

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **1** of **27**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **2** of **27**

Q No.	Answer	marks	Total marks
1a-i	Partial Pressure : The pressure that would be exerted by one of the gases in a	1	2
	mixture if it occupied the same volume on its own.		
	Unit of pressure in SI: N / m^2	1	
1a-ii	Compressible fluid:	2	2
	If the density of the fluid is appreciably affected by moderate changes in		
	temperature and pressure, the fluid is said to be compressible.		
1a-iii	Critical velocity:	2	2
	It is the velocity at which the flow changes from laminar to turbulent.		
1a-iv	Fanning's friction factor:	2	2
	Fanning's friction factor is defined as the ratio of shear stress at the wall to the		
	product of velocity energy and density.		
1a-v	Equivalent length of pipe fittings :	2	2
	It is defined as that length of straight pipe of the same nominal size as that of		
	fittings, which would cause the same friction loss as that caused by fitting or		
	valve.		
1a-vi	Application of diaphragm pump:	2	2
	They are used for pumping hazardous and toxic liquids.		
1a-vii	Application of steam jet ejector:	2	2
	1, used for handling corrosive gases that would damage mechanical vacuum		
	pump.		
	2. It is used for handling large volume of vapour,		
1b-i	Difference between velocity calculated using pitot tube and venturimeter:		4
	Velocity found out from a pitot tube is point velocity(velocity at a particular		
	point in a flowing fluid) and velocity obtained from a venturimeter is average	2	

Subject code : (17426)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page 3 of 27

4

4

SUMMER-14 EXAMINATION Model Answer

velocity. Formula to calculate velocity: From pitot tube $V_{P=C_p}\sqrt{2gH}$ 1 From venturimeter $\mathbf{V} = C_V \sqrt{\frac{2gH}{1-\beta^4}}$ 1 3 1b-ii Diagram of non return valve fitted on a vertical pipe: Open position **Application:** For unidirectional flow, non return valve is used. 1 1b-iii **Priming:** Removal of air from the suction line and pump casing and filling it with the 2 liquid to be pumped is called priming. It is done by providing a non return valve in the suction line so that suction 2 line and pump casing will be filled with the liquid to be pumped when the pump is in shut down condition. If the non return valve is not functioning, priming has to be done from an external source

SUMMER-14 EXAMINATION Model Answer

Page 4 of 27

Subject code : (17426)

2-a **Diagram of inclined manometer:** 4 4 Pressure Pressure Pb pa Ro Manametria Inclined leg 2-b Hagen Poiseuille's equation 4 $\Delta P = \frac{32\mu vL}{d^2}$ 2 Where ΔP is the pressure drop. 2 μ – Viscosity of the fluid. v- Average velocity. L- Length of pipe. d- Diameter of the pipe. 2-c 3 Construction and working of rupture disc: 4 A rupture disc is normally made in disc form. The membrane is usually made of metal (carbon steel, stainless steel, graphite), but any material can be used. It is a non- reclosing pressure relief device that protects a pressure vessel, equipment or system from over pressurization or potentially damaging vacuum conditions. A rupture disc is a one-time-use membrane that fails at a predetermined differential pressure.. Rupture discs provide instant response (within milliseconds) to an increase or decrease in system pressure, but once the disc has ruptured it will not reseal. They can be used as single protection devices or as a backup device for a conventional safety valve, if the pressure

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **7** of **27**

2-f	Comparison between	variable head meter an	d variable area meter	1 mark	4
		Variable head meter	Variable area meter	each	
	i. Area of flow	Constant with flow	Varies with flow rate		
		rate			
	ii)Pressure drop	Varies with flow rate	Constant with flow		
			rate		
	iii) Measurement	Cannot give	Can give volumetric		
	of flow rate	volumetric flow rate	flow rate directly		
		directly			
	iv) Cost	Cheap	Costly		
	hoju densihi SA 2		+ _ Liguid 13 SB	1	
	Let pressured point $A = P$				
	$\therefore \mathbf{P}_2 = \mathbf{P}_1 + (\mathbf{h} + \mathbf{m}) \boldsymbol{\rho}$	^g /gc		1	

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Point 2 & 3 are on same level		
$\therefore \mathbf{P}_2 = \mathbf{P}_3$		
$\therefore \mathbf{P}_3 = \mathbf{P}_1 + (\mathbf{h} + \mathbf{m}) \ \rho_{\mathrm{A}} \frac{g}{gc}$		
$P_4 = P_3 - h\rho_B \frac{g}{gc}$	1	
$= P_1 + (h + m) \rho_A \frac{g}{gc} - h \rho_B \frac{g}{gc}$		
$P_5 = P_4 - m\rho_A \frac{g}{gc}$		
$= P_1 + (h + m) \rho_A \frac{g}{gc} - h\rho_B \frac{g}{gc} - m\rho_A \frac{g}{gc}$	1	
Simplifying		
$\therefore \mathbf{P}_5 = \mathbf{P}_1 + \mathbf{h} \left[\boldsymbol{\rho}_{\mathrm{A}} - \boldsymbol{\rho}_{\mathrm{B}} \right] \frac{\mathrm{g}}{\mathrm{gc}}$		
Or $P_1 - P_5 = h \left[\rho_B - \rho_A\right] \frac{g}{gc}$		
Or $\Delta P = \Delta H \left[\rho_{\rm B} - \rho_{\rm A} \right] \frac{g}{gc}$		
if $\rho B >> \rho_A$ we can		
Or $\Delta P = \Delta H \rho_B \frac{g}{gc}$		
$Or \frac{\Delta P}{\rho B} = \Delta H \frac{g}{gc}$		

Page **8** of **27**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **9** of **27**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **10** of **27**

5-0	Difference between single act	ing and double acting r	eciprocating pump.	2 marks	
		Single acting	Double acting	each	
	1. Number of suction stroke and delivery stroke	Single suction stroke & single delivery stroke	Double suction stroke & double delivery stroke		
	2. Contact between piston and pumping liquid	One side of the piston is in contact with the pumping liquid	Both sides of the piston are in contact with the pumping liquid		
3-d	Working of reciprocating con	npressor.			
		ionella ferraria 10			
		CONNECTING KOD PISTON ROD			
	Figure shows a single stage doubl characteristic features of recip	e acting compressor with v rocating compressor are	the same as that of		
	reciprocating pumps. A piston, a	cylinder with suitable intak	te and exhaust valves and	2	
	a crank shaft with drive. Gas bein valves which are set to be actua	g compressed enters and le ted when the pressure diff	aves the cylinder through ference between cylinder		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	code : (17426)		Page 11 of 2
3-е	Newtonian fluid and non Newtonian fluid.	2	4
	Newtonian fluid is these which obey Newton's law of viscosity. e.g H ₂ O,		
	CHCl ₃		
	$\frac{F}{A} = \zeta \frac{dv}{dx}$		
	Shear stress = coefficient of viscosity \times shear rate		
	Non Newtonia fluid is those which do not obey this law		
	e.g complex fluid like latex		
	5 Va		
	Jenston ferris		
	505 Jeonia	2	
	5 5 set		
	Shear Strenx		

M.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

4-b

Reynolds experiment		4
GLASS TUBE DYE THREAD	2	
Procedure: Initially regulating value is kept closed and water in the tank is		
allowed to stand for several hours. Then regulating valve is slightly opened	1	
that allows steady flow of water through tube. Now a jet of dye is allowed to	1	
enter in the center of the glass tube in one of the ways shown in diagram		
depending on the velocity of water through the tube.		
i. At low velocities the dye thread is in the form of a straight and stable		
filament as shown in diagram, which hardly seems to be in motion		
through the glass tube. This indicates that at low flow velocities there is		
no intermingling of water and dye particles or liquids flow in parallel		
layers or laminar without any intermixing. Such a flow regime (pattern)		
is called 'laminar or stream-line flow'.		
ii. If water flow velocity is slowly increased, a stage comes when dye		
thread starts becoming irregular as shown in diagram. The flow		
velocity at which dye thread starts becoming irregular is known as		
'lower critical velocity'. If flow velocity is further increased, length of		
dye thread in the glass tube starts decreasing and ultimately a stage		

comes when thread is not clearly visible. The flow velocity at which

Page **13** of **27**

Subject code	e : (17426)		Page 14 of 27
i N N N 21	whole dye thread is diffused is known as 'upper critical velocity'. iii. If water flow velocity is increased beyond the upper critical velocity, the fluctuations in the dye filament increase and ultimately dye diffuses over the entire tube cross-section as shown in diagram. This indicates intermingling or mixing of liquid particles which is called as 'turbulent flow regime.' $IRe = \frac{Du\rho}{gu}$ IRe < 2100 Laminer flow IRe > 4000 turbulent 100 < Ne < 4000 transient flow	1	
4-c R Fa B C	Range of pressure developed by fan, blowers and compressor.ans - < $0.35 \text{ Kg}_{\text{f}}/\text{cm}^2$ blowers - discharge pressure upto 10 Kg _f /cm²compressor - 2400 Kg _f /cm²	4	4
4-d R	tota meter calibration :	2	4

Subject	code : (17426)		Page 15 of 27
	1) For calibration allow the liquid to flow through the Rota meter.		
	2) Measure the volumetric flow rate.		
	3) Note the position of float.		
	4) Plot a graph of Q Vs float position which is known as calibration curve.	2	
4-e	Friction loss due to sudden contraction:		4
	When pipe diameter and hence the flow area suddenly decreases from A_1 to A_2		
	with subsequent increase in flow velocity (jetting action) the flow area		
	becomes minimum (less than A2) at venacontracta. The space between pipe		
	wall and jet is filled with eddies with loss of energy given by:		
	$H_{fc} = 0.4 \left(1 - \frac{A_2}{A_1}\right) \frac{V_2^2}{2g} \dots$ In S.I. units	2	
	$= 0.4 \left(1 - \frac{A_2}{A_1}\right) \frac{V_{2^2}}{2g_c} \dots \dots \text{ In Gravitational units.}$ Where H_{fc} is the head loss due to sudden contraction.	2	
	A ₁ - area of larger pipe .		
	A_2 - area of smaller pipe .		
	V_2 - velocity of fluid in the small diameter pipe.		
4-f	1. Water	2	4
	$\mathbf{P} = \mathbf{h} \rho \frac{\mathbf{g}}{\mathbf{g} \mathbf{c}}$		
	$= 8 \times 1 \times \frac{980}{980} = 8 \text{gm}_{\text{f}}/\text{cm}^2$		
	OR		
	P=h p g		
	$= 8 \times 1 \times 980$		
	$= 7840 \text{ dyne/cm}^{2}(784.8 \text{N/m}^{2})$		
1			

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

2.	Liquid of specific gravity 0.9 $\therefore \rho = 0.9 \text{ gm/cm}^3$ $\therefore p = h \rho \frac{g}{gc}$ $= 8 \times 0.9 \times \frac{g}{gc} = 7.2 \text{ gmf/cm}^2$ OR $P = h \rho g = 8 \times .9 \times 980 = 7056 \text{ dyne/cm}^2(705.6 \text{ N/m}^2)$	2	
5-a Given $Q=0$. D=0. L=10 Densi Visco Area o	h: $5 \text{ m}^3/\text{s}$ 075 m 00 m $\text{ty} = \rho = 1100 \text{ kg/ m}^3$ $\text{sity} = \mu = 0.003 \text{ Pa.S} = 0.003 \text{ kg/ms}$ $\text{of pipe= A} = \Pi/4 \text{ *D}^2 = \Pi/4 \text{ *}(0.075)^2 = 4.418 \text{*}10^{-3} \text{ m}^2$		8
As Di Veloc $N_{Re} =$ As N_F Friction $f = \frac{1}{2}$	ischarge Q = u A city u = Q/A = $0.5/4.418 \times 10^{-3} = 113$ m/s Du $\rho/\mu = 0.075 \times 113 \times 1100 / 0.003 = 3107500$ Re > 4000,flow is turbulent on factor f is calculated as $\frac{0.078}{(NRe^{0.25})} = \frac{0.078}{(3107500^{0.25})} = 0.001857$	1 1 1	

Page **16** of **27**

Page **17** of **27**

SUMMER-14 EXAMINATION Model Answer

	$\Delta P = Pressure drop over length L$		
	$\Delta P = \left[\frac{4fL\rho u^2}{2D}\right]$	2	
	$\Delta P = \left[\frac{4 * 0.001857 * 100 * 113^2 * 1100}{2 * 0.075}\right]$		
	$\Delta P = 69555296.8 N/m^2$	2	
	$\Delta P = 69555.29 \ kN/m^2$		
5-b	Continuity Equation:		8
	Statement: "For a steady state flow system, the rate of mass entering the flow		
	system is equal to that leaving the system as accumulation is either constant or	2	
	nil ".		
	Consider a flow system as shown		
	FLOW THITTHE THE CONTRACT OF THE CONTRACT.		
	As flow can not take place across the walls of stream tube, the rate of mass entering the system must be equal to that leaving.		
	Let u_1 , ρ_1 & A_1 be the avg. velocity, density & area at entrance of tube & u_2 , ρ_2 & A_2 at the exit of tube.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code : (17426)		Page 18 of 27
Let \vec{m} be rate of flow in a unit time (mass flow rate)		
Rate of mass entering the flow system = $u_1 \rho_1 A_1$	3	
Rate of mass leaving the flow system = $u_2 \rho_2 A_2$	5	
Under steady flow conditions		
$\dot{m} = \rho_1 u_1 A_1 = \rho_2 u_2 A_2$		
$\dot{m} = \rho u A = constant$ equation of continuity		
Equation of continuity is applicable to compressible as well as incompressible		
fluids.In case of incompressible fluids $\rho_1 = \rho_2 = \rho$		
Numerical:		
Given:		
$D_1 = 0.02 m$		
$u_1 = 0.08 \text{ m/s}$		
$\rho \text{ of water} = 1000 \text{ kg/m}^3$		
$D_2 = 0.1 m$ $u_2 = ? m/s$		
$A_1 = \Pi/4 D_1^2 = 3.14/4*(0.02)^2 = 3.14*10^{-4} m^2$		
$A_2 = \Pi/4 D_2^2 = 3.14/4^* (0.1)^2 = 0.00785 m^2$	2	
According to continuity equation	_	
$\dot{m} = \rho_1 u_1 A_1 = \rho_2 u_2 A_2$		
As $\rho_1 = \rho_2 = \rho$		
$\dot{m} = \mathbf{u}_1 \mathbf{A}_1 = \mathbf{u}_2 \mathbf{A}_2$		
$u_2 = u_1 A_1 / A_2$		
$u_2 = 0.08 \ *3.14 \ *10^{-4} \ / \ 0.00785$		
	1	
$u_2 = 0.0032 \text{ m/s} = 0.32 \text{ cm/s}$		

SUMMER-14 EXAMINATION Model Answer

Page **19** of **27**

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

From equation of continuity		
$m = \rho u_1 A_1 = \rho u_2 A_2$		
Where $A_1 = \pi/_4 D^2 \& A_T = \pi/_4 D_T^2$	1	
D & D_T are the diameter of pipe & throat .		
$u_{1(\pi/4.D^2)} = u_{2(\pi/4.D_T^2)}$	1	
Let $\frac{D_T}{D} = \beta$		
$u_1 = \beta^2 u_2$ eq2		
Putting value of u_1 from eq 2 in eq 1, we get		
$\frac{P_1}{\rho} + \frac{\alpha_1 (\beta^2 u_2)^2}{2} = \frac{P_2}{\rho} + \frac{\alpha_2 u_2^2}{2}$		
Rearranging we get		
$\frac{\alpha_2 u_2^2}{2} - \frac{\alpha_1 \beta^4 u_2^2}{2} = \frac{P_1 - P_2}{\rho}$		
$\alpha_2 u_2^2 - \alpha_1 \beta^4 u_2^2 = \frac{2(P_1 - P_2)}{2}$	1	
$\alpha_1 \left[\frac{\alpha_2}{\alpha_1} u_2^2 - \beta^4 u_2^2 \right] = \frac{2(P_1 - P_2)}{\rho}$		

Page **20** of **27**

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Page 21 of 27As
$$\frac{a_1}{a_1} = 1$$
1 $\alpha_1[u_2^2 - \rho^* u_2^2] = 2\left(\frac{p_1 - p_2}{\rho}\right)$ 1 $u_2 = \left[\frac{2(p_1 - p_2)}{\rho} * \frac{1}{\pi(1 - \beta^*)}\right]^{1/2}$ 1The above equation is corrected by introducing an empirical factor Cv &1 $u_2 = Cv \left[\frac{2(p_1 - p_2)}{\rho} * \frac{1}{\pi(1 - \beta^*)}\right]^{1/2}$ eq3Cv = Coefficient of venturimeter & it takes into account the error introducedby assuming no frictional losses & As $\frac{a_3}{a_1} = 1$ & $a_1 = 1$ Volumetric flow rate Q is given by $Q = u_2 A_T$ eq4 $Q = A_T Cv \left[\frac{2(p_1 - p_2)}{\rho} * \frac{1}{(1 - \beta^*)}\right]^{1/2}$ 1 $Q = A_C tual discharge$ 1

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

Page **22** of **27**

If pressure is measured by U-tube manometer, then discharge is calculated as		
$Q = \frac{C_{v}A_{T}}{\sqrt{(1-\beta^{4})}}\sqrt{2g\Delta}H$		
Where $\Delta H = \Delta h(\frac{\rho_M - \rho}{\rho})$		
ΔH = Difference in head across venture in terms of meters of flowing fluid.		
Δh = Difference in head across venture in terms of meters of manometric fluid.		
Cavitation: The vapour pressure of the liquid at the pumping temp. sets the	2	8
lower limit for the pressure. Care must be taken so that the pressure at any		
point in the suction does not fall below the vapour pressure of the liquid to be		
pumped. When the pressure in the suction line is less than vapour pressure of		
liquid ,then some of the liquid get converted into vapours or if the liquid to be		
pumped contains gases, they may come out of the solution resulting into gas		
pockets, that will damage the impeller. This phenomenon is called as		
cavitation		
Drawbacks of cavitation:	2	
1)Due to cavitation the pump is not capable of developing the required suction		
head & no liquid can be drawn into pump.		
2)Cavitation leads to mechanical damage to the pump as bubble collapse.		
Derivation for NPSH:		
In order to avoid cavitation, the pressure at the suction point of the pump must		
exceed the vapour pressure of the liquid by a certain value which is called as		
net positive suction head.		
	If pressure is measured by U-tube manometer, then discharge is calculated as $Q = \frac{C_{\nu}A_{T}}{\sqrt{(1-\beta^{4})}}\sqrt{2g\Delta}H$ Where $\Delta H = \Delta h(\frac{\rho_{M}-\rho}{\rho})$ ΔH = Difference in head across venture in terms of meters of flowing fluid. Δh = Difference in head across venture in terms of meters of manometric fluid. Cavitation: The vapour pressure of the liquid at the pumping temp. sets the lower limit for the pressure. Care must be taken so that the pressure at any point in the suction does not fall below the vapour pressure of the liquid to be pumped. When the pressure in the suction line is less than vapour pressure of liquid ,then some of the liquid get converted into vapours or if the liquid to be pumped contains gases, they may come out of the solution resulting into gas pockets, that will damage the impeller. This phenomenon is called as cavitation Drawbacks of cavitation: 1)Due to cavitation the pump is not capable of developing the required suction head & no liquid can be drawn into pump. 2)Cavitation leads to mechanical damage to the pump as bubble collapse. Derivation for NPSH: In order to avoid cavitation, the pressure at the suction point of the pump must exceed the vapour pressure of the liquid by a certain value which is called as net positive suction head.	If pressure is measured by U-tube manometer, then discharge is calculated as $Q = \frac{C_{\nu} \Delta T}{\sqrt{(1-\beta^{3})}} \sqrt{2g\Delta}H$ Where $\Delta H = \Delta h (\frac{\rho_{M}-\rho}{\rho})$ ΔH = Difference in head across venture in terms of meters of flowing fluid. Δh = Difference in head across venture in terms of meters of manometric fluid. Cavitation: The vapour pressure of the liquid at the pumping temp. sets the lower limit for the pressure. Care must be taken so that the pressure at any point in the suction does not fall below the vapour pressure of the liquid to be pumped. When the pressure in the suction line is less than vapour pressure of liquid ,then some of the liquid get converted into vapours or if the liquid to be pumped contains gases, they may come out of the solution resulting into gas pockets, that will damage the impeller. This phenomenon is called as cavitation Drawbacks of cavitation: 2 1)Due to cavitation the pump is not capable of developing the required suction head & no liquid can be drawn into pump. 2)Cavitation leads to mechanical damage to the pump as bubble collapse. Derivation for NPSH: In order to avoid cavitation, the pressure at the suction point of the pump must exceed the vapour pressure of the liquid by a certain value which is called as net positive suction head.

SUMMER-14 EXAMINATION Model Answer

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

	$\frac{P_1'}{\rho g} = \frac{u_1^2}{2g} + Z_1 + \frac{P_1}{\rho g} + h_{fs}$		
	Rearranging we get		
	$\frac{P_1}{\rho g} + \frac{u_1^2}{2g} = \frac{P_1'}{\rho g} - Z_1 - h_{fs}$		
	Therefore we can write	2	
	$NPSH = \frac{P_1'}{\rho g} - \frac{P_v}{\rho g} - Z_1 - h_{fs}$		
6-b	Given:		8
	$\dot{m} = 4 \text{ kg/s}$		
	D= 0.05 m		
	Total length of piping = $L= 850+20 = 870$ m		
	Density = $\rho = 1650 \text{ kg/m}^3$		
	Viscosity = $\mu = 0.0086 \text{ Pa.S} = 0.0086 \text{ kg/ms}$		
	Area of pipe: Area of pipe= $A = \Pi/4 * D^2$		
	$A = \Pi/4 * (0.05)^{2} = 1.963 * 10^{-3} m^{2}$		
	$As'm = \rho u A$		
	$4 = 1650 * u * 1.963 * 10^{-3}$	1	
	u= 1.23 m/s		
	$N_{Re} = Du \rho / \mu$		
	N _{Re} =0.05*1.23*1650 /0.0086		
	N _{Re} =11800	1	
	As $N_{Re} > 4000$, flow is turbulent		
	Friction factor f is calculated as		

Page 24 of 27

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)

1 $f = \frac{0.078}{(NRe^{0.25})} = \frac{0.078}{(11800^{0.25})} = 0.00748$ $h_f = head loss due to friction = \left[\frac{4fL\rho u^2}{2aD}\right]$ $= \left[\frac{4*0.00748*870*1.23^{2}}{2*9.81*0.05}\right] = 40.144 \text{m}(393.41 \text{J/Kg})$ Writing Bernoulli's equation 1 $\frac{P_1}{\rho} + gZ_1 + \frac{\alpha_1 v_1^2}{2} + \eta W_P = \frac{P_2}{\rho} + gZ_2 + \frac{\alpha_2 v_2^2}{2} + h_{\rm fs}$ $P_1 = P_2$ V_1 is negligible compared to V_2 $V_2 = 1.23 \text{m/s}$ $Z_1 = 0$, $Z_2 = 870$ m Bernoulli's equation becomes 2 $\eta W_P = gZ_2 + \frac{v_2^2}{2} + h_{\rm fs}$ $0.6W_P = 8928.86$ $W_P = \frac{14881.4\text{J}}{\text{Kg}}$ 2 Power required= $m\dot{W}_P$ = 4*14881.4=59525.6W=59.525KW

Page **25** of **27**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page 26 of 27

SUMMER-14 EXAMINATION Model Answer

Subject code : (17426)		Page 27 of 27
decreasing	cross sectional area creates an overall increase in pressure and a	
decrease in	velocity. The steam slows down and the inlet gas stream picks up	
speed and,	at some point in the throat of the diffuser, their combined flow	
reaches the	exact speed of sound. A stationary, sonic-speed shock wave forms	
there and p	roduces a sharp rise in absolute pressure. Then, in the diverging	
section of	the diffuser, the velocity of the mixture is sub-sonic and the	
increasing c	cross sectional area increases the pressure but further decreases the	
velocity.		