

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **1** of **20**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **2** of **20**

Q No.	Answer	marks	Total marks
1a-i	Kinematic viscosity with its unit:	1	2
	Kinematic viscosity: It is the ratio of viscosity of the fluid to its density		
	Unit in SI is m ² /s	1	
1a-ii	Compressible fluid		2
	If the density of the fluid is appreciably affected by moderate changes in		
	temperature and pressure, the fluid is said to be compressible.		
	Incompressible fluid	1	
	If the density of the fluid is not appreciably affected by moderate changes in		
	temperature and pressure, the fluid is said to be compressible.		
1a-iii	Reynold's Number is a dimension less number which indicates the nature of	2	2
	flow. It is the ratio of inertial force to viscous force.		
1a-iv	Relation between friction factor and Reynold's number		2
	For laminar flow: $f = \frac{16}{NRe}$	1	
	for turbulent flow:		
	$f = 0.078/(N_{Re})^{0.25}$ or $1/\sqrt{f} = 4 \log(N_{Re}\sqrt{f}) - 0.4$	1	
1a-v	Different types of pipe fittings:(any four)	½ mark	2
	Union, coupler, plug, reducer, expander, bend, elbow, tee, cross	each	
1a-vi	Pump used for viscous fluids: Gear pump	2	2
1a-vii	Two vacuum generating equipments: vacuum pump, jet ejectors	1 mark	2
		each	
1b-i	Derivation of equation of continuity:		4
	Mass balance states that for a steady state flow system, the rate of mass	1	
	entering the flow system is equal to that leaving the system provided		
	accumulation is either constant or nil.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer

Subject code :(17426) Page 3 of 20

		rage 3 or 20
A_1 V_2 A_2		
Let v_1 , ρ_1 & A_1 be the avg. velocity, density& area at entrance of tube &v_2 ρ_2 &		
A_2 be the corresponding quantities at the exit of tube.	2	
Let be the mass flow rate	2	
Rate of mass entering the flow system = $v_1 \rho_1 A_1$		
Rate of mass leaving the flow system = $v_2 \rho_2 A_2$		
Under steady flow conditions		
$= \rho_1 v_1 A_1 = \rho_2 v_2 A_2$	1	
ρν A = constant Equation of continuity	1	
1B-ii DiaphragmValve:		4
Spindle/stem diaphragm(open Body position Diagram of gate valve	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page 4 of 20 Stem Fully open position 2 Body 1B-iii 2 **Air Binding**: 4 The pressure developed by the pump impeller is proportional to the density of fluid in the impeller. If air enters the impeller, the pressure developed is reduced by a factor equal to the ratio of the density of air to the density of liquid. Hence, for all practical purposes the pump is not capable to force the liquid through the delivery pipe. This is called Air binding Reason for priming is required in centrifugal pump: 2 The pressure generated by a centrifugal pump is directly proportional to the density of the fluid that is in contact with it. Therefore if the impeller is made to rotate in the presence of air, only negligible pressure will be produced and no liquid will be lifted by the pump. Hence it is necessary to fill the suction pipe, pump casing and portion of the delivery pipe with the liquid to be pumped before starting the pump by priming. 2-a Diagram of inclined tube manometer:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code:(17426) Page 5 of 20

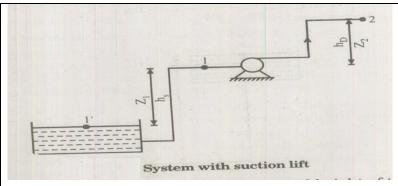
gect code :(17426)	Page 5 c	Page 5 of 20	
Pressure Po R Anometric Fluid Pressure Pressure Pressure Pressure Pressure Po Pb Anometric Social and leg	2		
It is used for the measurement of small pressure difference. One arm of the manometer is inclined at an angle so as to obtain a larger reading. In the vertical leg of this type of manometer an enlargement is provided. Equation to calculate pressure drop is $P_a - P_b = \Delta P = R_1 \sin\alpha \ (\rho_{m^-} \ \rho) g \ \ \text{where} \ \ \rho_m \ \text{is the density of manometric fluid}$ and ρ is the density of flowing fluid.	2		
2-b Expression to calculate velocity distribution for flow of viscous fluid: $U = U_{max} \left[1 - (r/r_w)^2 \right]$ Where r_w is the radius of the pipe where velocity is zero U_{max} is the maximum velocity at the center of the pipe where radius is zero. $U \text{ is the velocity when the distance from the center of the pipe is r.}$ Diagram: $Atr = r_w$ $u = 0$ $Atr = r_w$ $u = 0$	2	4	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer

Subject code:(17426) Page 6 of 20

2-c	Rupture disc:	4	
20	Insert Type		
	Rupture Disk		
	PRESSURE		
	Rupture disc, is a non-reclosing pressure relief device that, protects a pressure		
	vessel, equipment or system from over -pressurization or potentially damaging		
	vacuum conditions. A rupture disc is a one-time-use membrane. They can be		
	used as single protection devices or as a backup device for a conventional		
	safety valve; if the pressure increases and the safety valve fails to operate (or		
	can't relieve enough pressure fast enough), the rupture disc will burst. Rupture		
	discs are very often used in combination with safety relief valves, isolating the		
	valves from the process, thereby saving on valve maintenance and creating a		
	leak-tight pressure relief solution. The membrane is generally made up of metal.		
-d	NPSH for a system with suction lift. NPSH stands for Net positive Suction	1	
	Head. It is the amount by which the pressure (sum of velocity and pressure		
	head) at the suction point of the pump is in excess of vapour pressure of the		
	liquid.		


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **7** of **20**

If Z_1 is the static suction lift(also denoted by hs), it is the vertical height of the center line of the pump shaft above the liquid surface in the reservoir from which the liquid being raised.

 Z_2 is the static delivery lift(h_D),it is the vertical height of the liquid surface in the tank to which the liquid is delivered above the center line of pump shaft.

NPSH = (Absolute pressure head at suction point 1) - (vapour pressure head)

Pv = vapour pressure of liquid at pumping temp.

The Bernoulli eqn in terms of m of liquid between stations 1' & 1 is

If $= 0 \& u_1' = 0$

_ _ _ _

3

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

2-f

Venturimeter:

ect cod	de :(17426)		Page 8 of 20
	Rearranging we get		
	$\frac{P_1}{\rho g} + \frac{u_1^2}{2g} = \frac{P_1'}{\rho g} - Z_1 - h_{fs}$		
	Therefore we can write		
	$NPSH = \frac{P_1'}{\rho g} - \frac{P_v}{\rho g} - Z_1 - h_{fs}$		
	Where,		
	Z_1 = height of pump from the level of liquid in the tank		
	P_1' = Pressure at the eye of impeller		
	P _v = Vapour pressure of liquid		
	h _{fs} =Head lost due to friction on suction side.		
2-е	Friction loss due to sudden contraction:		4
	When pipe diameter and hence the flow area suddenly decreases from A_1 to A_2		
	with subsequent increase in flow velocity (jetting action) the flow area	2	
	becomes minimum (less than A ₂) at venacontracta. The space between pipe		
	wall and jet is filled with eddies.		
	The frictional loss due to sudden contraction is proportional to velocity head in		
	of the fluid in the small diameter pipe.		
	$h_{fc} = K_c \frac{V_{2^2}}{2g}$		
	$K_c = 0.4 \left(1 - \frac{A_2}{A_1}\right)$	2	
	Where h_{fc} is the head loss due to sudden contraction.		
	A ₁ - area of larger pipe.		
	A ₂ - area of smaller pipe.		
	V ₂ - velocity of fluid in the small diameter pipe.		
			l .

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **9** of **20**

ojeci cou	e:(1/426)	Г	age 9 or 20
	Diagram		
	HIGH PRESSURE TAP 19° TO 23° THROAT INLET CONVERGENT OUTLET CONE THOUSE OUTLET CONE	2	
	Construction.		
	The venturimeter consists of		
	1. A convergent section section with converging cone angle of 15-20°,		
	where the fluid is accelerated.	2	
	2. A throat where the area is constant with its length equal to diameter.		
	3. A long diverging section with cone angle of about 5-7° where the fluid is accelerated.		
	The high pressure tap is located on inlet section while low pressure tap is		
	located at the middle of throat, the manometer is connected between		
	thesetaps. The venturi tube is made up of cast iron or steel		
3-a	U tube manometer:		4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject

code :(17426)		Page 10 of 20
	1	
The U-tube manometer shows a reading of h ₂ of heavy liquid. The interface		
between the heavy liquid and the light liquid of which the pressure is to be		
measured is h_1 meters below the point of attachment A.		
For a U-tube manometer		
h_1 = Heihgt of light liquid above the datum line	3	
h_2 = Heihgt of heavy liquid above the datum line		
ρ_1 = Density of light liquid		
ρ_2 = Density of heavy liquid		
Let,		
x-x' = The datum line		
h_1 = Heihgt of light liquid above the datum line		
h_2 = Heihgt of heavy liquid above the datum line		
Pressure in left arm above the datum line $= P + \rho_1 h_1 g$, N/m^2 .		
Pressure in right arm above the datum line = $\rho_2 h_2 g$, N/m ² .		
Since the pressure in both the arms above z-z datum is equal, we can write		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **11** of **20**

	$P + \rho_1 h_1 g = \rho_2 h_2 g$		
	$\mathbf{P} = (\rho_2 \mathbf{h}_2 \mathbf{g} - \rho_1 \mathbf{h}_1 \mathbf{g})$		
3-b	Non return valve:	2	4
	Close position		
	Uses of non-return valve :		
	1)It is used in horizontal pipe lines so that at the start of closing the valve the	2	
	gravity force is maximum and it becomes minimum at the time of closing.		
	2)It is used when unidirectional flow is desired.		
3-с	Factors which influences the choice of pumps :	1 mark	
	1) The quantity of liquid to be handled.	each	4
	2) The head against which the liquid to be pumped.		
	3) The nature of power supply		
	4)The flow rate required.		
3-d	Non-Newtonian Fluid	1	4
	A fluid, which does not obey Newton's law of viscosity is known as Non-		
	Newtonian Fluid.		
	Common types of Non-Newtonian Fluid:		
	1.Bingham Fluids or Bingham Plastics :		
	These fluids resist a small shear stress indefinitely but flow linealy under the	1	
	action of larger shear stress, i.e., these fluids do not deform i.e., floe unless of		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer

Subject code :(17426) Page **12** of **20**

	` ,	_	
	threshold shear stress value ($ au_0$) is not exceeded.		
	Eg: Toothpaste,. Jellies, paints, sewage sludge.		
	2.Pseudoplastic fluids:		
	The viscosity of these fluids decreases with increase in velocity gradient, i.e.,	1	
	shear rate.		
	Eg: Blood, solution of high molecular weight polymers, paper pulp, muds.		
	3.Dilatent Fluid:		
	The viscosity of these fluids increases with increase in velocity gradient.	1	
	Eg: Suspension of starch in water, pulp in water		
3-е	Use of fan as a pumping device :	1 mark	
	1) For removal of fumes.	each	4
	2) For ventilation work.		
	3) For supplying air to dryers		
	4) Suppling draft to boilers.		
3-f	Pressure at A = Pressure at B = 101.325 kPa		
	Density of liquid = $\rho = 1150 \text{kg/m}^3$		4
	h_f = Frictional losses = 1 J / Kg		
	Volumetric flow rate = $500 \text{ cm}^3/\text{s} = 500 \times 10^{-6} \text{ m}^3/\text{s}$		
	D = 40 mm = 0.04 m		
	Area of pipe $A = \frac{\Pi}{4} D^2 = \frac{\Pi}{4} (0.04)^2 = 1.26 \times 10^{-3} \text{ m}^2$	1	
	Velocity at B = $u_2 = \frac{500 \times 10^{-6}}{1.26 \times 10^{-3}} = 0.40$ m/s	1	
	Velocity at $A = u_1 = 0$	1	
	Pressure at $A = P_1$; Pressure at $B = P_2$		
	The Bernoulli's equation between stations 1 and 2 is		
	$\frac{P_1}{\rho} + gZ_{1+} \frac{u_1^2}{2} + \eta_{Wp} = \frac{P_2}{\rho} + gZ_{2+} \frac{u_2^2}{2} + h_f$	1	
		1	l

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page 13 of 20

Jeer coc	de .(17420)	i age	13 01 20
	Let A be the datum level.		
	$\therefore Z_1 = 0, Z_2 = 5m, P_1 = P_2$		
	$\therefore \eta Wp = pump \ work = \frac{u_2^2}{2} + h_f + gZ_2$		
	$= \frac{(0.4)^2}{2} + 1 + (9.81 \times 5) = 50.13 J/kg$	1	
4-a	Diagram and application of i) Socket	1 mark each for diagram and applicatio n.	4
	For joining pipes of same diameter ii) Elbow(any one diagram)		
	(a) 90° elbow (b) 45° elbow (c) long radius elbow For Changing the direction of flow.		
4-b	Given:		4
	S = 0.9		
	$\mu = 20 \text{ poise}$		
	d = 20 cm		
	Q = 10 lit/sec		
	Q = AV		

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **14** of **20**

J	`					•
	:		Flow velocity V = $\frac{10*1000}{\frac{\Pi}{4}*400}$ = 31	1.83 cm/sec: Reynold's number $R_e =$	1	
	$\frac{\rho V \alpha}{\mu}$	<u>t</u> =	$=\frac{0.9*31.83*20}{20} == 28.64$			
			he flow is laminar		2	
					1	
4-c			Γ		1 mark	4
			Reciprocating Compressor	Centrifugal Compressor	each	
		1	These compressors cannot be directly coupled with the drive unit.	These compressors are directly coupled with the drive unit.		
		2	The compression process is isothermal because coolers are used.	The compression process is adiabatic because of high speed operation.		
		3	Slow speed machine.	High speed machine.		
		4	Can develop pressure upto 1MN/m ²	Can develop pressure upto 1000N/m ²		
4-d	Pit	ot T	Tube			4
	Co	nstı	ruction: The pitot tube consist o	of an impact tube, the opening of which		
	fac	ing	to the direction of flow and stati	ic tube, the opening of which is	2	
	per	pen	dicular to the direction of flow.	The impact tube measures the impact /		
	dyı	nam	ic pressure and the static tube m	easures the static pressure. The two		
	tub	es r	nay be connected to the arms of	manometer for measuring the pressure		
	dif	fere	nce.			

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **15** of **20**

	Static opening Manometric fluid	2	
4-e	Given:		4
	$D_1 = 200 \text{ mm} = 0.2 \text{m}$ $D_2 = 400 \text{mm} = 0.4 \text{m}$		
	$Q = 250 \text{lit/sec} = 0.25 \text{m}^3/\text{sec}$		
	A_1 = cross sectional are of smaller pipe	1	
	$= \frac{\pi}{4} (D_1)^2 = \frac{\pi}{4} (0.2)^2 = 0.0314 \text{m}^2$		
	$A_2 = cross sectional are of larger pipe$		
	$= \frac{\pi}{4} (D_2)^2 = \frac{\pi}{4} (0.4)^2 = 0.1256 \text{m}^2$		
	U_1 = velocity of flowing fluid through smaller pipe		
	$U_1 = \frac{Q}{A_1} = \frac{0.25}{0.0314} = 7.9617 \text{ m/sec}$	1	
	∴ Loss of head		
	$h_{fe} = \frac{U_1^2}{2} \left(1 - \frac{A_1}{A_2}\right)^2$	1	
	$h_{fe} = \frac{(7.9617)^2}{2} \left(1 - \frac{0.0314}{0.1256}\right)^2$		
	$h_{fe} = 17.8280 \text{ J/kg.}$	1	
4-f	Given:		4
	Specific gravity of oil = 0.80		

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **16** of **20**

ject cout	5.(17420)		rage 10 01 20
	Density of oil = $\rho = 0.80 \times 1000 = 800 \text{ kg/m}^3$		
	Density of manometric fluid = $\rho_m = 13600 \text{ kg/m}^3$		
	h _m = height of manometric fluid above the datum line	2	
	$= 150 \text{ mm} = 150 \times 10^{-3} \text{ m}$		
	h _m = height of flowing fluid (oil) above the z-z datum		
	$= 150 - 90 = 60 \text{ mm} = 60 \times 10^{-3} \text{ m}$		
	Pressure of oil in the pipeline or guage pressure at A is		
	$P_{A} = h_{m} \rho_{m} g - h_{m} \rho_{m} g$ $= 150 \times 10^{-3} \times 13600 \times (9.81-60) \times 10^{-3} \times 800 \times 9.81$ $= 19541.5 \text{ N/m}^{2}$	2	
	$= 19.54 \text{ kN/m}^2$		
5-a	Data:		8
	Viscosity of oil = 0.97 poise = 0.097 kg/m.s		
	Specific gravity of oil = 0.9		
	Density of oil = sp.gravity of oil x density of water = $0.9 \times 1000 = 900 \text{kg} / \text{m}^3$	1	
	Mass flow rate = $1000/30 = 3.334 \text{ kg/s}$	1	
	Diameter of pipe: $D = 100 \text{ mm} = 0.1 \text{ m}$		
	Length of pipe = 10 m		
	Area of pipe = A = $\pi / 4 D^2 = \pi (0.1)^2 / 4 = 7.85 * 10^{-3} m^2$	1	
	$\dot{m} = \rho \text{ vA}$		
	$V = \dot{m} / \rho A = 3.334 / (900 * 7.85 * 10^{-3} \text{m}^2) = 0.4713 \text{ m/s}$	2	
	Hagen Poiseille's equation is $\Delta P = 32 \mu VL / D^2$	3	
	$\Delta P = 32 * 0.097*0.4713*10 / 0.1^2 = 1462.9 \text{N /m}^2$		
5-b	Data		8
	D1 = 30 cm = 0.3 m Area of pipe 1 = $A_1 = \pi / 4$ $D_1^2 = \pi / 4*(0.3)^2 = 0.0706$ m ² D2 = 20 cm = 0.2 m Area of pipe 2 = $A_2 = \pi / 4$ $D_2^2 = \pi / 4*(0.2)^2 = 0.0314$ m ²	2	
	22 25 cm 512 m Theo of pipe 2 112 N/1 (5.2) = 5.051 fm		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **17** of **20**

3			5
	D3 = 15 cm = 0.15m Area of pipe 3 = $A_3 = \pi / 4 D_3^2 = \pi / 4*(0.15)^2 = 0.0176 m^2$		
	Volumetric flow rate of water in a pipe1(dia.30 cm) = $Q_1 = u_1A_1$	2	
	$Q_1 = 2.5 * 0.0706 = $ 0.1765 m³/s	2	
	Volumetric flow rate of water in a pipe2(dia.20 cm) = $Q_2 = u_2A_2 = 2 * 0.0314$		
	$= 0.0628 \text{ m}^3/\text{s}$	2	
	From continuity equation mass flow in system = mass flow from the system		
	mass flow in pipe 1 = mass flow in pipe 2 + pipe flow in pipe 3 $\dot{m}_{1} = \dot{m}_2 + \dot{m}_3$	2	
	$0.1765 = 0.0628 + 0.0176U_3$		
	$u_3 = 0.1137/0.0176 = 6.46 \text{ m/s}$		
5-c	Diameter of pipe: D= 50 mm = 0.05 m		8
	Orifice diameter: Do = 10 mm =0.01 m		
	$\Delta h = 10 \text{ cm} = 0.10 \text{ m}$		
	Density of mercury : \Box Hg = 13,600 kg/m ³		
	\Box H ₂ SO ₄ =Sp.gravity of acid x density of water = 1.3 x 1000 = 1300 kg/m ³		
	Differential pressure on mercury manometer = 10 cm of mercury		
	$\Delta H = \Delta h \left[\frac{\Box_{Hg} - \Box_{H2O}}{\Box_{H2O}} \right] = 0.1 \left[\frac{13600 - 1300}{1300} \right] = 0.946 \text{ m of acid}$	2	
	\Box = Diameter of orifice /Diameter of pipe = 0.01 /0.05 = 0.2	1	
	Area of orifice = $A_o = \frac{\pi}{4}D_o^2 = \frac{\pi}{4}(0.01)^2 = 7.85*10^{-5}\text{m}^2$	1	
		1	
	The flow equation of orifice meter	1	
	$Q = \frac{C_0 A_0 \sqrt{2g\Delta H}}{\sqrt{1-\beta^4}} = \frac{0.63*7.85*10^{-5} \sqrt{2*9.81*0.946}}{\sqrt{1-(0.2)^4}}$		
	$Q = 0.000212 \text{ m}^3/\text{s}$		
	Approximate loss of pressure = $\Delta P = h$. \Box g	3	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **18** of **20**

			· ·
	$\Delta P = 0.946x1300x9.81$		
	$\Delta P = 12064 \text{ N/m}^2$		
6-a	Gear Pump:		8
	Diagram:		
	SUCTION	4	
	Gear pump	'	
	Working:		
	The liquid to be pumped enters in pump through the inlet connection. As one of		
	the gear wheel is driven by the electric motor ,the other gear wheel also rotates		
	inside the casing. Due to rotation of both the gear wheels, there is reduction in		
	pressure at the inlet. Therefore the liquid entered in casing is carried round in		
	the space between the gear teeth & the casing during the rotation of the gear		
	wheels & after further rotation the liquid is pumped out of the discharge side	4	
	as the teeth come into mesh.		
	Used in chemical industry for handling high viscosity liquids like		
	molasses,paints&greases.But not suitable for liquids having suspensions due to		
	closed clearance between the gear wheels & teeth.		
6-b	Data:		8
	Velocity of water = 25 m/s (constant, $u_1 = u_2$)		
	$P_2 = 29.43 \text{ N/cm}^2 = 29.43 \text{ x } 10^4 \text{ N/m}^2$	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer

Subject code:(17426) Page 19 of 20

bject code	:(17420)		Page 19 01 20
	$P_2 = 22.563 \text{ N/cm}^2 = 22.563 \text{ x } 10^4 \text{ N/m}^2$		
	$Z_1 = 28 \text{ m}$		
	$Z_2 = 30 \text{ m}$		
	Total head at point $1 =$		
	= =89.35 m of water	2	
	Total head at point $2 =$		
	= = 23 +31.85 +30	2	
	=84.85 m of water		
	Loss of head = Total head at point 1 – Total head at point 2		
	= 89.35-84.85 = 4.5 m	2	
6-c	STEAM JET EJECTOR		8
	Diagram		
	Operating steam Steam nozzle Vaccum gauge connection Suction chamber Self-centering flange	4	
	Steam jet ejector		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17426) Page **20** of **20**

Working:	
In steam jet ejector ,low pressure gas is entrained in high pressure steam.	4
The vapour from the process equipment is sucked & entrained by steam,&	
then carried into a venturi shaped diffuser which converts the kinetic energy of	
the steam into pressure energy.	
The vapours along with steam are finally discharged thro the ejector.it handles	
large volumes of vapour at low pressures.it is suitable for corrosive fumes or	
vapours.	