated form of eq.III is $\frac{P}{\rho}+g Z+\frac{u^{2}}{2}=\text { constant }$ The Bernoulli Equation relates the pressure at a point in the fluid to its position \& velocity.	1
6-b	Diagram of steam jet ejector	4

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Fluid Flow Operations
subject code:
17426
page $\mathbf{2 7}$ of $\mathbf{2 7}$

	Application of steam jet ejector: 1. Used for handling corrosive gases that would damage mechanical vacuum pump. 2. It is used for handling large volume of vapour at low pressure. 3.Crude oil distillation 4. Petrochemical processes 5. Edible oil deodorization 6. Organic motivated systems 7. Fertilizer plant operations 8. Thermal compressors	1 mark each for any 4 application
6-c	.Data: $\begin{aligned} & \mathrm{Q}=12 \mathrm{lit} / \mathrm{s} \\ & \mathrm{D}=3 \mathrm{~cm}=0.03 \mathrm{~m} \\ & \rho=870 \mathrm{~kg} / \mathrm{m}^{3}=0.87 \mathrm{~kg} / \mathrm{lit} \end{aligned}$ i) $\quad \mathrm{Q}$ in $\mathrm{m}^{3} / \mathrm{s}$ $\mathrm{Q}=12 \mathrm{lit} / \mathrm{s}=\mathbf{1 2} * \mathbf{1 0}^{-\mathbf{3}} \mathrm{m}^{\mathbf{3}} / \mathrm{s}$ ii) $\quad(\dot{m})$ in kg / s $(\dot{m})=\mathrm{Q} * \rho=12 * 10^{-3} * 870=\mathbf{1 0 . 4 4} \mathbf{~ K g} / \mathbf{S}$ iii) $\quad U$ in m / s $\mathrm{Q}=\mathrm{u} * \mathrm{~A}$ Area of pipe $=\pi / 4 * \mathrm{D}^{2}=\pi / 4 *(0.03)^{2}=7.065 * 10^{-4} \mathrm{~m}^{2}$ $\mathrm{U}=12 \times 10^{-3} \quad / 7.065 * 10^{-4}=\mathbf{1 6 . 9 8} \mathbf{~ m} / \mathbf{S}$ iv) $\quad G$ in $\mathrm{kg} / \mathrm{m}^{2}$.s $\mathrm{G}=\text { Mass flow rate } / \text { Area of pipe }=10.44 / 7.065 * 10^{-4}=$ $14777.07 \mathrm{Kg} / \mathrm{m}^{2} . \mathrm{S}$	2 2 2 2 2

