#### **Model Answer**

Subject code :(17426) Page **1** of **21** 

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
  - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
  - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
  - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

#### **Model Answer**

Subject code :(17426) Page **2** of **21** 

| Q No. | Answer                                                                        | marks   | Total marks |
|-------|-------------------------------------------------------------------------------|---------|-------------|
| 1A-a  | Kinematic viscosity with its unit:                                            |         | 2           |
|       | Kinematic viscosity: It is the ratio of viscosity of the fluid to its density | 1       |             |
|       | Unit in SI is m <sup>2</sup> /s                                               | 1       |             |
| 1A-b  | Newtonian fluid :                                                             | 2       | 2           |
|       | Newtonian fluid is that fluid which obeys Newton's law of viscosity.          |         |             |
|       | $\frac{F}{A} = \mu  \frac{dv}{dx}$                                            |         |             |
|       | $ie \tau = \mu \frac{dv}{dx}$                                                 |         |             |
| 1A-c  | Sketch of laminar and turbulent flow:                                         | 1 mark  | 2           |
|       | Turbulent                                                                     | each    |             |
|       | 2020                                                                          |         |             |
|       | Laminar                                                                       |         |             |
|       | → → →<br>→ → →<br>→ → →<br>→ → →                                              |         |             |
| 1A-d  | NRe = 144054                                                                  | 2       | 2           |
|       | $f = 0.079 / NRe^{0.25} = 0.0040037$                                          |         |             |
| 1A-e  | Material of construction for pipes and tubes:                                 | 2       | 2           |
|       | Pipes and tubes are generally made from cast iron, wrought iron, mild steel,  |         |             |
|       | stainless steel, copper, brass, bronze, aluminium etc                         |         |             |
| 1A-f  | Application of screw pump:                                                    | 2 marks | 2           |

### **Model Answer**

Subject code :(17426) Page **3** of **21** 

|      | 1. Used in irrigation system and agricultural machinery                                                 | for any    |          |
|------|---------------------------------------------------------------------------------------------------------|------------|----------|
|      | 2. Used for pumping raw water that contain solids and debris                                            | one        |          |
|      | 3. used in machinery lubrication                                                                        | applicatio |          |
|      | 4.used in fuel oil transport                                                                            | n          |          |
|      | 5. used to transport high temperature refinery products such as asphalt                                 |            |          |
| 1A-g | Pumping device for gases:                                                                               | 2          | 2        |
|      | Fans, blowers and Compressors                                                                           |            |          |
| 1B-a | Derivation:                                                                                             |            | 4        |
|      | Mass balance states that for a steady state flow system, the rate of mass                               |            |          |
|      | entering the flow system is equal to that leaving the system provided                                   |            |          |
|      | accumulation is either constant or nil.                                                                 |            |          |
|      | $A_1$ $V_2$ $A_2$                                                                                       | 1          |          |
|      | Let $v_1$ , $\rho_1$ & $A_1$ be the avg. velocity, density& area at entrance of tube & $v_2$ $\rho_2$ & |            |          |
|      | $A_2$ be the corresponding quantities at the exit of tube.                                              |            |          |
|      | Let $\dot{m}$ be the mass flow rate                                                                     |            |          |
|      | Rate of mass entering the flow system = $v_1 \rho_1 A_1$                                                |            |          |
|      | Rate of mass leaving the flow system = $v_2 \rho_2 A_2$                                                 |            |          |
|      | Under steady flow conditions                                                                            | 2          |          |
|      | $\dot{m} = \rho_1  \mathbf{v}_1  \mathbf{A}_1 = \rho_2  \mathbf{v}_2  \mathbf{A}_2$                     | 2          |          |
|      | $\dot{m} = \rho v A = constant$ Equation of continuity                                                  | 1          |          |
| 1B-b | Diagram of Globe valve:                                                                                 | 4          | 4        |
|      |                                                                                                         |            |          |
|      |                                                                                                         | I.         | <u> </u> |

#### **Model Answer**

Subject code :(17426) Page **4** of **21** 



### **Model Answer**

Subject code :(17426) Page **5** of **21** 

|     | C.(17420)                                                                                                   |   | age <b>3</b> of <b>21</b> |
|-----|-------------------------------------------------------------------------------------------------------------|---|---------------------------|
|     | Equation to calculate pressure drop:                                                                        |   |                           |
|     | $P_a - P_b = \Delta P = R_1 \sin \alpha (\rho_m - \rho)g$ where $\rho_m$ is the density of manometric fluid |   |                           |
|     | and $\rho$ is the density of flowing fluid.                                                                 | 2 |                           |
| 2-b | Fanning's friction factor:                                                                                  | 2 | 4                         |
|     | Fanning's friction factor is defined as the ratio of shear stress at the wall to the                        |   |                           |
|     | product of velocity energy and density.                                                                     |   |                           |
|     | It has no unit.                                                                                             | 2 |                           |
| 2-c | Equation for calculating friction loss due to sudden contraction:                                           |   | 4                         |
|     | The frictional loss due to sudden contraction is proportional to velocity head in                           |   |                           |
|     | of the fluid in the small diameter pipe.                                                                    |   |                           |
|     | $h_{\mathrm{fc}} = \mathrm{K_c} rac{\mathrm{V_{2^2}}}{\mathrm{2g}}$                                        | 2 |                           |
|     | $K_c = 0.4 \left(1 - \frac{A_2}{A_1}\right)$                                                                | 1 |                           |
|     | Where $h_{fc}$ is the head loss due to sudden contraction.                                                  |   |                           |
|     | $A_1$ - area of larger pipe .                                                                               | 1 |                           |
|     | A <sub>2</sub> - area of smaller pipe.                                                                      |   |                           |
|     | V <sub>2</sub> - velocity of fluid in the small diameter pipe.                                              |   |                           |
| 2-d | Calibration of rotameter:                                                                                   |   | 4                         |
|     | 1) For calibration allow the liquid to flow through the Rota meter.                                         | 2 |                           |
|     | 2) Measure the volumetric flow rate.                                                                        |   |                           |
|     | 3) Note the position of float.                                                                              |   |                           |
|     | 4) Plot a graph of Q Vs float position which is known as calibration curve.                                 |   |                           |
|     |                                                                                                             |   |                           |
|     |                                                                                                             |   |                           |
|     |                                                                                                             |   |                           |
|     |                                                                                                             |   |                           |
|     |                                                                                                             |   |                           |

#### **Model Answer**

Subject code :(17426) Page **6** of **21** 



#### **Model Answer**

Subject code :(17426) Page **7** of **21** 

|     | is generally made up of metal                                                                                                                                                |    |    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 2-f | Air Binding :                                                                                                                                                                | 2  | 4  |
|     | The pressure developed by the pump impeller is proportional to the density of                                                                                                |    |    |
|     | fluid in the impeller. If air enters the impeller, the pressure developed is                                                                                                 |    |    |
|     | reduced by a factor equal to the ratio of the density of air to the density of                                                                                               |    |    |
|     | liquid. Hence, for all practical purposes the pump is not capable to force the                                                                                               |    |    |
|     | liquid through the delivery pipe. This is called Air binding.                                                                                                                |    |    |
|     | Priming:                                                                                                                                                                     |    |    |
|     | Removal of air from the suction line and pump casing and filling it with the                                                                                                 | 2  |    |
|     | liquid to be pumped is called priming.                                                                                                                                       |    |    |
| 3-a | Derivation                                                                                                                                                                   |    |    |
|     | $\begin{array}{c} \text{limb-1} \\ \text{limb-2} \\ \text{density } \rho \end{array}$ Pressure at the point $1 = P_1$                                                        | 01 | 04 |
|     | Pressure at the point $2 = P_1 + (x+h)\rho g$                                                                                                                                |    |    |
|     | Pressure at the point $2^{-1}$   $(x+h)pg$<br>Pressure at the point $3 = $ Pressure at the point $2 (2,3)$ on same plane)                                                    |    |    |
|     | Pressure at the point $3 = 1$ ressure at the point $2 = (2, 5)$ on same plane)  Pressure at the point $4 = 1$ Pressure at the point $3 - h \rho_m g = P_1 + (x+h)\rho g - h$ | 02 |    |
|     | $\rho_{\rm mg}$ Pressure at the point 5 $P_2$ = Pressure at the point 4 $- x \rho_{\rm mg}$                                                                                  | 03 |    |
|     | $\rho$ ms 1 1000 at the point 3 1 2 - 1 1000 at the point $\tau$ - $\lambda \rho g$                                                                                          |    |    |

### **Model Answer**

Subject code :(17426) Page **8** of **21** 

|                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | $= P_1$                                                                                                                                                                      | $+ hg(\rho - \rho_m)$                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | $(\mathbf{P}_1 - \mathbf{P}_2) = \mathbf{P}_2$                                                                                                                               | $\Delta P = h (\rho_{\rm m} . \rho) g$                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | $\Delta P = h (\rho_{\rm m} . \rho)g$                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Classification of l | Fluids:                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 mark                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (i)Ideal fluid      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| (ii)Real fluid      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pomit                                                                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| (iii)Newtonian flui | id                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (iv)Non Newtonia    | n fluid                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Difference between  | en Diaphragm va                                                                                                                                                              | lve & Ball valve:                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | Diaphragm                                                                                                                                                                    | Ball Valve                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 marks                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | Valve                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for each                                                                                                                                                                                                                                                                                                                          | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Pressure Drop       | More                                                                                                                                                                         | less                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | point                                                                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Application         | Corrosive                                                                                                                                                                    | Complete(shut-                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | Liquids                                                                                                                                                                      | off)on /off                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     |                                                                                                                                                                              | service                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| The following fac   | tors which influe                                                                                                                                                            | nce the choice of p                                                                                                                                                                                                                                                                                                    | ump:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1.Reciprocating I   | <b>Pump:</b> a)High Pre                                                                                                                                                      | essure                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 marks                                                                                                                                                                                                                                                                                                                           | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                     | b) Clear li                                                                                                                                                                  | quid only                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | point                                                                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2.Plunger Pump      | : a) Very Hig                                                                                                                                                                | gh Pressure & high                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     |                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3.Rotary Pump       | : a) Gear pur                                                                                                                                                                | mp transporting clea                                                                                                                                                                                                                                                                                                   | ar viscous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3. Notary rump      | • u/ Ocui pui                                                                                                                                                                | inp transporting cice                                                                                                                                                                                                                                                                                                  | 11,1150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                     | Classification of I (i)Ideal fluid (ii)Real fluid (iii)Newtonian fluid (iv)Non Newtonia  Difference between  Pressure Drop Application  The following fact 1.Reciprocating I | Classification of Fluids:  (i)Ideal fluid (ii)Real fluid (iii)Newtonian fluid (iv)Non Newtonian fluid  Difference between Diaphragm valve  Pressure Drop More  Application Corrosive Liquids  The following factors which influe  1.Reciprocating Pump: a)High Pre b) Clear li  2.Plunger Pump : a) Very High delliver | $= P_1 + hg( \rho - \rho_m)$ $(P_1 - P_2) = \Delta P = h (\rho_m . \rho)g$ $\Delta P = h (\rho_m . \rho)g$ $\text{Classification of Fluids:}$ $(i) \text{Ideal fluid}$ $(ii) \text{Real fluid}$ $(iii) \text{Newtonian fluid}$ $(iv) \text{Non Newtonian fluid}$ $\text{Diaphragm}  \text{Ball Valve}$ $\text{Valve}$ $\text{Pressure Drop}  \text{More}  \text{less}$ $\text{Application}  \text{Corrosive}  \text{Complete(shut-liquids}  \text{off)on /off service}$ $\text{The following factors which influence the choice of p}$ $\text{1.Reciprocating Pump: a) High Pressure}$ $\text{b) Clear liquid only}$ $\text{2.Plunger Pump}  : \text{a) Very High Pressure \& high dellivery.}$ | $= P_1 + hg(\ \rho - \rho_m)$ $(P_1 - P_2) = \Delta P = h\ (\rho_m . \rho)g$ $\Delta P = h\ (\rho_m . \rho)g$ $Classification\ of\ Fluids:$ (i)Ideal fluid (ii)Real fluid (iii)Newtonian fluid (iii)Non\ Newtonian fluid  Difference between Diaphragm valve & Ball valve: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $= P_1 + hg(\rho - \rho_m)$ $(P_1 - P_2) = \Delta P = h(\rho_m . \rho)g$ $\Delta P = h(\rho_m . \rho)g$ $Classification of Fluids:$ $(i)Ideal fluid$ $(ii)Real fluid$ $(iii)Newtonian fluid$ $(iii)Newtonian fluid$ $(iv)Non Newtonian fluid$ $Difference between Diaphragm valve & Ball valve:$ $\frac{Diaphragm}{Valve} \frac{Ball Valve}{Valve}$ $\frac{Pressure Drop}{Application} \frac{More}{Corrosive} \frac{less}{Complete(shut-Liquids} \frac{off)on/off}{service}$ $\frac{Application}{Liquids} \frac{Corrosive}{Off)on/off} \frac{1 marks}{service}$ $\frac{1 marks}{for each} \frac{1 marks}$ |  |

#### **Model Answer**

Subject code :(17426) Page **9** of **21** 

| ject cou | le :(1/426)                                                             |                       |                          |                        |         | Page 9 of 21 |
|----------|-------------------------------------------------------------------------|-----------------------|--------------------------|------------------------|---------|--------------|
|          |                                                                         | b) Lobe pun           | np also transporting     | g clear                |         |              |
|          |                                                                         |                       |                          |                        |         |              |
|          | 4.Centrifugal Pur                                                       |                       |                          |                        |         |              |
|          |                                                                         | Suspension            | on.                      |                        |         |              |
|          | Quantity of liqui                                                       | d to be handled, na   | ture of liquid, head     | against which liquid   |         |              |
|          |                                                                         |                       | •                        | the selection of the   |         |              |
|          | pump                                                                    | ,                     | and Franço a cost and    |                        |         |              |
| 3-e      |                                                                         | ween Reciprocatin     | g compressor &           | centrifugal            | 2 marks |              |
|          | Comparision between Reciprocating compresssor & centrifugal compressor: |                       |                          |                        |         | 04           |
|          |                                                                         | Reciprocating         | Centrifugal              |                        |         |              |
|          |                                                                         | Compressor            | Compressor               |                        |         |              |
|          | Speed                                                                   | Slow speed            | High speed               |                        |         |              |
|          | Rate of flow                                                            | low                   | high                     |                        |         |              |
| 3-f      | N.P.S.H – Net Pos                                                       | sitive Suction Head   | : It is the amount b     | y which the pressure   |         |              |
|          | at the suction poin                                                     | t of the pump (sum    | of velocity head an      | nd suction head) is in | 02      | 04           |
|          | excess of the vapo                                                      | ur pressure of the li | quid                     |                        |         |              |
|          |                                                                         |                       |                          |                        |         |              |
|          |                                                                         | NPSH = Zs + 0         | $(Ps - Pvap)/\rho - hfs$ |                        | 02      |              |
|          | Where, Zs = heig                                                        | tht of pump from su   | ection points.           |                        |         |              |
|          | Ps = Suc                                                                | Ps = Suction pressure |                          |                        |         |              |
|          | Pvap = Vap                                                              | our pressure of liqu  | uid transported.         |                        |         |              |
|          | hfs = frict                                                             | cional head loss      |                          |                        |         |              |
|          |                                                                         |                       |                          |                        |         |              |
|          |                                                                         |                       |                          |                        |         |              |
| 4-a      |                                                                         |                       |                          |                        |         |              |

#### **Model Answer**

Subject code :(17426) Page **10** of **21** 

|     |                                                                                 | Τ  | . ago 10 o 1 |
|-----|---------------------------------------------------------------------------------|----|--------------|
|     |                                                                                 | 01 | 4            |
|     | $\rho_L = 1250 \text{ kg/m}^3$                                                  |    |              |
|     |                                                                                 |    |              |
|     | A $P_A = 32.424 \text{ KN/m}^2 \text{ g}$<br>= 32.424 x 1000 N/m <sup>2</sup> g | 01 |              |
|     | $= 32424 \text{ N/m}^2$                                                         | 01 |              |
|     | $P_A = h \rho g$                                                                | 01 |              |
|     | 32424 = h x 1250 x 9.8                                                          |    |              |
|     | $h = 32424/(1250 \times 9.8)$                                                   |    |              |
|     | = 2.64 meter                                                                    |    |              |
| 4-b | Specific gravity of liquid =0.95 gm/cm <sup>3</sup>                             |    | 4            |
|     | Q = Volumetric flowrate                                                         |    |              |
|     | = 600 lit/sec                                                                   |    |              |
|     | $= 600 \text{ x } 1000 \text{ cm}^3/\text{sec}$                                 |    |              |
|     | Diameter of Pipe = 200 mm                                                       |    |              |
|     | = 20 cm                                                                         |    |              |

#### **Model Answer**

Subject code :(17426) Page **11** of **21** 

|     |                                                                                                                                    |                | rage II of 21 |
|-----|------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
|     | Area of Pipe = $\prod /4 d^2$<br>= $\prod /4 (20)^2$<br>= $\prod /4 (400) cm^2$                                                    | 01             |               |
|     | Velocity of liquid = $(600 \text{ x} 1000 \text{ x} 4)/(\prod \text{ x} 400)$                                                      |                |               |
|     | = 600 x 10/∏ cm/sec                                                                                                                | 01             |               |
|     | Nre = Du $\rho / \mu$<br>= [20 x(6000/3.14) x 0.95]/ $\mu$                                                                         | 01             |               |
|     | Since '\mu' is not given so we can't find out numerical value.                                                                     |                |               |
| 4-c | The purpose of following fittings:  1.Union: Joining two pipes of same diameter of very high length.                               | 1 mark<br>each | 04            |
|     | 2.Plug : It is used for closing a pipe line.                                                                                       |                |               |
|     | 3.Cross: It is used to bypass the fluid flowing through Straight pipe length( for changing the flow in 4 different                 |                |               |
|     | directions).  4.Reducer: It is used for connecting pipes of different  Diameters(from large diameter pipe to small diameter pipe). |                |               |
| 4-d | Venturimeter                                                                                                                       |                | 4             |
|     |                                                                                                                                    |                |               |

### **Model Answer**

Subject code :(17426) Page **12** of **21** 

| ,   | · · · ·                                                            |                               |                                     |       | Ü  |   |
|-----|--------------------------------------------------------------------|-------------------------------|-------------------------------------|-------|----|---|
|     | HIGH PRESSURE TAP  19° TO 23°  THROAT  INLET CONVERGENT INLET CONE | 02                            |                                     |       |    |   |
|     |                                                                    |                               |                                     | 02    |    |   |
|     | PRINCIPLE: It works                                                | s on the Bernoulli's principl | e . It is a variable head           |       |    |   |
|     | meter. Venturi reduces                                             | the flow area thus creating   | differential pressure across        |       |    |   |
|     | it. Any changes in fluid                                           |                               |                                     |       |    |   |
|     | differential pressure ac                                           | ross it.                      |                                     |       |    |   |
| 4-e | $he = (1 - A_1/A_2)^2 V_1^2 / 2g$                                  |                               |                                     | 01    | 04 |   |
|     |                                                                    | 02                            |                                     |       |    |   |
|     | = $0.5625(2/9.81)$ = <b>0.114678 Kg<sub>f</sub>-m/ kg</b>          |                               |                                     |       |    |   |
|     |                                                                    | or 0.114678m of f             | Towing fluid = $1.125 \text{ J/Kg}$ |       |    |   |
| 4-f | Comparision between                                                | 2 marks<br>for each           |                                     |       |    |   |
|     |                                                                    | Blower                        | Compressor                          | point | 04 |   |
|     | Presssure                                                          | 40 – 100 psi                  | Very high pressure                  |       |    |   |
|     | Application                                                        | Supplying air to              | Compressor are used                 |       |    |   |
|     |                                                                    | furnaces, cooling &           | in petroleum industry               |       |    |   |
|     |                                                                    | drying purposes vents         | for getting very high               |       |    |   |
|     |                                                                    | action purpose.               | comp.ratio                          |       |    |   |
| 5-a | Data:                                                              |                               |                                     |       |    | 8 |
|     | Volumetric flow rate o                                             | f toluene = $Q = 12$ lit/sec  |                                     |       |    |   |
|     | Diameter of pipe = d =                                             |                               |                                     |       |    |   |
|     |                                                                    |                               |                                     |       |    |   |

#### **Model Answer**

Subject code :(17426) Page **13** of **21** 

| Density of toluene = $870 \text{ kg/m}^3$                                                                          |   |  |
|--------------------------------------------------------------------------------------------------------------------|---|--|
| Density of toldene = 870 kg/ III                                                                                   |   |  |
| 1) Volumetric flow rate(Q) in m <sup>3</sup> /s                                                                    |   |  |
| As $1 \text{ litre} = 10^{-3} \text{ m}^3$                                                                         | 1 |  |
| $1 \text{ lit/sec} = 10^{-3} \text{ m}^3/\text{s}$                                                                 | 1 |  |
| $Q = 12 \text{ lit/sec} = 12 \text{ x } 10^{-3} \text{ m}^3/\text{s} = 0.012 \text{ m}^3/\text{s}$                 |   |  |
| 2) Velocity (u in m/s)                                                                                             |   |  |
| As volumetric flow rate $(Q)$ = Average velocity $(u)$ x Area of pipe $(A)$                                        | 1 |  |
| u = Q/A                                                                                                            |   |  |
| Area of pipe = =A= $\pi/4$ D <sup>2</sup> = $\pi/4$ (0.03) <sup>2</sup> = 0.7065 x 10 <sup>-3</sup> m <sup>2</sup> | 1 |  |
| As $u = Q/A$                                                                                                       |   |  |
| $u = \frac{1.2 \times 10^{-2}}{7.065 \times 10^{-4}}$                                                              |   |  |
| 7.003 %10                                                                                                          |   |  |
| u = 16.98  m/s                                                                                                     | 1 |  |
|                                                                                                                    | 1 |  |
| 3) Flow rate m in kg/sec                                                                                           |   |  |
| As $\dot{m} = \varrho u A$                                                                                         | 1 |  |
| $\dot{\mathbf{m}} = 870 \times 16.98 \times 0.7065 \times 10^{-3}$                                                 |   |  |
|                                                                                                                    |   |  |
| $\dot{\mathbf{m}} = \mathbf{10.44 \ kg/sec}.$                                                                      |   |  |
| 4)Mass velocity through pipe: G                                                                                    |   |  |
|                                                                                                                    | 1 |  |
| $G = \frac{mass flow rate}{cross-sectional area of pipe}$                                                          |   |  |
| $G = \dot{m}/A$                                                                                                    |   |  |

### **Model Answer**

Subject code :(17426) Page **14** of **21** 

|     | $G = 10.44 / 0.7065 \times 10^{-3}$                                                                              |   |   |
|-----|------------------------------------------------------------------------------------------------------------------|---|---|
|     | $G = 14777 \text{ kg/m}^2.\text{s}$                                                                              | 1 |   |
|     |                                                                                                                  |   |   |
| 5-b | Data:                                                                                                            |   | 8 |
|     | Density of acetic acid = $1060 \text{ kg/m}^3$                                                                   |   |   |
|     | Viscosity of acetic acid = $0.0025 \text{ N.s/m}^2$                                                              |   |   |
|     | Volumetric flow rate of acetic acid = $Q = 0.02  m^3/s$                                                          |   |   |
|     | Inside diameter of pipe = $D = 0.075 \text{ m}$                                                                  |   |   |
|     | Area of pipe =A= $\pi/4$ D <sup>2</sup> = $\pi/4$ (0.075) <sup>2</sup> = 4.418 x 10 <sup>-3</sup> m <sup>2</sup> | 1 |   |
|     | Average velocity of acid through pipe = $u = Q / A$<br>$u = \frac{0.02}{4.418 x 10^{-3}}$                        | 1 |   |
|     | u = 4.53  m/s                                                                                                    |   |   |
|     | To calculate pressure drop, we need to calculate the value of Reynolds no. &                                     |   |   |
|     | hence friction factor                                                                                            |   |   |
|     | As $N_{Re} = \frac{D.u\rho}{\mu}$                                                                                |   |   |
|     | $N_{Re} = \frac{0.075x4.53x1060}{0.0025}$                                                                        | 1 |   |
|     | $N_{Re} = 144054$                                                                                                |   |   |
|     | 11007                                                                                                            |   |   |
|     | As $N_{Re} > 4000$ , flow is turbulent                                                                           |   |   |
|     | Friction factor for tuebulent flow                                                                               |   |   |
|     | $f = \frac{0.078}{(N_{Re})^{0.25}}$                                                                              | 1 |   |

#### **Model Answer**

Subject code :(17426) Page **15** of **21**  $f = \frac{0.078}{(144054)^{0.25}}$ 1 f = 0.004For calculation of pressure drop due to friction in a pipe due to turbulent flow ,the equation used is 2  $\Delta P = \frac{4f\rho Lu^2}{2D}$  $\Delta P = \frac{4x0.004x1060x70x(4.53)^2}{2x0.075}$ 1  $\Delta P = 162416.08 \frac{N}{m^2} = 162.416 \frac{kN}{m^2}$ 5-c Data: 8 Diameter of orifice:  $d_0 = 25 \text{ mm} = 0.025 \text{ m}$ Diameter of pipe: D=50 mm = 0.05 mCoefficient of orifice =  $C_o = 0.62$ Density of water =  $1000 \text{ kg/m}^3$ Density of mercury =  $13000 \text{ kg/m}^3$ 1 1 Area of orifice =  $A_0 = \pi/4 d_0^2 = \pi/4 (0.025)^2 = 4.909 \times 10^{-4} \text{m}^2$  $\beta$ = Diameter of throat / Diameter of pipe = 25/50 = 0.51 Pressure drop across the meter =  $\Delta h = 11$  cm= 0.11 m of mercury

#### **Model Answer**

Subject code :(17426) Page **16** of **21** 

| ojeci cou | e.(17420)                                                                              |   | rage 10 01 21 |
|-----------|----------------------------------------------------------------------------------------|---|---------------|
|           | Let's find out the value of pressure drop in terms of process fluid(water)= $\Delta H$ |   |               |
|           | $\Delta H = \Delta h \left[ \frac{\rho_{Hg} - \rho_{H_{2O}}}{\rho_{H_{2O}}} \right]$   | 2 |               |
|           | $\Delta H = 0.11 \left[ \frac{13600 - 1000}{1000} \right]$                             |   |               |
|           | $\Delta H = 1.386 \text{ m of water}$                                                  |   |               |
|           | The flow equation of orificemeter                                                      |   |               |
|           | $Q = \frac{C_o A_o}{(1 - \beta^4)} \cdot \sqrt{2g\Delta H}$                            |   |               |
|           | $Q = \frac{0.62x4.909x10^{-4}}{(1 - 0.5^4)} \cdot \sqrt{2x9.81x1.386}$                 | 1 |               |
|           | $Q = 1.691 \times 10^{-3} \ m^3/s$                                                     | 1 |               |
| 6-a       | Derivation for Bernoulli Equation:                                                     |   | 8             |
|           | It is an energy balance.                                                               | 2 |               |
|           | Statement:" For steady, irrotational flow of an incompressible fluid, the sum          | 2 |               |
|           | of pressure energy, kinetic energy & potential energy at any point is                  |   |               |
|           | constant".                                                                             |   |               |
|           | Bernoulli theorm is derived on the basis of Newton's Second law of                     |   |               |
|           | motion.(Force = Rate of change of momentum.)                                           |   |               |
|           |                                                                                        |   |               |
|           |                                                                                        |   |               |
|           |                                                                                        | 1 |               |
|           |                                                                                        |   |               |
|           |                                                                                        |   |               |

#### **Model Answer**

Subject code :(17426)



#### **Model Answer**

Subject code :(17426) Page **18** of **21** 

 $\{\text{sum of forces acting in the direction of flow}\}=\{\text{rate of change of momentum of a fluid}\}$ 

$$P.A - (P + \Delta P).A - \rho.A.\Delta L.gcos\theta = \rho. uA.\Delta u$$
 
$$-\Delta P.A - \rho.A.\Delta L.gcos\theta = \rho. uA.\Delta u$$
 
$$\Delta P.A + \rho.A.\Delta L.gcos\theta + \rho. uA.\Delta u = 0$$
 Eq.I

Dividing each term of eq.I by A. $\Delta$ L.  $\rho$  we get

$$\frac{\Delta P}{\rho \Delta L} + g.\cos\theta + \frac{u.\Delta u}{\Delta L} = 0$$

 $As \cos\theta = \frac{\Delta Z}{\Delta L}$ , we can write

$$\frac{1}{\rho} \frac{\Delta P}{\Delta L} + g \frac{\Delta Z}{\Delta L} + u \frac{\Delta u}{\Delta L} = 0$$
 Eq. II

If we express the changes in the pressure, velocity, height etc. in the differential form, eq.II becomes

$$\frac{1}{\rho}\frac{dP}{dL} + g \frac{dZ}{dL} + \frac{d\left(\frac{u^2}{2}\right)}{dL}$$

Which can be written as

$$\frac{dP}{\rho} + g \cdot dZ + d\left(\frac{u^2}{2}\right) = 0 Eq. III$$

Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli Equation. For incompressible fluid, density is independent of pressure & hence 1, the integrated form of eq.III is

$$\frac{P}{\rho} + gZ + \frac{u^2}{2} = constant$$

#### **Model Answer**

Subject code :(17426) Page **19** of **21** The Bernoulli Equation relates the pressure at a point in the fluid to it's position & velocity. 6-b Double acting reciprocating pump: 8 4 Double acting reciprocating pump Working: Reciprocating pump consists of a piston or plunger which reciprocates in stationary cylinder. Suppose the piston is initially at extreme left position and when crank rotates thro 180 <sup>0</sup>, piston moves to extreme right position. Therefore due to outward movement of piston, a partial vacuum is created in cylinder, which enables the atmospheric pressure acting on the liquid surface in 4 the sump below to force the liquidup the suction pipe & fill the cylinder by forcingly opening the suction valve. (it is called as a suction stroke). When the crank rotates thro further 180 <sup>0</sup> ,piston moves inwardly from it's extreme right position towards left. The inward movement of piston causes the pressure of liquid in the cylinder to rise above atmospheric pressure, because of which the suction valve closes &

delivery valve opens .the liquid is then forced up the delivery valve & raised to

the required height.(Delivery stroke).

#### **Model Answer**

| oject cod | e:(17426)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Page <b>20</b> of <b>21</b> |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|
|           | In case of double acting pump,the liquid is in contact with both the sides of a piston or plunger. This pump has two suction pipes & two delivery pipes. During each stroke, the suction takes place on one side of piston & other side delivers the liquid. The liquid is drawn into the pump & discharged from the pump during backward & as well as forward stroke. In the backward stroke, the liquid is drawn into the pump thro the suction port (1) & liquid is discharged thro the delivery port (3) & in the forward stroke, the liquid is drawn into the pump thro suction port (2) and liquid is discharged thro the delivery port (4) . So in case of double acting pump in one complete revolution of the crank there are two suction strokes & two delivery strokes. |   |                             |
| 6-c       | STEAM JET EJECTOR  Operating steam  Vaccum gauge connection  Self-centering flange  Diffuser body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ļ | 8                           |
|           | Steam jet ejector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                             |
|           | Working:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                             |
|           | In steam jet ejector, low pressure gas is entrained in high pressure steam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                             |
|           | The vapour from the process equipment is sucked & entrained by steam,&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                             |
|           | then carried into a venturi shaped diffuser which converts the kinetic energy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                             |
|           | the steam into pressure energy. The vapours along with steam are finally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                             |

# **Model Answer**

| Subject code :(17426) |  |                                                                       |   | Page <b>21</b> of <b>21</b> |
|-----------------------|--|-----------------------------------------------------------------------|---|-----------------------------|
|                       |  | discharged thro the ejector.it handles large volumes of vapour at low | 4 |                             |
|                       |  | pressures.it is suitable for corrosive fumes or vapours.              |   |                             |