

Subject code :(17425)

Page **1** of **23**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

Page **2** of **23**

Q No.	Answer	Marks	Total marks
1a-i	Uses of water in domestic purpose	¹∕₂ mark	2
	1. Washing	each for	
	2. Cooking	any two	
	3. Cleaning		
	Uses of water in industrial purpose	¹∕₂ mark	
	1. As Coolant	each for	
	2. In chemical reaction	any two	
	3. Cleaning		
1a-ii	Salts causes temporary hardness:		2
	Bicarbonates of calcium and magnesium	1	
	Temporary hardness can be destroyed by boiling of water. During boiling, the	1	
	bicarbonates are decomposed to get insoluble carbonates or hydroxides which		
	deposits at the bottom.		
1a-iii	Unit of refrigeration is Ton of refrigeration: It is defined as the quantity of	2	2
	heat required to be removed from 1Ton water at $0^{\circ}C$ to get ice at $0^{\circ}C$ in one day		
1a-iv	Sensible heat :	1	2
	It is the heat required to change the temperature of any substance .It can be		
	calculated by $Q=mCp\Delta T$		
	Latent heat :	1	
	It is the heat required to change the phase of any substance at constant		
	temperature . It can be calculated by $Q=m\lambda$		
1a-v	Classification of boiler based on furnace position		2

ect code	e :(17425)		Page 3 of 23
	a. Externally fired boiler: When combustion takes place outside the region of	1	
	boiling water. Ex Babcock & Wilcox boiler		
	b. Internally fired boiler: If the furnace region is completely surrounded by	1	
	water cooled surface. Ex.Lancashire boiler		
1a-vi	Industrial Uses of air: 1. Used in chemical process in oxidation reactions.	¹ ∕₂ mark each for	
	2. Used in automatic controllers to control the process.	any four	
	3. Used in the production of oxygen and nitrogen.4. Used in refrigeration system.		
	5.Used for drying purpose		
	6. Used in furnace, boilers		
	7. Used in the manufacture of chemicals like sulphuric acid, nitric acid etc.		
	8. Used for driving tools like pneumatic hammers.		
	9. Used in cooling tar		
1a-vii	Uses of thermic fluid:	1 mark	
	(1)High temperature can be obtained at moderate pressure	each for	
	(2) Have wide range of operation stability.	any 2	
	(3) More economical at high temperature.		
1b-i	Diagram of Ion exchange process:	4	

WINTER-15 EXAMINATION Model Answer

Subject code :(17425)

Page **4** of **23**

	Mg(HCO ₃) ₂ CaSO ₄ MgSO ₄ CaCl ₂ NaCl SiO ₂ : H ₂ O Ca R-Mg Na Ca R-Mg Na Strong acid cation resin HSO ₄ SiO ₂ : H ₂ O CO ₂ : H ₂ O HSO ₄ Strong base anion resin Treated water HSO ₄ Treated water		
1b-ii	Classification of refrigerants:	4	4
	A. National Refrigeration Safety Code, USA classifies all the refrigerants into 3		
	groups		
	1.Group 1 refrigerants (safest) Ex. CCl ₃ F,		
	2. Group2 refrigerants (toxic and somewhat inflammable) Ex. Ammonia,		
	methyl chloride		
	3. Group3 refrigerants (Inflammable refrigerants) Ex. Butane, ethane		
	B. National board of Fire Underwriters USA classifies refrigerants on the		
	basis of their toxicity. There are six divisions on this scale. Class 1 is the most		
	toxic and class 6 is least toxic		
	C. Refrigerants are also classified as Primary refrigerants Ex. CCl_3F , CCl_2F_2		
	and secondary refrigerants		
1b-iii	Bucket type steam trap:		4
	Use:		
	They are used to collect and automatically discharge the water resulting from partial condensation of steam without allowing any steam to escape.	1	

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

Page 5 of 23

Diagram:		
B-casing C-bucket D- spindle		
E- Valve F- Seat G- exit pipe		
Working: The condensed water enters the casing and the level of water in the	3	
casing rises which further raises the floating bucket and ensures proper closing		
of the valve. As soon as the water from the casing overflows in the bucket, due		
to additional weight of water the bucket sinks down in the casing and as a result		
the valve opens. The steam pressure acts on water in the bucket and water is		
forced up the guide tube through vanes and rushes out through the exit pipe.		
The flow of water through spiral vanes rotates the bucket. As soon as all the		
water in the bucket is forced out, the bucket again floats up and and closes the		
valve.		
a Priming :	2	4
It is the phenomenon of very rapid boiling of water inside the boiler with the		
result that the water particles mixed up with steam. It is due to the presence of		
large quantities of dissolved organic oily matter, suspended material etc.		

	Foaming :		
	It is the phenomenon of formation of foam or bubbles on surface of water		
	which do not break easily.		
	These can be prevented by i)controlling the concentration of impurities inside		
	the boiler	2	
	ii)By keeping the level of water as low as possible.		
	iii) By addition of anti foam agents.		
2-b	Desirable properties of ideal refrigerant:	1 mark	
	1. It should be chemically inert.	each for	
	2. It should be non-flammable, non-explosive and non-corrosive.	any four	
	3. It should not react with lubricating oil.		
	4. It should not have bad effect on the stored material.		
	5. It should not decompose at temp. normally encountered in the system.		
	6. It should be non toxic and stable		
2-c	Inspection of boiler:	4	
	Boiler is inspected before the certificate for its operation is given to its		
	employer.		
	Before inspecting the boiler,		
	It is clean		
	All fittings, such as burners, stokers, etc are removes		
	Valves, cocks etc are open		
	& inspector examine all the parts of boiler, carries the hydraulic test, where the		
	water pressure is raised to hydraulic test pressure of 1.5 psi		
	When the hydraulic test pressure is reached, the boiler is inspected for water		
	leakage if any.		
2-d	Natural circulation cooling tower:	2	

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

	Drogt Noggle Noggle Hot Wates Drigt Aun 2 Liminator Basin Cold wates		
	The atmospheric towers depend on prevailing wind for air movement. The		
	natural draft design ensures more positive air movement even in calm weather		
	by depending upon the displacement of the warm air inside the tower by the		
	cooler outside air. Fairly tall chimneys are then required. Both these tower	2	
	types must be relatively tall in order to operate at a small wet bulb temperature		
	approach. Natural draft equipment is used where the humidity is usually low,		
2-e	air temperatures are generally low.		1
2-e	Process of getting instrument air:		4

Page 7 of 23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

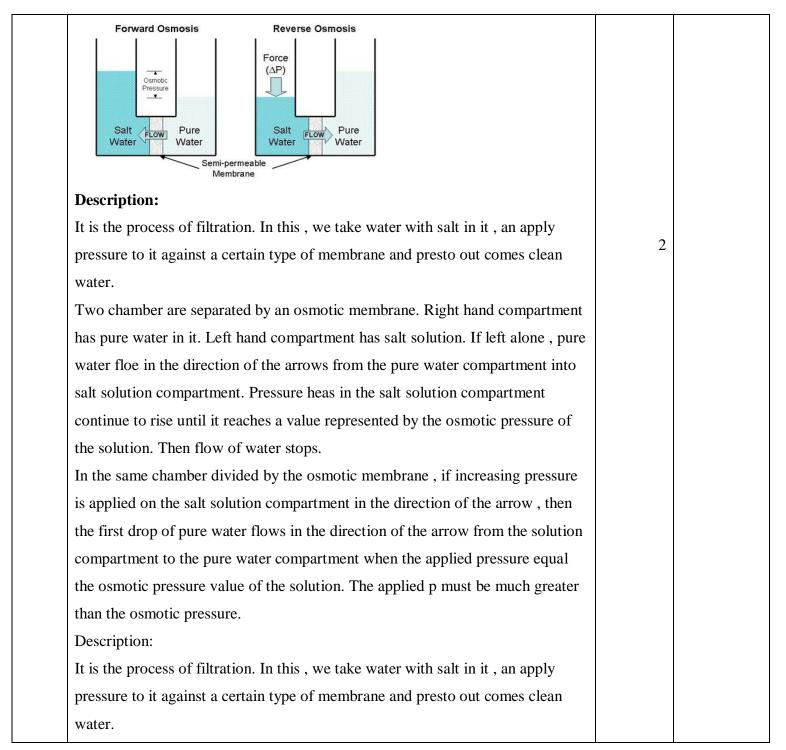
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

2-f

Inlet filter Gene af Purp ose Compressor 2 Storage tank Regulator After Cooler Dehydaato Water Water inlet Outlet Drain optional Regulator Air is passed through a filter to remove suspended impurities. The filtered air is supplied to the compressor. Discharge from the compressor will be at a pressure of 100 to 150 psi, which is stored in a storage tank. When required it is passed through a regulator and then through an after cooler to remove the 2 heat. It is then passed through a stone filter to remove traces of oil if present. Filtered air is passed through dehydrator to remove the moisture. Silica gel, activated alumina, calcium chloride, glycol etc are used for removing the moisture. A second pressure regulator is sometimes added to provide a constant reduced pressure in the supply line 2 **Reverse osmosis:** 4

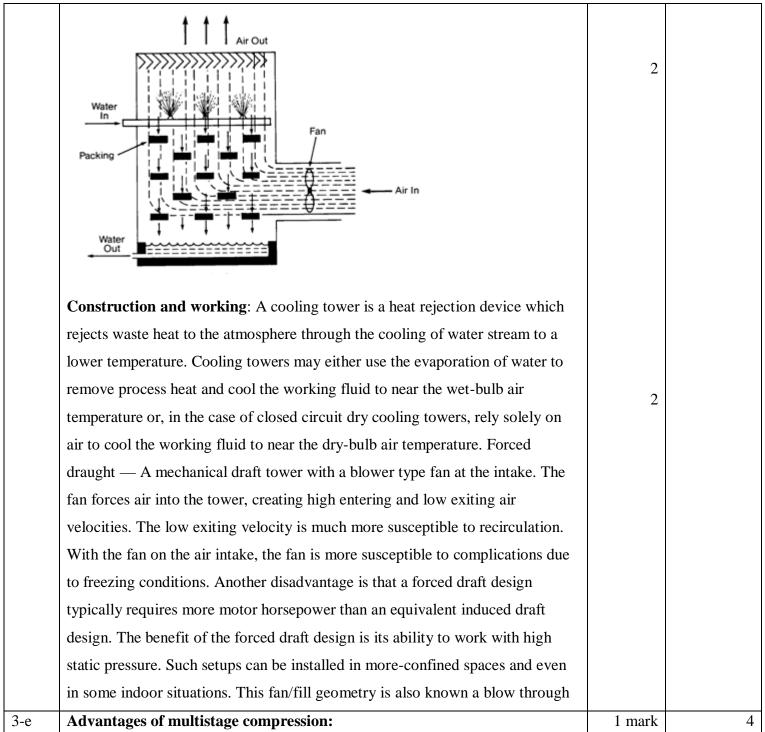

Page 8 of 23

Page 9 of 23

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

ject code	e :(17425)		Page 10 of 23
	Two chamber are separated by an osmotic membrane. Right hand compartment		
	has pure water in it. Left hand compartment has salt solution. If left alone, pure		
	water floe in the direction of the arrows from the pure water compartment into		
	salt solution compartment. Pressure heas in the salt solution compartment		
	continue to rise until it reaches a value represented by the osmotic pressure of		
	the solution. Then flow of water stops.		
	In the same chamber divided by the osmotic membrane, if increasing pressure		
	is applied on the salt solution compartment in the direction of the arrow, then		
	the first drop of pure water flows in the direction of the arrow from the solution		
	compartment to the pure water compartment when the applied pressure equal		
	the osmotic pressure value of the solution. The applied p must be much greater		
	than the osmotic pressure.		
3-a	R-22 means Chlorodifluoromethane or difluoromonochloromethane is a	2	
	hydrochloroflurocarbon (HCFC). R-22 is often used as an alternative to the		
	highly ozone-depleting CFC, because of its relatively low ozone depletion		
	potential of 0.055.		
	USES:		
	Used in air-conditioning units and commercial purpose.	1	
	Used in fast freezing units		
	Used for industrial low temperature refrigeration as low as -90 deg.C		
	Properties:		
	R-22 is miscible with oil at condenser temperature ,but tries to separate at	1	
	evaporator temperature when the system is used for low temperature		
	application.		
	The solubility in water three times greater than R-12		


ect cod	de :(17425)	F	Page 11 of 23
	A compressor gives 60 % more refrigerating effect with R22		
	This property reduces the size of pipe line required with R22		
	Toxicity of R22 ia same as CO2		
3-b	Economizer:		
	Support Support Support Support	2	
	collect on the tubes and return the heat transfer from hot gases o water in the		
	tubes. Therefore continuously these tubes are scraped by scraper to remove soot		
	collected on them. A pair of scraper for two adjacent tubes is coupled together		
	and moves simultaneously up and down scraping the soot from the tubes. A		
	pair is connected by a chain passing over a pulley.it always move such that one		

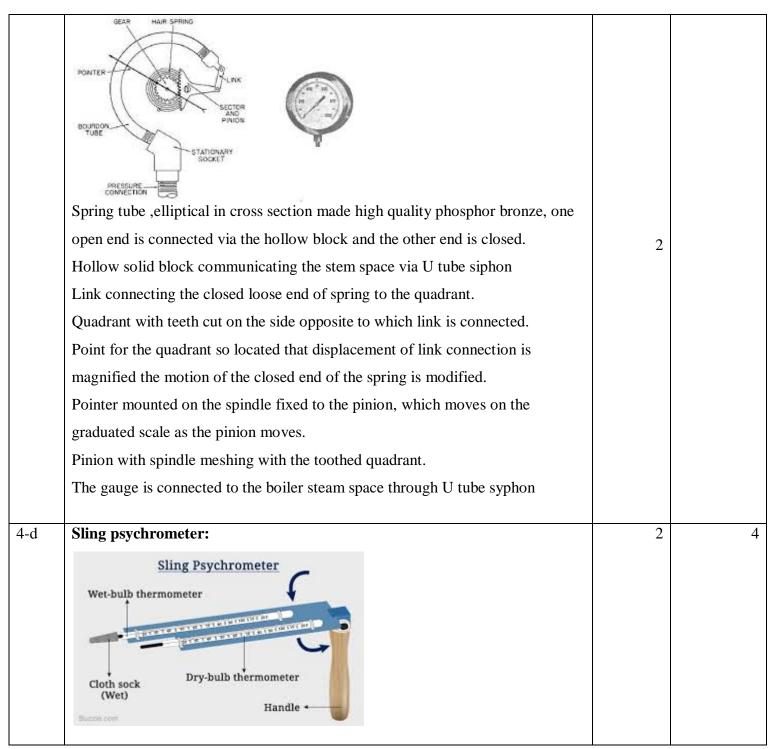
	scraper comes down and the other attached to the same chain goes up. Thus the		
	motion of the pulley is automatically, intermittently and timely		
	reversed.scrappers move very slowly and continuously .soot chamber collect		
	the soots and remove through door.		
3-c	Psychrometric chart		
	The dry bulb temp. is indicated by vertical lines drawn parallel to the ordinate.	2	
	The mass of water vapour in kg per kg of dry air is drawn parallel to the		
	abscissa for different valued of dry bulb temp. Pressure of water vapour in mm		
	of Hg is shown in the scale at left and is the absolute pressure of steam. Dew		
	point temp. Re shown in the scale on the upper curved line. Constant RH Lines		
	in per cent are indicated by marking off vertical distances between the		
	saturation line or the upper curved lines and the base of the chart		
	Uses:		
	The psychrometric chart are prepared to represent graphically all the necessary		
	moist air properties, used for air conditioning calculations. The values are based	2	
	on actual measurements verified for thermodynamic consistency		

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

Page **13** of **23**

	de :(17425)	anch fra	Page 14 of 2
	1.Reduction in power required to drive compressor.	each for	
	2.Better mechanical balance and uniform torque	any 4	
	3.Reduced leakage loss swing to reduce pressure difference in either side of		
	piston and valve.		
	4. Less difficulty in lubrication.		
	5. Lighter cylinders.		
3-f	Boiler act:		
	(i) duties of chief inspector:	1	
	Maintained record of registered boiler		
	Examine boiler inspection report produced by inspector		
	Decide whether to issue certificate for the operation of boiler or not		
	Supervise and control the work of inspector		
	(ii) transfer of boiler:	1	
	When boiler is transferred from one state to another, permission must be taken		
	again from the chief inspector of new state for its installation and operation.		
	(iii) registration of boiler:	1	
	Boiler have to be registered before they can be used , the owner of the boiler		
	shall give an application for the same the inspector shall examine the boiler and		
	find the maximum pressure at which the boiler may be operated .		
	He will submit his report to the chief inspector		
	And in turn the employer may get authorized for 1 year to use the boiler. The		
	employees shall not use for higher pressure than that permitted by the chief		
	inspector.		
	(iv) certificate of renewal:	1	
	After generally 12 months.		
	If boiler is transferred from one state to another.		
	If some accidents is occurs.		



ect cod	le :(17425)		Page 15 of 23
	If some alteration is done in boiler parts, etc.		
4-a	Reaction with hard water and lime soda:	4	
	$2 \text{ HCl} + \text{Ca}(\text{OH})_2 \rightarrow \text{CaCl}2 + 2 \text{ H}_2\text{O}$		
	$H_2SO_4 + Ca(OH)_2 \implies CaSO_4 + 2 H_2O$		
	Lime remove temporary hardness:		
	$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$		
	$Mg(HCO_3)_2 + 2 Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2 H_2O$		
	LIME remove mg salt:		
	$MgCl2 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaCl_2$		
	LIME remove iron and Al salts:		
	$FeSO_4 + Ca(OH)_2 \rightarrow Fe(OH)_2 + CaSO_4$		
	Lime remove CO ₂		
	$Ca(OH)_2 + CO_2 \dots > CaCO_3 + H_2O$		
4-b	BRINES:	2	
	Brine is a solution containing a salt in dissolved condition in water.		
	Properties:		
	$CaCl_2$ brine is used for temperature below - 20 deg . C	1	
	They are non-corrosive even in presence of water		
	They will not evaporate during service being extremely stable.		
	Uses:	1	
	Used for cooling and ice making plants.		
	Used for freezing a meat and fish.		
4-c	Pressure Gauge:	2	

Page 16 of 23

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17425)

ect coc	le :(17425)		Page 17 of 2
	The sling psychrometer consist of 2 thermometers mounted on a base plate. The one with the sock is WBT the other is dry bulb. The wet bulb exists below thw dry bulb.this is done perposely so that sock can be dipped in water without wetting the dry bulb. The handle of the frame help for rotating psychrometer to produce necessary air motion.fast motion of air past the sock is necessary to bring the air at temp. DBT, Always in immediate contact with the wet sock. The temp. Spreads between DB and WB readings depends upon the amount of moisture in the air.	2	
4-е	Thermic Fluid Heater :	4	
	In recent times, thermic fluid heaters have found wide application for indirect	Diagram	
	process heating. Employing petroleum - based fluids as the heat transfer	not	
	medium, these heaters provide constantly maintainable temperatures for the	necessary	
	user equipment.		
	The combustion system comprises of a fixed grate with mechanical draft		
	arrangements. The modern oil fired thermic fluid heater consists of a double		
	coil, three pass construction and fitted a with modulated pressure jet system.		
	The thermic fluid, which acts as a heat carrier, is heated up in the heater and		
	circulated through the user equipment. There it transfers heat for the process		
	through a heat exchanger and the fluid is then returned to the heater. The flow		
	of thermic fluid at the user end is controlled by a pneumatically operated		
	control valve, based on the operating temperature. The heater operates on low		
	or high fire depending on the return oil temperature, which varies with the		
	system load.		

Constant of the local division of the local

Subject code :(17425)

	Fig: A typical Configuration of Thermic Fluid Heater Reference: http://www.warmstream.co.in/prod-am-thermic-fluid- beaters html		
4-f	T1 = 25 + 273 = 298 T2 = -15 + 273 = 258	1	
	$\begin{array}{l} 12 = -13 + 273 = 238 \\ \text{C.O.P.} &= \text{T2/(T1 - T2)} \\ &= 258 / (298 - 258) \\ &= 6.45 \end{array}$	1 2	
5-a	Principle used in air refrigeration:	4	
	The principle used is adiabatic expansion. Ie if a gas is allowed to expand		
	suddenly from a high pressure to a low pressure adiabatically, the gas cools		
	drastically. In air refrigeration cycle, air is the refrigerant and it always remain		
	in gaseous state and does not condense in any part of cycle. Air used as the		
	refrigerant is used to remove the heat from the refrigerated space and discharge		
	the same into atmosphere which is at higher temperature than the refrigerated		
	space.		
5-b	Enthalpy of dry saturated steam.	2	
	It is the quantity of heat required to raise the temperature of 1 kg of water from		
	the freezing point to the boiling point and then convert it into dry saturated		
	steam at that temperature and pressure.		
	Enthalpy of superheated steam.		

It is the quantity of heat required to raise the temperature of 1 kg of water from

Page 18 of 23

4

4

4

2

	the freezing point to the boiling point and then convert it into superheated steam		
	at that pressure.		
5-c	Boiler mountings: They are equipment mounted on the boiler for the safe		
	working of boiler.	1	
	Different boiler mountings:(any two)		
	1. Water gauge or water level indicator: it is used to indicate the level of water	1	
	in the boiler.		
	2.Pressure gauge: To indicate the pressure inside the boiler.		
	3.Fusible plug: It is used to protect the fire box crown plate or the fire tube		
	from burning when the level of the water in the water shell falls abnormally		
	low.		
	4.Safety valve: To release the excess steam to maintain the pressure		
	Boiler accessories: They are auxiliary equipments used to improve the overall		
	efficiency and performance of the boiler.	1	
	Different boiler accessories are (any two)		
	1. Air preheater: It recovers some portion of the waste heat of the flue gases and	1	
	preheats the air supplied to the combustion chamber.		
	2. Super heater : They are used in boilers to increase the temperature of the		
	steam above its saturation temperature,		
	3. Economizer: The function of economizer is to extract the waste heat of the		
	chimney gases to preheat the water before it is fed to the boiler.		
5-d	(i) Absolute humidity: It is the weight of water vapour per unit weight of dry	2	
	air or gas.		
	(ii)Relative humidity: Relative humidity is the ratio of actual partial pressure of	2	
	vapour in the gas to the saturation partial pressure, at a given temperature and		
	volume of gas.		
5-е	From the steam table, corresponding to a temperature of 10° C,		

	Specific enthalpy of saturated water $h_f = 4$	2 kJ/ kg		
		2477.9 kJ / kg	1	
	Dryness fraction $x = 0.8$	2111.5 1.6 1.6	1	
	Specific enthalpy of steam = $m(h_f + xL)$			
		2477.9) = 2024.32 kJ	2	
5-f	Hard water	Soft water	2 marks	4
	1.Contains dissolved salts of 1	Does not contain dissolved salts	each	
	calcium and magnesium	of calcium and magnesium		
	2.Does not produce lather or foam	produce lather or foam with soap		
	with soap			
6-a	Zeolite process			8
	Snjector Snjector Solution Solution Storage Zeolites are hydrated sodium alumino sili reversibly their sodium ions with hardness silicates hold sodium ions loosely and car	icates, capable of exchanging as producing ions in water These	3	

	$(Mg^{2+}Ca^{2+}etc)$ are retained by the zeolite as CaZe and MgZe, while the		
	outgoing water contain sodium salts.		
	$CaCl_2(or CaSO_4) + Na_2Ze \rightarrow CaZe + 2NaCl(or Na_2SO_4)$		
	$MgSO_4 (or MgCl_2) + Na_2Ze \rightarrow MgZe + 2NaCl(or Na_2SO_4)$	2	
	$Ca(HCO_3)_2$ (or Mg(HCO_3)_2 + Na_2Ze \rightarrow CaZe (or MgZe) + 2 NaHCO_3		
6-b	Vapour Absorption system		
	F segensealer F expansion H best A refugerator primp G	3	
	In absorption system the compressor in the vapor compression cycle is replaced by an absorber- generator assembly involving less mechanical work.		
	Ammonia is the refrigerant and water is the absorbent. Ammonia vapor is		
	vigorously absorbed in water. So low pressure ammonia vapor from the		
	evaporator comes in contact in the absorber with a weak solution coming from		
	the generator, it is readily absorbed releasing the latent heat of condensation .		
	The temperature of the solution tends to rise, while the absorber is cooled by		
	the circulating water , absorbing the heat of solution, $Q_{\rm A}$ and maintaining a	5	
	constant temperature. Strong solution, rich in ammonia, is pumped to the	5	
	generator where Q_G is supplied from an external source like steam, electricity		
	etc. Since the boiling point of ammonia is less than that of water, the ammonia		
	vapor is given off from the aqua- ammonia solution at high pressure and the		
	weak solution returns to the absorber through a pressure reducing valve. The		
	heat exchanger preheats the strong solution and cools the weak solution,		

	reducing both Q_A $\& Q_G$. The ammonia vapor then condenses in the condenser, is		
	throttled by the expansion valve, and then evaporates absorbing the heat of		
	evaporation from the surroundings.		
6-c	Water level indicator		
	Diagram		
	1- steam cock 2-water cock 3-draincock	3	
	Construction: Water level indicator indicates the level of water in the boiler	3	
	drum and warns the operator if by chance the water level goes below a fixed mark		
	so that corrective action may be taken in time to avoid any accident.		
	It consists of three cocks and a glass tube. The steam cock 1 keeps the glass		
	tube in connection with the steam space and cock 2 puts the glass tube in		
	connection with the water space in the boiler. The drain cock 3 is used to drain		
	out the water from the glass tube at intervals to ascertain that the steam and		
	water cocks are clear in operation.		

ect code :(17425)	Page 23 of 23
Working: The steam and water cocks are opened and the drain coke is close	d.
The steam enters from the upper end of the glass tube and water enters from	the 2
lower end of the tube, so the water level inside the boiler will be the same as	
seen in the glass tube.	