SUMMER-15 EXAMINATION

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-15 EXAMINATION

Model Answer

Q No.	Answer	marks	Total marks
1A-a	Density: It is the mass per unit volume of a substance Weight density: It is the weight of unit volume of fluid.	1	2
1A-b	Classification of fluids based on Density: Compressible fluids and incompressible fluids Viscosity: Ideal and actual (real) fluid.	1 1	2
1A-c	Critical velocity. It is the velocity at which the flow changes from laminar to transition.	2	2
1A-d	$\begin{aligned} & \mathrm{NRe}=10000 \\ & \mathrm{f}=0.078 /\left(\mathrm{N}_{\mathrm{Re}}\right)^{0.25}=0.0078 \end{aligned}$	2	2
1A-e	Different types of pipe fittings:(any four) Union, coupler, plug, reducer, expander, bend, elbow, tee, cross	$1 / 2$ mark each	2
1A-f	Merits of positive displacement pump: 1. It does not need priming. 2. Can be used for low capacity and high heads. 3. Efficiency is high. 4. Designed for higher heads. 5. Can develop high pressure.	1mark each for any 4 points	2
1A-g	Application of steam jet ejector: 1, used for handling corrosive gases that would damage mechanical vacuum pump.	2	2

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

	2. It is used for handling large volume of vapour at low pressure.		
1B-a	Derivation of equation of continuity: Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil. Let $\mathrm{v}_{1}, \rho_{1} \& \mathrm{~A}_{1}$ be the avg. velocity, density\& area at entrance of tube \& $\mathrm{v}_{2} \rho_{2} \&$ A_{2} be the corresponding quantities at the exit of tube. Let \dot{m} be the mass flow rate Rate of mass entering the flow system $=v_{1} \rho_{1} A_{1}$ Rate of mass leaving the flow system $=v_{2} \rho_{2} A_{2}$ Under steady flow conditions $\begin{aligned} & \dot{m}=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{v}_{2} \mathrm{~A}_{2} \\ & \dot{m}=\rho v \mathrm{~A}=\text { constant } \quad \ldots . . . \quad \text { Equation of continuity } \end{aligned}$	1	4
1B-b	DiaphragmValve:	2	4

SUMMER-15 EXAMINATION

Model Answer

	Butterfly valve:	2	
1B-c	Characteristics curve of centrifugal pump: The characteristics curve shows the relationship between discharge and the various parameters like head, power and efficiency. From the H-Q curve, it is clear that head increases continuously as the capacity is decreased. The $\eta-Q$	2	4

SUMMER-15 EXAMINATION

Model Answer

| | curve shows that η reaches a maximum and then falls. The duty point ie the
 point where the $\mathrm{H}-\mathrm{Q}$ curve cuts the ordinate through the point of maximum
 efficiency shows the optimum operating conditions. The difference between
 power input and power output represents the power lost in the pump due to
 friction, leakages etc. | |
| :--- | :--- | :--- | :--- |
| 2-a | U tube manometer:
 Diagram: | |

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

	Friction caused by eddies when an obstruction is present in the line of flow. Skin friction: Friction between a moving fluid and wall of pipe. It is due to the roughness of the pipe. When fluid is flowing through a straight pipe, only skin friction exists.	2	2	
2-c	Diagram of Rupture disc:		4	4

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

	$\mathrm{f}=0.078 /\left(\mathrm{N}_{\mathrm{Re}}\right)^{0.25}$ or $\quad 1 / \sqrt{\mathrm{f}}=4 \log \left(\mathrm{~N}_{\mathrm{Re}} \sqrt{ } \mathrm{f}\right)-0.4$	2	
2-f	Venturimeter PRINCIPLE: It works on the Bernoulli's principle. It is a variable head meter. Venturi reduces the flow area thus creating differential pressure across it. Any changes in fluid flow rate through venturi are measured in terms of differential pressure across it.	2	4
3-a	$\begin{gathered} \mathrm{P}=\mathrm{h} \rho \mathrm{~g} \\ \mathrm{P}=\mathrm{h}_{1} \rho_{1} \mathrm{~g}=\mathrm{h}_{2} \rho_{2} \mathrm{~g} \\ 60 \times 13.6=\mathrm{h}_{2} \times 1 \\ \therefore \mathrm{~h}_{2}=\frac{60 \times 13.6}{1} \\ =\mathbf{8 1 6 . 0} \mathbf{~ c m ~ o f ~} \mathbf{H}_{2} \mathbf{O} \text { Column } \end{gathered}$	1 1 1 1	4
3-b	Types of valves used in industry : i) Globe Valve ii) Gate Valve iii) Needle Valve iv) Ball Valve v) Diaphragm Valve vi) Check Valve	1 mark each for any 4	4

SUMMER-15 EXAMINATION

Model Answer

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { vii) } \text {) Butterfly Valve } \\ \text { viii) Pressure Release Valve }\end{array} & & \\ \hline \text { 3-c } & \begin{array}{l}\text { Classification of Pumps with Examples : } \\ \text { i) Positive Displacement Pump } \\ \text { a) Reciprocating eg : Piston pump, Plunger pump } \\ \text { b) Rotary eg : Gear pump, lobe pump, screw pump } \\ \text { ii) Non - Positive Displacement Pump } \\ \text { a) Centrifugal eg : Volute diffuser } \\ \text { b) Regeneration } \\ \text { c) Turbine } \\ \text { iii) Special Pump }\end{array} & 1 & 1\end{array}\right\}$

SUMMER-15 EXAMINATION

Model Answer

	$\begin{aligned} & \mu=\text { Coefficient of viscosity } \\ & \frac{d v}{d x}=\text { Shear rate } \end{aligned}$		
3-f	NPSH for a system with suction lift - is the necessary suction for lifting of liquid from a reservoir which is below the central line of pump. NPSH stands for Net positive Suction Head. It is the amount by which the pressure (sum of velocity and pressure head) at the suction point of the pump is in excess of vapour pressure of the liquid. Formula used for NPSH is, $\mathrm{NPSH}=-\mathrm{Z}_{\mathrm{s}}+\frac{\text { Ps.Pvap }}{\rho}-\mathrm{h}_{\mathrm{fs}}$ Where, $\mathrm{Z}_{\mathrm{s}}=$ height of pump from the level of liquid in the tank (for lift suction $Z_{s}=-v e$) $\mathrm{P}_{\mathrm{s}}=$ Pressure at the eye of impeller $\mathrm{P}_{\text {vap }}=$ Vapour pressure of liquid $\mathrm{h}_{\mathrm{fs}}=$ Head lost due to friction on suction side.	02 02	4
4-a	Sketches of Pipe fittings with their uses : i)Joining two pipes.,e.g., Coupling/socket, union, nipple Nipple ii) Changing pipeline diameter .,e.g.,reducer, expander	1 mark each for any 4 pipe fitting with its use	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)
 SUMMER-15 EXAMINATION

Model Answer

SUMMER-15 EXAMINATION

Model Answer

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)
$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { Construction: } \\ \text { Reciprocating compressors are available either as a single-stage or } \\ \text { multistage units for pressures as high as } 240 \text { Mpa.A reciprocating compressor } \\ \text { incorporates a piston,a cylinder with intake \& exhaust valves and a crank shaft } \\ \text { with a drive. These units operate mechanically in the same manner as the } \\ \text { reciprocating pumps and are usually double acting. The cylinder of the } \\ \text { compressor is usually water jacketed to remove heat of compression. The } \\ \text { reciprocating compressors are usually belt driven from an electric motor. } \\ \text { When it is not possible to achieve the required compression ratio with single } \\ \text { stage units, multistage units are used. In case of multistage compressors, it is } \\ \text { general practice to cool the gas between the stages. For cooling purpose, } \\ \text { coolers are employed. } \\ \text { Calibration of rotameter: The calibration chart for a given rotameter } \\ \text { prepared over its entire range is a relationship between the rotameter reading } \\ \text { (i.e.,height of float,float position) and the volumetric flow rate. } \\ \text { For calibrating a given rotameter, the flow of fluid (liguid e.g.,Water) } \\ \text { through the meter is started by slightly opening a valve at the inlet to the } \\ \text { meter. Time is allowed to attain steady state \& for this valve opening, the float } \\ \text { position is noted \& the liquid is collected in a measuring tank over a known } \\ \text { period of time. The volumetric flow rate is obtained from the volume collected } \\ \& \text { the time noted. This procedure is repeated for several valve positions to } \\ \text { cover the entire range of the meter \& the calibration chart is prepared. } \\ \text { On the calibration chart,we should provide information such as : } \\ \text { name,density \& temperature of the fluid handled. } \\ \text { Volumetric flow rate = volume ofliquid collected } \\ \text { Calibration chart for rotameter }\end{array} & 2\end{array}\right\}$

Model Answer

Solution:			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-15 EXAMINATION

Model Answer

	$\mathrm{u}_{1}=2 \mathrm{~m} / \mathrm{s}$ Substituting values of the terms involved in the above equation of h_{f}, we get $\begin{aligned} \mathrm{h}_{\mathrm{fe}}= & \frac{(2) 2}{2}\left[1-\frac{(1.963 \times 10-3)}{(7.854 \times 10-3)}\right]^{2} \\ & 1.125 \mathrm{~J} / \mathrm{kg} \end{aligned}$	1 1	
4-f	$\begin{aligned} & \mathrm{P}_{1}=101.325 \mathrm{KN} / \mathrm{m}^{2} \\ & \mathrm{P}_{2}=101.325+32.424=133.749 \mathrm{KN} / \mathrm{m}^{2} \\ & \Delta \mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}=\rho \mathrm{g} \mathrm{~h} \\ & 32.424 * 10^{3}=1250 * 9.81 * \mathrm{~h} \\ & \mathrm{~h}=\mathbf{2 . 6 4 4} \mathbf{~ m} \end{aligned}$	1 2 1	4
5-a	Data: Volumetric flow rate: $\mathrm{Q}=5 \mathrm{~m}^{3} / \mathrm{hr}$ Diameter of pipe: $\mathrm{D}=78 \mathrm{~mm}=0.078 \mathrm{~m}$ Viscosity of water $=\mu=8 \times 10^{-4} \mathrm{~Pa} . \mathrm{s}=8 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ Length of pipe $=50 \mathrm{~m}$ Area of pipe $=\mathrm{A}=\pi / 4 \mathrm{D}^{2}=\pi / 4(0.078)^{2}$ $\mathrm{A}=4.776 \times 10^{-3} \mathrm{~m}^{2}$ As $\mathrm{Q}=5 \mathrm{~m}^{3} / \mathrm{hr}=5 / 3600=1.39 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ $\begin{aligned} \mathrm{u} & =\mathrm{Q} / \mathrm{A}=\frac{1.39 \times 10-3}{4.776 \times 10-3} \\ \mathrm{u} & =0.3 \mathrm{~m} / \mathrm{s} \\ \mathrm{NRe} & =\frac{D u \rho}{\mu}=\frac{0.078 * 0.3 * 1000}{8 \times 10-4}=29250 \end{aligned}$ As NRe>4000, flow is turbulent For turbulent flow,$f=\frac{0.078}{N R e^{0.25}}=\frac{0.078}{29250^{0.25}}=0.00596$ Pressure drop can be calculated from Fanning equation: $\Delta P=\frac{4 f \rho L u^{2}}{2 D}=\frac{4 * 0.0059 * 1000 * 50 * 0.3^{2}}{2 * 0.078}=687.6 \mathrm{~N} / \mathrm{m}^{2}$	1 1 1 1 1 2	8

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-15 EXAMINATION

Model Answer

	Frictional loss $h f s=\frac{\Delta P}{\rho}=687.6 / 1000=\mathbf{0 . 6 8 0 7} \mathbf{J} / \mathbf{k g}$	1	
5-b	Data: $\mathrm{D} 1=30 \mathrm{~cm}=0.3 \mathrm{~m}$ Area of pipe $1=\mathrm{A}_{1}=\pi / 4 \mathrm{D}_{1}{ }^{2}=\pi / 4^{*}(0.3)^{2}=0.07065 \mathrm{~m}^{2}$ $\mathrm{D} 2=20 \mathrm{~cm}=0.2 \mathrm{~m} \quad$ Area of pipe $2=\mathrm{A}_{2}=\pi / 4 \mathrm{D}_{2}{ }^{2}=\pi / 4^{*}(0.2)^{2}=0.0314 \mathrm{~m}^{2}$ D3 $=15 \mathrm{~cm}=0.15 \mathrm{mArea}$ of pipe $3=\mathrm{A}_{3}=\pi / 4 \mathrm{D}_{3}{ }^{2}=\pi / 4^{*}(0.15)^{2}=0.01766 \mathrm{~m}^{2}$ Volumetric flow rate of water in a pipe $1($ dia. 30 cm$)=\mathrm{Q}_{1}=\mathrm{u}_{1} \mathrm{~A}_{1}$ $\begin{aligned} & \mathrm{Q}_{1}=2.5 * 0.07065 \\ & \mathbf{Q}_{\mathbf{1}}=\mathbf{0 . 1 7 6 5} \mathbf{~ m}^{3} / \mathrm{s} \end{aligned}$ From continuity equation mass flow rate in pipe $1=$ mass flow rate in pipe $2+$ mass flow rate in pipe 3 $\begin{gathered} \dot{m_{1}}=\dot{m_{2}}+\dot{m_{3}} \\ \rho_{1} \mathrm{~V}_{1} \mathrm{~A}_{1}=\rho_{2} \mathrm{~V}_{2} \mathrm{~A}_{2}+\rho_{3} \mathrm{~V}_{3} \mathrm{~A}_{3} \\ 1000 * 2.5 * 0.07065=1000 * 2 * 0.0314+1000 * \mathrm{~V}_{3} * 0.01766 \\ \mathrm{~V}_{\mathbf{3}}=\mathbf{6 . 4 6} \mathbf{~ m} / \mathbf{s} \end{gathered}$	1 1 1 1 1 1 1 1 1	8
5-c	Diameter of pipe: $\mathrm{D}=78 \mathrm{~mm}=0.078 \mathrm{~m}$ Orifice diameter: $\mathrm{Do}=15 \mathrm{~mm}=0.015 \mathrm{~m}$ $\Delta \mathrm{h}=18 \mathrm{~cm}=0.18 \mathrm{~m}$ Discharge $=\mathrm{Q}=719 \mathrm{~cm}^{3} / \mathrm{s}$ $\mathrm{Q}=7.19 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$ Density of mercury: ${ }_{\mathrm{eHg}}=13,600 \mathrm{~kg} / \mathrm{m}^{3}$ Density of water : ${ }_{\mathrm{eH} 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ $\Delta \mathrm{H}=\Delta \mathrm{h}\left[\frac{{ }^{{ }_{\mathrm{eHg}}-{ }^{-}{ }_{\mathrm{eH} 2 \mathrm{O}}}}{{ }_{\mathrm{e} 2 \mathrm{O}}}\right]=0.18\left[\frac{13600-1000}{1000}\right]=2.268 \mathrm{~m}$ of water $\beta=$ Diameter of orifice $/$ Diameter of pipe $=0.015 / 0.078=0.192$ Area of orifice $=A_{o}=\frac{\pi}{4} D_{o}^{2}=\frac{\pi}{4}(0.015)^{2}=0.000176 \mathrm{~m}^{2}$ The flow equation of orifice meter	1 1 1 1 1	8

SUMMER-15 EXAMINATION

Model Answer

	$\begin{aligned} & Q=\frac{C_{o} A_{o} \sqrt{2 g \Delta H}}{\sqrt{1-\beta^{4}}} \\ & 7.19 * 10^{-4}=\frac{C_{o} * 0.000176 \sqrt{2 * 9.81 * 2.268}}{\sqrt{1-(0.192)^{4}}} \\ & 7.19 * 10^{-4}=\frac{C_{o} * 0.000176 * 6.67}{0.9999} \\ & \boldsymbol{C}_{\boldsymbol{o}}=\mathbf{0 . 6 0 9 9} \end{aligned}$	1 1 1 1	
6-a	Gear Pump: Most commonly used positive displacement pump. Diagram: Gear pump Construction: It consists of two toothed gear wheels, enclosed in a casing provided with inlet \& outlet connections for liquid to be pumped. Of the two gear wheels ,one is driven by an electric drive \& other rotates in mesh with the first. The gap/clearance between the gear wheels as well as between the surface of the gear wheels \& the casing is very small. The number of teeth on each gear may be three,four or more. The discharge rate of liquid is independent of the pressure. It has no valves $\&$ it does not require priming.	4	8

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

	Working: The liquid to be pumped enters in pump through the inlet connection. As one of the gear wheel is driven by the electric motor, the other gear wheel also rotates inside the casing. Due to rotation of both the gear wheels, there is reduction in pressure at the inlet. Therefore the liquid entered in casing is carried round in the space between the gear teeth \& the casing during the rotation of the gear wheels \& after further rotation the liquid is pumped out of the discharge side as the teeth come into mesh. Used in chemical industry for handling high viscosity liquids like molasses, paints \& greases. But not suitable for liquids having suspensions due to closed clearance between the gear wheels \& teeth.	2	
6-b	Data: Velocity of water $=24 \mathrm{~m} / \mathrm{s}\left(\right.$ constant , $\left.\mathrm{u}_{1}=\mathrm{u}_{2}\right)$ $\begin{aligned} & \mathrm{P}_{1}=361 \mathrm{kN} / \mathrm{m}^{2}=361 * 1000 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{2}=288 \mathrm{kN} / \mathrm{m}^{2}=288 * 1000 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{Z}_{1}=30 \mathrm{~m} \\ & \mathrm{Z}_{2}=33.5 \mathrm{~m} \end{aligned}$ Total energy at point $\mathrm{A}=\frac{P_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}+Z_{1}=\frac{361 * 1000}{1000 * 9.81}+\frac{(24)^{2}}{2 * 9.81}+30$ $=36.79+29.35+30=96.14 \mathrm{~m} \text { of water }$ Total energy at point $\mathrm{B}=\frac{P_{2}}{\rho g}+\frac{u_{2}^{2}}{2 g}+Z_{2}=\frac{288 * 1000}{1000 * 9.81}+\frac{(24)^{2}}{2 * 9.81}+33.5$ $=29.35+29.35+33.5=92.2 \mathrm{~m} \text { of water }$ Loss of head $=$ Total energy at point $\mathrm{A}-$ Total energy at point $\mathrm{B}=96.14-92.2$	1 1 1 1 1 1 1	8

Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17426)

| | discharge scroll are relatively larger than in the centrifugal pump. These units
 need high speed of operation \& large impeller diameter as very high heads in
 terms of low density fluids are required to generate moderate pressure ratios.
 When the shaft rotates ,the impeller blades are driven inside the casing .The
 impeller is surrounded by diffuser .The function of the diffuser is to convert
 the kinetic energy of gas leaving the impeller into pressure energy. The
 section of each impeller \&it's diffuser forms a stage construction. These units
 can be used to develop pressures of 275kPa to 700 kPa.
 Working :
 As the impeller rotates due to rotation of shaft, pressure is reduced \& therefore
 gas/air flows inside the casing. The gas is thrown out by centrifugal action
 along the blades. Therefore kinetic energy is imparted to gas due to high speed
 of rotation of impeller blades. This K.E.is then converted to an increase in
 static pressure by slowing the flow through the diffuser. | 2 |
| :--- | :--- | :--- | :--- |

