MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-15 EXAMINATION

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-15 EXAMINATION

Model Answer

Q No.	Answer	marks	Total marks
1a-i	Kinematic viscosity with its unit: Kinematic viscosity: It is the ratio of viscosity of the fluid to its density Unit in SI is $\mathrm{m}^{2} / \mathrm{s}$	1 1	2
1a-ii	Compressible fluid If the density of the fluid is appreciably affected by moderate changes in temperature and pressure, the fluid is said to be compressible. Incompressible fluid If the density of the fluid is not appreciably affected by moderate changes in temperature and pressure , the fluid is said to be compressible.	1	2
1a-iii	Reynold's Number is a dimension less number which indicates the nature of flow. It is the ratio of inertial force to viscous force.	2	2
1a-iv	Relation between friction factor and Reynold's number For laminar flow : $\mathrm{f}=\frac{16}{N R e}$ for turbulent flow: $\mathrm{f}=0.078 /\left(\mathrm{N}_{\mathrm{Re}}\right)^{0.25} \text { or } \quad 1 / \sqrt{\mathrm{f}}=4 \log \left(\mathrm{~N}_{\mathrm{Re}} \sqrt{\mathrm{f}}\right)-0.4$	1 1	2
1a-v	Different types of pipe fittings:(any four) Union, coupler, plug, reducer, expander, bend, elbow, tee, cross	$1 / 2$ mark each	2
1a-vi	Pump used for viscous fluids: Gear pump	2	2
1a-vii	Two vacuum generating equipments: vacuum pump, jet ejectors	1 mark each	2
1b-i	Derivation of equation of continuity: Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil.	1	4

WINTER-15 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(\mathrm{v}_{1}, \rho_{1} \& \mathrm{~A}_{1}\) be the avg. velocity, density\& area at entrance of tube \(\& \mathrm{v}_{2} \rho_{2} \&\) \(\mathrm{A}_{2}\) be the corresponding quantities at the exit of tube. \\
Let be the mass flow rate \\
Rate of mass entering the flow system \(=v_{1} \rho_{1} A_{1}\) \\
Rate of mass leaving the flow system \(=v_{2} \rho_{2} A_{2}\) \\
Under steady flow conditions
\[
=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{v}_{2} \mathrm{~A}_{2}
\] \\
\(\rho \vee \mathrm{A}=\) constant \\
Equation of continuity
\end{tabular} \& 2

1 \&

\hline 1B-ii \& DiaphragmValve: \& \& 4

\hline \& Diagram of gate valve \& 2 \&

\hline
\end{tabular}

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

IB-iii	Air Binding: The pressure developed by the pump impeller is proportional to the density of fluid in the impeller.If air enters the impeller, the pressure developed is reduced by a factor equal to the ratio of the density of air to the density of liquid. Hence, for all practical purposes the pump is not capable to force the liquid through the delivery pipe. This is called Air binding Reason for priming is required in centrifugal pump: The pressure generated by a centrifugal pump is directly proportional to the density of the fluid that is in contact with it. Therefore if the impeller is made to rotate in the presence of air, only negligible pressure will be produced and no liquid will be lifted by the pump.Hence it is necessary to fill the suction pipe, pump casing and portion of the delivery pipe with the liquid to be pumped before starting the pump by priming.	

Model Answer

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

| 2-c | Rupture disc:
 vessel, equipment or system from over -pressurization or potentially damaging
 vacuum conditions. A rupture disc is a one-time-use membrane. They can be
 used as single protection devices or as a backup device for a conventional
 safety valve; if the pressure increases and the safety valve fails to operate (or
 can't relieve enough pressure fast enough), the rupture disc will burst. Rupture
 discs are very often used in combination with safety relief valves, isolating the
 valves from the process, thereby saving on valve maintenance and creating a
 leak-tight pressure relief solution. The membrane is generally made up of
 metal.
 NPSH for a system with suction lift. NPSH stands for Net positive Suction
 Head. It is the amount by which the pressure (sum of velocity and pressure
 head) at the suction point of the pump is in excess of vapour pressure of the
 liquid. | |
| :--- | :--- | :--- | :--- |

Model Answer

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

	Rearranging we get $\frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}=\frac{P_{1}^{\prime}}{\rho g}-Z_{1}-h_{f s}$ Therefore we can write $\mathrm{NPSH}=\frac{P_{1}^{\prime}}{\rho g}-\frac{P_{v}}{\rho g}-Z_{1}-h_{f s}$ Where, $\mathrm{Z}_{1}=$ height of pump from the level of liquid in the tank $P_{1}^{\prime}=$ Pressure at the eye of impeller $\mathrm{P}_{\mathrm{v}}=$ Vapour pressure of liquid $\mathrm{h}_{\mathrm{fs}}=$ Head lost due to friction on suction side.		
2-e	Friction loss due to sudden contraction: When pipe diameter and hence the flow area suddenly decreases from A_{1} to A_{2} with subsequent increase in flow velocity (jetting action) the flow area becomes minimum (less than A_{2}) at venacontracta. The space between pipe wall and jet is filled with eddies. The frictional loss due to sudden contraction is proportional to velocity head in of the fluid in the small diameter pipe. $\begin{aligned} & \mathrm{h}_{\mathrm{fc}}=\mathrm{K}_{\mathrm{c}} \frac{\mathrm{~V}_{2^{2}}}{2 \mathrm{~g}} \\ & \mathrm{~K}_{\mathrm{c}}=0.4\left(1-\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right) \end{aligned}$ Where h_{fc} is the head loss due to sudden contraction. $\mathrm{A}_{1^{-}}$area of larger pipe . $\mathrm{A}_{2^{-}}$area of smaller pipe. $\mathrm{V}_{2^{-}}$velocity of fluid in the small diameter pipe.	2	4
2-f	Venturimeter:		4

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

	Diagram Construction. The venturimeter consists of 1. A convergent section section with converging cone angle of $15-20^{\circ}$, where the fluid is accelerated. 2. A throat where the area is constant with its length equal to diameter. 3. A long diverging section with cone angle of about $5-7^{\circ}$ where the fluid is accelerated. The high pressure tap is located on inlet section while low pressure tap is located at the middle of throat, the manometer is connected between thesetaps.The venturi tube is made up of cast iron or steel	2	
3-a	U tube manometer:		4

WINTER-15 EXAMINATION

Model Answer

WINTER-15 EXAMINATION

Model Answer

	$\begin{aligned} \mathrm{P}+\rho_{1} \mathrm{~h}_{1} \mathrm{~g} & =\rho_{2} \mathrm{~h}_{2} \mathrm{~g} \\ \mathbf{P} & =\left(\boldsymbol{\rho}_{\mathbf{2}} \mathbf{h}_{\mathbf{2}} \mathbf{g}-\boldsymbol{\rho}_{\mathbf{1}} \mathbf{h}_{\mathbf{1}} \mathbf{g}\right) \end{aligned}$		
3-b	Non return valve: Uses of non-return valve : 1)It is used in horizontal pipe lines so that at the start of closing the valve the gravity force is maximum and it becomes minimum at the time of closing. 2)It is used when unidirectional flow is desired.	2 2	4
3-c	Factors which influences the choice of pumps : 1) The quantity of liquid to be handled. 2) The head against which the liquid to be pumped. 3) The nature of power supply 4)The flow rate required.	$1 \text { mark }$ each	4
3-d	Non-Newtonian Fluid A fluid, which does not obey Newton's law of viscosity is known as NonNewtonian Fluid. Common types of Non-Newtonian Fluid : 1.Bingham Fluids or Bingham Plastics : These fluids resist a small shear stress indefinitely but flow linealy under the action of larger shear stress, i.e., these fluids do not deform i.e., floe unless of	1	4

WINTER-15 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
threshold shear stress value \(\left(\tau_{0}\right)\) is not exceeded. \\
Eg : Toothpaste,. Jellies, paints, sewage sludge. \\
2.Pseudoplastic fluids : \\
The viscosity of these fluids decreases with increase in velocity gradient, i.e., shear rate. \\
Eg : Blood, solution of high molecular weight polymers, paper pulp, muds. \\
3.Dilatent Fluid : \\
The viscosity of these fluids increases with increase in velocity gradient. \\
Eg: Suspension of starch in water, pulp in water
\end{tabular} \& 1

1 \&

\hline 3-e \& | Use of fan as a pumping device : |
| :--- |
| 1) For removal of fumes. |
| 2) For ventilation work. |
| 3) For supplying air to dryers |
| 4) Suppling draft to boilers. | \& \[

1 mark
\]

each \& 4

\hline 3-f \& | Pressure at $\mathrm{A}=$ Pressure at $\mathrm{B}=101.325 \mathrm{kPa}$ |
| :--- |
| Density of liquid $=\rho=1150 \mathrm{~kg} / \mathrm{m}^{3}$ |
| $\mathrm{h}_{\mathrm{f}}=$ Frictional losses $=1 \mathrm{~J} / \mathrm{Kg}$ |
| Volumetric flow rate $=500 \mathrm{~cm}^{3} / \mathrm{s}=500 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$ |
| $\mathrm{D}=40 \mathrm{~mm}=0.04 \mathrm{~m}$ |
| Area of pipe $A=\frac{\Pi}{4} D^{2}=\frac{\Pi}{4}(0.04)^{2}==1.26 \times 10^{-3} \mathrm{~m}^{2}$ |
| Velocity at $B=u_{2}=\frac{500 \times 10^{-6}}{1.26 \times 10^{-3}}=0.40 \mathrm{~m} / \mathrm{s}$ |
| Velocity at $\mathrm{A}=\mathrm{u}_{1}=0$ |
| Pressure at $\mathrm{A}=\mathrm{P}_{1}$; Pressure at $\mathrm{B}=\mathrm{P}_{2}$ |
| The Bernoulli's equation between stations 1 and 2 is $\frac{P_{1}}{\rho}+\mathrm{gZ}_{1}+\frac{u_{1}^{2}}{2}+\eta_{\mathrm{w}_{\mathrm{p}}} \quad=\frac{P_{2}}{\rho}+\mathrm{gZ}_{2}+\frac{u_{2}^{2}}{2}+h_{f}$ | \& | 1 |
| :--- |
| 1 |
| 1 | \& 4

\hline
\end{tabular}

Model Answer

	Let A be the datum level. $\begin{aligned} & \therefore \mathrm{Z}_{1}=0, \mathrm{Z}_{2}=5 \mathrm{~m}, \mathrm{P}_{1}=\mathrm{P}_{2} \\ & \therefore \eta W p=\text { pump work }=\frac{u_{2}^{2}}{2}+\mathrm{h}_{\mathrm{f}}+\mathrm{gZ} 2 \\ & \quad=\frac{(0.4)^{2}}{2}+1+(9.81 \times 5)=\mathbf{5 0 . 1 3} \mathbf{~ J} / \mathbf{k g} \end{aligned}$	1	
4-a	Diagram and application of i) Socket For joining pipes of same diameter ii) Elbow (any one diagram) (a) 90° elbow (b) 45° elbow (c) long radius elbow For Changing the direction of flow.	1 mark each for diagram and applicatio n.	4
4-b	Given : $\begin{aligned} & \mathrm{S}=0.9 \\ & \mu=20 \mathrm{poise} \\ & \mathrm{~d}=20 \mathrm{~cm} \\ & \mathrm{Q}=10 \mathrm{lit} / \mathrm{sec} \end{aligned}$ $\mathrm{Q}=\mathrm{AV}$		4

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

	$\therefore \quad$ Flow velocity $\mathrm{V}=\frac{10 * 1000}{\frac{\Pi_{*}}{4} * 400}=31.83 \mathrm{~cm} / \mathrm{sec} .: \quad$ Reynold's number $\mathrm{R}_{\mathrm{e}}=$ $\frac{\rho V d}{\mu}=\frac{0.9 * 31.83 * 20}{20}=\mathbf{2 8 . 6 4}$ Thus the flow is laminar			1 2 1	
4-c	Reciprocating Compressor 1 These compressors cannot be directly coupled with the drive unit. 2 The			1 mark each	4
			Centrifugal Compressor		
			These compressors are directly coupled with the drive unit.		
	2	The compression process is isothermal because coolers are used.	The compression process is adiabatic because of high speed operation.		
	3	Slow speed machine.	High speed machine.		
	4	Can develop pressure upto $1 \mathrm{MN} / \mathrm{m}^{2}$	Can develop pressure upto $1000 \mathrm{~N} / \mathrm{m}^{2}$		
4-d	Pitot	Tube			4
	Const facing perpen dynam tubes differe	ruction :The pitot tube consist to the direction of flow and static dicular to the direction of flow. ic pressure and the static tube may be connected to the arms of nce.	f an impact tube, the opening of which ic tube, the opening of which is The impact tube measures the impact / easures the static pressure. The two manometer for measuring the pressure	2	

Model Answer

Subject code :(17426)

\begin{tabular}{|c|c|c|c|}
\hline \& \& 2 \& \\
\hline 4-e \& \begin{tabular}{l}
Given :
\[
\begin{aligned}
\& \mathrm{D}_{1}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\
\& \mathrm{D}_{2}=400 \mathrm{~mm}=0.4 \mathrm{~m} \\
\& \mathrm{Q}=250 \mathrm{lit} / \mathrm{sec}=0.25 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
\]
\[
\mathrm{A}_{1}=\text { cross sectional are of smaller pipe }
\]
\[
=\frac{\pi}{4}\left(\mathrm{D}_{1}\right)^{2}=\frac{\pi}{4}(0.2)^{2}=0.0314 \mathrm{~m}^{2}
\] \\
\(\mathrm{A}_{2}=\) cross sectional are of larger pipe
\[
=\frac{\pi}{4}\left(\mathrm{D}_{2}\right)^{2}=\frac{\pi}{4}(0.4)^{2}=0.1256 \mathrm{~m}^{2}
\] \\
\(\mathrm{U}_{1}=\) velocity of flowing fluid through smaller pipe
\[
\begin{aligned}
\& \quad \mathrm{U}_{1}=\frac{Q}{A_{1}}=\frac{0.25}{0.0314}=7.9617 \mathrm{~m} / \mathrm{sec} \\
\& \therefore \quad \text { Loss of head } \\
\& \mathrm{h}_{\mathrm{fe}}=\frac{U_{1}^{2}}{2}\left(1-\frac{A_{1}}{A_{2}}\right)^{2} \\
\& \mathrm{~h}_{\mathrm{fe}}=\frac{(7.9617)^{2}}{2}\left(1-\frac{0.0314}{0.1256}\right)^{2} \\
\& \mathbf{h}_{\mathrm{fe}}=\mathbf{1 7 . 8 2 8 0} \mathbf{~ J} / \mathbf{k g} .
\end{aligned}
\]
\end{tabular} \& 1

1
1
1 \& 4

\hline 4-f \& | Given : |
| :--- |
| Specific gravity of oil $=0.80$ | \& \& 4

\hline
\end{tabular}

WINTER-15 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Density of oil \(=\rho=0.80 \times 1000=800 \mathrm{~kg} / \mathrm{m}^{3}\) \\
Density of manometric fluid \(=\rho_{m}=13600 \mathrm{~kg} / \mathrm{m}^{3}\) \\
\(\mathrm{h}_{\mathrm{m}}=\) height of manometric fluid above the datum line
\[
=150 \mathrm{~mm}=150 \times 10^{-3} \mathrm{~m}
\] \\
\(\mathrm{h}_{\mathrm{m}}=\) height of flowing fluid (oil) above the \(\mathrm{z}-\mathrm{z}\) datum
\[
=150-90=60 \mathrm{~mm}=60 \times 10^{-3} \mathrm{~m}
\] \\
Pressure of oil in the pipeline or guage pressure at A is
\[
\begin{aligned}
\mathrm{P}_{\mathrm{A}} \& =\mathrm{h}_{\mathrm{m}} \rho_{m} \mathrm{~g}-\mathrm{h}_{\mathrm{m}} \rho_{m} \mathrm{~g} \\
\& =150 \times 10^{-3} \times 13600 \times(9.81-60) \times 10^{-3} \times 800 \times 9.81 \\
\& =19541.5 \mathrm{~N} / \mathrm{m}^{2} \\
\& =\mathbf{1 9 . 5 4} \mathbf{~ k N} / \mathbf{m}^{2}
\end{aligned}
\]
\end{tabular} \& 2

2 \&

\hline 5-a \& | Data: |
| :--- |
| Viscosity of oil $=0.97$ poise $=0.097 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ |
| Specific gravity of oil $=0.9$ |
| Density of oil $=$ sp.gravity of oil x density of water $=0.9 \times 1000=900 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Mass flow rate $=1000 / 30=3.334 \mathrm{~kg} / \mathrm{s}$ |
| Diameter of pipe: $\mathrm{D}=100 \mathrm{~mm}=0.1 \mathrm{~m}$ |
| Length of pipe $=10 \mathrm{~m}$ |
| Area of pipe $=\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi(0.1)^{2} / 4=7.85 * 10^{-3} \mathrm{~m}^{2}$ |
| $\dot{m}=\rho \mathrm{vA}$ $\mathrm{V}=\quad \dot{\mathrm{m}} / \rho \mathrm{A}=3.334 /\left(900 * 7.85 * 10^{-3} \mathrm{~m}^{2}\right)=0.4713 \mathrm{~m} / \mathrm{s}$ |
| Hagen Poiseille's equation is $\quad \Delta \mathrm{P}=32 \mu \mathrm{VL} / \mathrm{D}^{2}$ $\Delta \mathrm{P}=32 * 0.097 * 0.4713 * 10 / 0.1^{2}=\mathbf{1 4 6 2 . 9 N} / \mathbf{m}^{2}$ | \& 1

1
1
1

2
3 \& 8

\hline 5-b \& | Data |
| :--- |
| $\mathrm{D} 1=30 \mathrm{~cm}=0.3 \mathrm{~m}$ Area of pipe $1=\mathrm{A}_{1}=\pi / 4 \mathrm{D}_{1}{ }^{2}=\pi / 4^{*}(0.3)^{2}=0.0706 \mathrm{~m}^{2}$ |
| $\mathrm{D} 2=20 \mathrm{~cm}=0.2 \mathrm{~m}$ Area of pipe $2=\mathrm{A}_{2}=\pi / 4 \mathrm{D}_{2}{ }^{2}=\pi / 4 *(0.2)^{2}=0.0314 \mathrm{~m}^{2}$ | \& 2 \& 8

\hline
\end{tabular}

Model Answer

Subject code :(17426)

	$\mathrm{D} 3=15 \mathrm{~cm}=0.15 \mathrm{~m}$ Area of pipe $3=\mathrm{A}_{3}=\pi / 4 \mathrm{D}_{3}{ }^{2}=\pi / 4^{*}(0.15)^{2}=0.0176 \mathrm{~m}^{2}$ Volumetric flow rate of water in a pipe 1 (dia. 30 cm) $=\mathrm{Q}_{1}=\mathrm{u}_{1} \mathrm{~A}_{1}$ $\mathrm{Q}_{1}=2.5 * 0.0706=\quad \mathbf{0 . 1 7 6 5} \mathrm{m}^{3} / \mathrm{s}$ Volumetric flow rate of water in a pipe2(dia. 20 cm) $=\mathrm{Q}_{2}=\mathrm{u}_{2} \mathrm{~A}_{2}=2 * 0.0314$ $=0.0628 \mathrm{~m}^{3} / \mathrm{s}$ From continuity equation mass flow in system = mass flow from the system mass flow in pipe $1=$ mass flow in pipe $2+$ pipe flow in pipe 3 $\begin{aligned} & \dot{m}_{1}=\dot{m}_{2}+\dot{m}_{3} \\ & 0.1765=0.0628+0.0176 \mathrm{U}_{3} \\ & \mathrm{u}_{3}=0.1137 / 0.0176=\mathbf{6 . 4 6} \mathbf{~ m} / \mathbf{s} \end{aligned}$	2 2	
5-c	Diameter of pipe: $\mathrm{D}=50 \mathrm{~mm}=0.05 \mathrm{~m}$ Orifice diameter: $\mathrm{Do}=10 \mathrm{~mm}=0.01 \mathrm{~m}$ $\Delta \mathrm{h}=10 \mathrm{~cm}=0.10 \mathrm{~m}$ Density of mercury: $\square \mathrm{Hg}=13,600 \mathrm{~kg} / \mathrm{m}^{3}$ $\square \mathrm{H}_{2} \mathrm{SO}_{4}=$ Sp.gravity of acid x density of water $=1.3 \times 1000=1300 \mathrm{~kg} / \mathrm{m}^{3}$ Differential pressure on mercury manometer $=10 \mathrm{~cm}$ of mercury $\begin{aligned} & \Delta \mathrm{H}=\Delta \mathrm{h}\left[\frac{\square_{\mathrm{Hg}}-\square_{\mathrm{H} 2 \mathrm{O}}}{\square_{\mathrm{H} 2 \mathrm{O}}}\right]=0.1\left[\frac{13600-1300}{1300}\right]=0.946 \mathrm{~m} \text { of acid } \\ & \square=\text { Diameter of orifice /Diameter of pipe }=0.01 / 0.05=0.2 \end{aligned}$ Area of orifice $=A_{o}=\frac{\pi}{4} D_{o}^{2}=\frac{\pi}{4}(0.01)^{2}=7.85 * 10^{-5} \mathrm{~m}^{2}$ The flow equation of orifice meter $\begin{array}{r} Q=\frac{C_{o} A_{0} \sqrt{2 g \Delta H}}{\sqrt{1-\beta^{4}}}=\frac{0.63 * 7.85 * 10^{-5} \sqrt{2 * 9.81 * 0.946}}{\sqrt{1-(0.2)^{4}}} \\ Q=0.000212 \mathrm{~m}^{3} / \mathrm{s} \end{array}$ Approximate loss of pressure $=\Delta P=h . \square \mathrm{g}$	2 1 1 1 1	8

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426)

6-a	Gear Pump: Diagram:		

Model Answer

Subject code :(17426)

	$\begin{aligned} & \mathrm{P}_{2}=22.563 \mathrm{~N} / \mathrm{cm}^{2}=22.563 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{Z}_{1}=28 \mathrm{~m} \\ & \mathrm{Z}_{2}=30 \mathrm{~m} \end{aligned}$ Total head at point $1=-\quad-$ $=\square \quad=89.35 \mathrm{~m} \text { of water }$ Total head at point $2=-\quad-$ $\begin{gathered} =-\quad=23+31.85+30 \\ =84.85 \mathrm{~m} \text { of water } \end{gathered}$ Loss of head $=$ Total head at point $1-$ Total head at point 2 $=89.35-84.85=4.5 \mathrm{~m}$	2 2 2	
6-c	STEAM JET EJECTOR Diagram Steam jet ejector	4	8

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-15 EXAMINATION

Model Answer

	Working : In steam jet ejector ,low pressure gas is entrained in high pressure steam. then carried into a venturi shaped diffuser which converts the kinetic energy of the steam into pressure energy. The vapours along with steam are finally discharged thro the ejector.it handles large volumes of vapour at low pressures.it is suitable for corrosive fumes or vapours.	4	

