

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **1** of **26**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **2** of **26**

Q No.	Answer	Marking
		scheme
1 A	Attempt any six	12
1A-a	Demineralization:	2
	It is a method for treatment of water by which all the impurity ions present in	
	the water are removed.	
1A-b	Scale and sludge formation:	2
	When hard water is evaporated in boiler, the concentration of soluble salts of	
	calcium and magnesium reaches saturation point and they are thrown out	
	along with other soluble impurities in the form of precipitate. If the precipitate	
	forms a hard adhering coating on the inner walls of the boiler, it is called scale.	
	If the precipitation takes place in the form of loose and slimy precipitate, it is	
	called sludge. They are formed at comparatively colder portions of the boiler	
	where the flow rate is low.	
1A-c	Ton of refrigeration:	1
	It is defined as the quantity of heat required to be removed from 1Ton water at	
	0°C to get ice at 0°C in one day	
	Coefficient of Performance .:	
	Working performance of any machine is usually expressed by output/input	1
	ratio known as efficiency. In refrigeration it is denoted by C.O.P. (β).	
	COP= refrigeration effect/ work input to produced R.E.	
	ß =RE/W	

et title: P	lant Utilities Subject code 17425	
		Page 3 of 2
1A-d	Boiler accessories: (any 2)	1 mark eac
	i)air preheater	
	ii)economizer	
	ii) super heater	
	iv)feed pump	
	v) steam injector.	
	vi) pressure reducing valve	
	vii) steam trap	
1A-e	Methods for removal of scales: (any 2)	1 mark eac
	Scales can be removed	
	1. With the help of scraper or piece of wood or wire brush, if they are loosely	
	adhering.	
	2. By giving thermal shocks , if they are brittle.	
	3. By dissolving them by adding some chemicals, if they are adherent and	
	hard.	
	4. By frequent blow down operation, if they are loosely adhering	
1A-f	Uses of process air: (any 2)	1 mark eac
	1. In the oxidation of acetaldehyde to acetic acid	
	2. Oxidation of NO to NO_2 in manufacture of HNO_3	
	3. In H ₂ SO ₄ manufacture	
	4. In spray painting	
	5. In furnace	
	6. In refrigeration system	
	7. In boiler	
	8. In petroleum refining and petrochemical process	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	25	nt Utilities Subject code	ct title: F
Page 4 of 2			
1⁄2 mar		Different thermic fluids are: (any 4)	1A-g
eac		1. Dowtherm A	
		2. Dowtherm E	
		3. Therminol FR	
		4. Oil mobiltherm 600	
		5. Oil Mobiltherm light	
		6. Hydrotherm 750-200	
		Attempt ant two	1 B
		Description of reverse osmosis process:	1B-a
	ted by a semi	When two solutions of unequal concentrations	
	ss of osmotic	permeable membrane and if a hydrostatic pressu	
	to move from	pressure is applied on the concentrate side, the solve	
	s is known as	the concentrated side to dilute side across the mer	
	e density of the	reverse osmosis. The effectiveness of the process dep	
	l regularly for	membrane. It is also important that the membrane	
	lose acetate,	proper functioning. Membranes are made	
	erse osmosis is	polymethacrylate, polysulphone, polyamide polymet	
		employed for desalination process	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Т

Г

Subject code

17425

Page **6** of **26**

	This cycle ABCD can be used to produce refrigeration. In this, air absorbs	
	heat essentially at constant pressure P1 in the cold space, and rejects heat to	
	the surroundings in the cooler at the higher constant pressure P2. The gas is	
	compressed at constant entropy from A to B, using part of the necessary	
	energy of work obtained from expansion process CD. In both the refrigerator	
	and cooler the heat must be transferred through a gas film having low heat	
	transfer coefficients and hence temperature difference between air and	
	refrigerator must be relatively large. The net result is that the difference in	
	temperature between the air and the cooler and that in the refrigerator for a	
	given refrigeration requirement is increased and the efficiency is decreased.	
	The air refrigeration machine includes an expansion device in addition to the	
	compressor normally used in common vapour compression, evaporating liquid	
	cycles. Relatively large quantities of air must be handled in these expansion	
	and compression process in order to achieve significant amount of	
	refrigeration.	
1B-c	Babcock and Wilcox boiler	
		1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **9** of **26**

	Ammonia is the refrigerant and water is the absorbent. Ammonia vapor is	
	vigorously absorbed in water. So low pressure ammonia vapor from the	2
	evaporator comes in contact in the absorber with a weak solution coming from	
	the generator, it is readily absorbed releasing the latent heat of condensation.	
	The temperature of the solution tends to rise, while the absorber is cooled by	
	the circulating water , absorbing the heat of solution, Q_{A} and maintaining a	
	constant temperature. Strong solution, rich in ammonia, is pumped to the	
	generator where Q_G is supplied from an external source like steam, electricity	
	etc. Since the boiling point of ammonia is less than that of water, the ammonia	
	vapor is given off from the aqua- ammonia solution at high pressure and the	
	weak solution returns to the absorber through a pressure reducing valve. The	
	heat exchanger preheats the strong solution and cools the weak solution,	
	reducing both Q_A $\&$ Q_G . The ammonia vapor then condenses in the condenser,	
	is throttled by the expansion valve, and then evaporates absorbing the heat of	
	evaporation from the surroundings	
2-c	Fluidized bed boiler:	

Page 1 The low exiting velocity is much more susceptible to recirculation. With the fan on the air intake, the fan is more susceptible to complications due to freezing conditions. The benefit of the forced draft design is its ability to work with high static pressure. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fill geometry is also known a blow through 2-e Advantages of multistage compression 1 mark for temperature. 2. Work done in compressing the air is reduced, thereby saving the power. 3. The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen:	
The low exiting velocity is much more susceptible to recirculation. With the fan on the air intake, the fan is more susceptible to complications due to freezing conditions. The benefit of the forced draft design is its ability to work with high static pressure. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fill geometry is also known a blow through1 mark2-eAdvantages of multistage compression 1.Interstage cooling can be provided thereby reducing the discharge gas temperature. 2. Work done in compressing the air is reduced, thereby saving the power. 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:	of 26
fan on the air intake, the fan is more susceptible to complications due to freezing conditions. The benefit of the forced draft design is its ability to work with high static pressure. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fill geometry is also known a blow through1 mark2-eAdvantages of multistage compression 1.Interstage cooling can be provided thereby reducing the discharge gas temperature.1 mark for2. Work done in compressing the air is reduced, thereby saving the power. 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders.2-f2-fBoiler corrosion by dissolved oxygen:1	
freezing conditions. The benefit of the forced draft design is its ability to work with high static pressure. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fill geometry is also known a blow through12-eAdvantages of multistage compression 1. Interstage cooling can be provided thereby reducing the discharge gas temperature. 2. Work done in compressing the air is reduced, thereby saving the power. 3. The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5. Better mechanical balance and uniform torque 6. Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders.12-fBoiler corrosion by dissolved oxygen:2-f	ĺ
with high static pressure. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fill geometry is also known a blow through12-eAdvantages of multistage compression 1.Interstage cooling can be provided thereby reducing the discharge gas temperature. 2. Work done in compressing the air is reduced, thereby saving the power. 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders.2-f2-fBoiler corrosion by dissolved oxygen:2-f	ĺ
and even in some indoor situations. This fan/fill geometry is also known a blow through 1 2-e Advantages of multistage compression 1 mark 1.Interstage cooling can be provided thereby reducing the discharge gas temperature. 1 2. Work done in compressing the air is reduced, thereby saving the power. 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 1 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f 2-f Boiler corrosion by dissolved oxygen: 1	ĺ
blow through12-eAdvantages of multistage compression1 mark1.Interstage cooling can be provided thereby reducing the discharge gas temperature.for2. Work done in compressing the air is reduced, thereby saving the power.3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less.4. Prevents mechanical damage as air temperature is controlled.5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve.7. Less difficulty in lubrication.8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:1	ĺ
2-e Advantages of multistage compression 1 mark 1.Interstage cooling can be provided thereby reducing the discharge gas for temperature. 2. Work done in compressing the air is reduced, thereby saving the power. 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen:	
1. Interstage cooling can be provided thereby reducing the discharge gas temperature.for2. Work done in compressing the air is reduced, thereby saving the power.3. The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less.4. Prevents mechanical damage as air temperature is controlled.5. Better mechanical balance and uniform torque 6. Reduced leakage loss swing to reduce pressure difference in either side of piston and valve.7. Less difficulty in lubrication. 8. Lighter cylinders.8. Lighter corrosion by dissolved oxygen:	ach
temperature.2. Work done in compressing the air is reduced, thereby saving the power.3. The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less.4. Prevents mechanical damage as air temperature is controlled.5.Better mechanical balance and uniform torque6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve.7. Less difficulty in lubrication.8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:	ıy 4
 2. Work done in compressing the air is reduced, thereby saving the power. 3. The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5. Better mechanical balance and uniform torque 6. Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 	
 3.The suction and delivery valve remains in cleaner condition as the temperature and vaporization of lubricating oil is less. 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 	
temperature and vaporization of lubricating oil is less.4. Prevents mechanical damage as air temperature is controlled.5.Better mechanical balance and uniform torque6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve.7. Less difficulty in lubrication.8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:	ĺ
 4. Prevents mechanical damage as air temperature is controlled. 5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen: 	
5.Better mechanical balance and uniform torque 6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve. 7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen:	
6.Reduced leakage loss swing to reduce pressure difference in either side of piston and valve.7. Less difficulty in lubrication. 8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:	
piston and valve.7. Less difficulty in lubrication.8. Lighter cylinders.2-fBoiler corrosion by dissolved oxygen:	ĺ
7. Less difficulty in lubrication. 8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen:	ĺ
8. Lighter cylinders. 2-f Boiler corrosion by dissolved oxygen:	
2-f Boiler corrosion by dissolved oxygen:	
	2
Dissolved oxygen can destroy the protective hydrogen film that can form of	
many metals and oxidize dissolved ions into insoluble forms. Deposits of rust	
in a plumbing system is such an example of differential aeration cells and	ĺ
accelerate corrosion.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ct title: F	Plant Utilities Subject code 17425	
		Page 12 of 2
	1. Corrosion due to dissolved oxygen (DO)	
	$2 \text{ Fe} + 2 \text{ H}_2\text{O} + \text{O}_2 \longrightarrow 2 \text{ Fe}(\text{OH})_2 \downarrow$	
	$4 \operatorname{Fe}(OH)_{2} + O 2 [\operatorname{Fe}_{2}O_{3}.2H_{2}O]_{2}$	
	Ferrous Rust hydroxide	
	Prevention of corrosion:	
	1. Mechanical de aeration	2
	2. Chemical degasification	
3	Attempt any four	16
3-a	R-22 is monochlorodifluoromethane(CHClF2) or Freon-22	
	Properties of R-22:	
	1. Stable	¹ /2 mark for
	2. Non toxic	any 4
	3. Non corrosive	
	4. Non irritating	
	5. Non inflammable	
	6. Boiling point 0f -40.80C at atmospheric pressure	
	Good solubility in oil up to -100C 0C	
	Properties of lithium bromide:	
	1. The freezing temp. of the brines is lower than the freezing temp. of the	
	water	
	2.Freezing temp. decreases with increase in the salt concentration up to	¹ /2 mark for
	eutectic temp	any 4
	3.It is eco-friendly refrigerants.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

t title: P	Plant Utilities Subject code 17425	
		Page 13 of 26
	4. More corrosive.	
	5. Less toxicity.	
3-b	Preparation of boiler for inspection :	4
	Boiler is inspected before the certificate for its operation is given to its	
	employer. Before inspecting the boiler	
	1. It is cleaned	
	2. All fittings such as burners etc. are removed	
	3. Valves and cocks are opened.	
	4. An inspector examine the all parts of boiler, carries the hydraulic test,	
	where the boiler pressure is raised to hydraulic pressure 1.5 psi or working	
	pressure + 50 psi. (or 3.5 kg/ sq. cm)	
	When the hydraulic test pressure reaches the boiler is inspected for water	
	leakage if any.	
3-c	Humidity chart	4
	The dry hulb temp is indicated by vertical lines drawn parallel to the ordinate	

bject title: Pla	ant Utilities	Subject code	17425		
			L		Page 14 of 26
	abscissa for different valued of dry bulb temp. Pressure of water vapour in n				
	of Hg is shown in the scale at left and is the absolute pressure of steam. Dew point temp. Re shown in the scale on the upper curved line. Constant RH Lines in per cent are indicated by marking off vertical distances between the				
	saturation line or the upper curved lin	es and the base of the	he chart		
	Uses:				
	The psychrometric chart are prepared	to represent graphi	cally all the ne	ecessary	
	moist air properties, used for air cond	itioning calculation	s. The values	are	
	based on actual measurements verifie	d for thermodynam	ic consistency		
3-d	Humid heat :				
	It is the heat capacity (specific heat)	of humid air, expres	ssed per unit n	nass	2
	of dry air in the mixture.				
	Humid volume:				
	Humid volume is defined as, volume of	occupied by unit ma	uss of dry gas a	and its	2
	associated vapor . This is also someting	nes called as specif	ic volume and	lis	
	simply reciprocal of density. Humid v	volume increases as	the temperatu	re or	
	water vapor content increases.				
3-е	Instrument air:				
	Air is passed through a filter to remov	e suspended impur	ities. The filte	red air	
	is supplied to the compressor. Dischar	rge from the compr	essor will be a	t a	
	pressure of 100 to 150 psi, which is st	ored in a storage ta	nk. When requ	uired it	2
	is passed through a regulator and then	through an after co	oler to remov	e the	
	heat. It is then passed through a stone	filter to remove tra	ces of oil if pr	esent.	
	Filtered air is passed through dehydra	tor to remove the m	oisture. Silica	gel,	
	activated alumina, calcium chloride, g	glycol etc are used f	for removing the	he	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

et title: I	Plant Utilities	Subject code	17425		
				I	Page 16 of 26
	iii) By addition of anti foam a	gents like gallic acid,	cotton oil etc		
	iv) By use of blow down of be	oiler sludge.			
4-b	Secondary refrigerants: Seconda	ry refrigerants are firs	st cooled with t	he help	4
	of primary refrigerants and are furt	ther used for cooling p	purpose.		
	They are:				
	1. eco-friendly.				
	2. Cheap in cost.				
	3. Low toxicity				
	Examples				
	a) Air				
	b) water				
	c) brines solution				
4-c	Working of waste gas fired boile	r:			4
	Waste heat is a valuable resource,	a way to save valuabl	e energy, energ	<u>y</u>	
	typically lost in waste heat. The W	HR series are used in	petrochemical	plants,	
	refineries, steel mills, ore converte	rs, brick or cement pla	ants, glass wor	ks, and	
	food processing plants. The WHR	boiler extracts the hea	at from these ex	xhaust	
	gasses, putting them to use generat	ing plant steam or ho	t water. WHR	boiler	
	with supplemental fuel burners ger	nerates heat continuou	sly to meet pla	int	
	steam or hot water requirements. D	During periods when the	he heat content	of	
	waste exhaust gas is insufficient, th	he support burner will	fire to provide	e steam	
	within the desired range of operation	on.			
	WHR Boilers allow for:				
	High efficiency heat transfer				

et title: F	Plant Utilities Subject code 17425	
		Page 17 of 2
	Minimum gas side pressure drop	
	Reduced installation time and cost	
	Use of a wide range of gas types, gas weights and gas temperatures	
4-d	Working of Spray ponds:	4
	A spray pond is a reservoir in which warmed water (e.g. from a power plant) is	
	cooled before reuse. This is done by spraying the warm water with nozzles into	
	the cooler air, where cooling takes place by exchange of heat with the ambient	
	air, involving both conductive heat transfer between the water droplets and the	
	surrounding air and evaporative cooling (which provides by far the greatest	
	portion, typically 85 to 90%, of the total cooling). The primary purpose of	
	spray pond design is thus to ensure an adequate degree of contacting between	
	the hot injection water and the ambient air, so as to facilitate the process of	
	heat transfer.	
	The spray pond is the predecessor to the natural draft cooling towers, which is	
	much more efficient and takes up less space but has a much higher	
	construction cost. A spray pond requires between 25 to 50 times the area of a	
	cooling tower.	
	The performance of a spray pond depends to a large degree on the	
	effectiveness of the spray nozzles which are installed. Ideally, the chosen	
	nozzles should provide a fine, evenly distributed spray in conical form, be	
	capable of passing small particles of suspended matter without blocking and be	
	readily dismantled for cleaning. Typical droplet sizes which are achieved by	
	spray pond nozzles vary between 3 mm and 6 mm. While providing better	
	cooling performance because of their increased surface-to-volume ratios, the	
	generation of droplets of smaller size would require an excessive pressure drop	

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **18** of **26**

	across the nozzles and could lead to increased wind-drift losses from the pond.	
4-e	Thermic fluid heater:	
	It is the heater where thermic fluid is used.	
	Construction: It consists of two concentric coils in which inner coil acts as a	
	radiation zone and outer coil act as convection zone. Flue gas velocity is	2
	generally higher between the 2 coils and between the coil and the outer shell,	
	so higher the velocity higher will be the convective heat transfer between the	
	flue gas and fluid. It can be made either 3 pass or 4 pass depending on the	
	design of thermic fluid heater and the type of fuels to be burnt. The efficiency	
	of the heater increases with increase in the number of passes.	
	Working	
	From fuel tank the oil goes to a fuel filter then into a fuel pump. Through the	
	fuel pump it is passed into an electrically heated oil pre-heated tank and then	2
	forced to burner. The thermic fluid heater is supplied with pressure-jet burner	
	of highly compact rugged and simple design. The burner is fully automatic in	
	operation and switches ON and OFF as per the process heat requirements.	

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **20** of **26**

	refrigerants.	
5-b	Air preheater:	2
	Working:	
	Air preheater recovers some portion of the waste heat of flue gases. Air	
	supplied to the combustion chamber of the boiler is preheated by using the	
	heat in the waste flue gases. The hot gases are passed through the tubes and air	
	circulates around them. Air is forced to deflect by using baffles and compelled	
	to move in a zigzag path for a number of times. This increases the period of	
	contact between air and hot surface and air is effectively heated.	
	Diagram:	
	Cold Ann gasa aus a state of the gasa Hot to the	2
5-с	Comparison of fire tube and water tube boiler	1 mark each

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Plant Utilities

Subject code

17425

Page **21** of **26**

	Fire tube boiler	Water tube boiler	for any
1) Furnace position	Inside boiler shell	Outside shell	
2)Drum size	Large	Small	
3)Heating area	Not effective	effective	
utilization			
4)Use of fuel	Not used very	Effectively utilized by	
	efficiently	multipass flow	
5) Overheating or tube	Furnace surrounded by	Furnace not surrounded	
failure	water, so danger of	by water, so if	
	overheating is less as	circulation of water	
	long as water level is	inside tube is not	
	maintained.	proper, tube failure can	
		occur.	
6)High pressure	Making large drum for	Drum size small, so	
	high capacity and high	drum can be made very	
	pressure is very	strong for very high	
	difficult	pressure.	
7) Production of steam	Generates low pressure	Generates high pressure	
	steam	steam	
8) Space	More space	Less space	
9) Operating cost	Low	High	
10) Scale formation	Low	Chances are high	
Induced draft cooling to	wer:	1	

ect title: P	lant Utilities Subject code 17425	
		Page 22 of 26
	Air out	2 marks for
		diagram and
	00	2 marks for
	Fan	marking the
	Hot water from condenser Cooled water to condenser pump Louvers Make-up water Make-up water	parts
5-е	From steam table, corresponding to a pressure of 10 bar,	
	Specific enthalpy of saturated water $hf = 762.6 \text{ KJ}/\text{ Kg}$	
	Enthalpy of evaporation $hfg = 2013.6 \text{ KJ/ Kg}$	2
	Specific entropy of water Sf= 2.138 KJ/ KgK	
	Entropy of evaporation Sfg= 4.445 KJ/ KgK	
	(i) When steam is dry and saturated	
	Enthalpy of 1 kg of steam = $hf + hfg = 762.6 + 2013.6 = 2776.2 \text{ KJ}$	2
	Entropy of 1 kg of steam = $Sf + Sfg = 2.138 + 4.445 = 6.583 \text{ KJ /K}$	
5-f	Causes of caustic embrittlement:	4
	It is a type of boiler corrosion caused by using highly alkaline water in the	
	boiler. In high pressure boiler, sodium carbonate decomposes to give NaOH	
	and CO_2 and this makes boiler water caustic. NaOH containing water flows in	

ect title: Pla	nt Utilities Subject code 17425			
		Page 24 of 26		
	Cation exchanger resin:			
	These are capable of exchanging cations in water by hydrogen ions. The			
	resins such as sulphonated coals, tannin formaldehade reprented as RH2 are the example. Their exchange reaction with cations can be reprented as			
	$RH_2 + Ca^{++} - \rightarrow RCa + 2H^+$			
	These cation exchanges when exhausted can be regenerated by acid solution			
	$RCa + 2 HCl \rightarrow RH_2 + CaCl_2$			
	Anion exchanger resins:			
	These are capable of exchanging anion in water by hydraulic ion. The			
	functional group in anion exchangers are $-N(CH_3)_2{}^+$, $OHNH_2. \ The N(CH_3)_2{}^+$			
	and -OH group are stable and react fast. These exchangers are reprented by			
	R(OH) ₂	2		
	$R'(OH)_2 + SO_4 \rightarrow R'SO_4 + 2OH$			
	Anion when exhausted regenerated by alkali solution.			
	$R'SO_4 + 2 NaOH \rightarrow R'(OH)_2 + Na_2SO_4$			
6-b	Selection criteria for refrigerant (any 8)	1 mark each		
	1. Working pressure range and pressure ratio. The pressure required to be			
	maintained in the evaporator and condenser should be low enough to			
	reduce the material cost and must be positive to avoid leakage of air			
	into the system.			
	2. Corrosiveness and flammability: Non corrosive to mechanical			
	components. It should be safe to operate(including non-toxic,			
	nonflammable)			
	3. Space limitations: It should have low specific volume to reduce the			
	size of the compressor.			

ject title: Plant	Utilities	Subject code	17425	
				Page 25 of 2
	4. Temperature required in point and low freezing poi	the evaporator: It sh nt.	ould have low	boiling
	5. Oil miscibility. It should h	nave high miscibility	with lubricating	oil and
	6. It should not have any bac any leak develops in the sy	d effect on the stored	material or foo	od when
	7. It should have low therm	nal conductivity to re	educe the area	of heat
	 8. It should have high critic nower requirement 	cal pressure and temp	perature to avoi	id large
	9. It must have low specific h	neat and high latent he	eat.	
	10. It should have moderate de in gaseous form.	ensity in liquid form, a	a relatively high	density
6-c I	ndian boiler act with respect to			
i)	Duties of chief inspector:			
Т	he chief inspector shall			
1	. Maintain record of registered be	oilers.		
2	. Examine boiler inspection report	rts produced by inspec	ctor.	
3	. Decide whether to issue the cer	tificate for the operation	on of boiler or n	iot.
4	. Supervise and control the work	of inspectors		
(ii)Certificate of renewal:			
A	fter generally 12 months.			
It	boiler is transferred from one st	ate to another.		
It	some accidents is occurs.			
It	some alteration is done in boiler	r parts, etc.		

Subject title: Pla	lant Utilities Sub	oject code	17425		
		L			Page 26 of 26
	(iii)Boiler accident:				
	In case of boiler accident, the occupier shall	ll inform the in	spector with fu	ull	
	details of the same. The inspector shall car	ry out investiga	ation and decid	le	
	whether to permit the usage of boiler in fut	ture and if so, t	hen at what w	orking	2
	pressure. The inspector shall inform the ch	ief inspector ab	out his		
	investigations.				
	(iv)Boiler registration:				
	Boilers have to be registered before they c	an be used. Th	e owner of the	e boiler	
	shall give an application for the same. Th	e inspector sha	all examine the	e boiler	2
	and find the maximum pressure at which	the boiler may	be operated.	He will	
	submit his report to the chief inspector	and in turn th	e employer n	nay get	
	authorized for 1 year to use the boiler.				