

Q. No.	$\begin{array}{\|l\|} \hline \text { Sub } \\ \mathrm{Q} . \\ \mathrm{N} . \\ \hline \end{array}$	Answer	Markin g Schem e
Q. 1	(A)	Attempt any SIX of the following.	(12)
Q. 1	A)a) Ans	Define core of the section. It is the portion of a section around the center within which the line of action of load must act so as to produce only compressive stress is called as core of the section. Circular Column	01 Mark 01 Mark
Q. 1	A)b) Ans	Define slope and deflection of a beam. Definition of Slope of beam: The slope at any point on the elastic curve of the beam is defined as the angle in radians that the tangent at that point makes with the original axis of the beam. It is measured in radians Definition of deflection of beam: when a beam is loaded, the beam is deflected from its original position in the direction perpendicular to its longitudinal axis. Then displacement of beam measured from its neutral axis from unloaded condition of the beam to loaded condition is called deflection of beam. The deflection at any point on the axis of the beam is the distance between its positions before and after loading.	01 Mark 01 Mark
Q. 1	A)c)	Write the value of max. slope and deflection in case of simply supported beam loaded with udl over entire span.	

	Ans	```Slope at the ends of S.S. beam \(=(\theta)=w L^{3} / 24 E I\) Deflection at the centre \(=y_{\text {max }}=y_{\text {centre }}=5 / 384 \mathrm{wL}^{4} / E I\) Where \(\mathrm{w}=\) rate of loading. \((\mathrm{KN} / \mathrm{m})\) \(\mathrm{L}=\) leangth of beam(m) \(\mathrm{E}=\) modulus of elasticity \(\left(\mathrm{N} / \mathrm{mm}^{2}\right.\)) \(\mathrm{I}=\) moment of inertia of a beam \(\mathrm{mm}^{4}\)```	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 1	A)d) Ans	State the boundary conditions for simply supported beam using deflected shape. Boundary conditions of simply supported beam (slope exists but deflection is zero) 1) slope $(\Theta)=d y / d x \neq 0$ 2) deflection $=y=0$ $R_{A}=$ Reaction force at support $A=W / 2$ $\mathrm{R}_{\mathrm{B}}=$ Reaction force at support $\mathrm{B}=\mathrm{W} / 2$ $\theta_{A}=$ Slope at support A $\theta_{B}=$ Slope at support B	01 Mark 01 Mark
Q. 1	A)e) Ans	Define fixing and fixed beam Fixing: - When the ends of the beam are firmly built in the support so as the slopes at the support become zero i.e tangent to the deflected curve at support will be zero. Fixed beam: - A beam whose end supports are such that the end slopes remain zero is called a fixed beam.	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 1	A)f) Ans	Define distribution factor and carry over factor. Distribution factor:- it is the ratio of relative stiffness of a member to the total stiffness of all the members meeting at a point. Carry over factor:- it is the ratio of moment produce at a joint to the moment applied at the other joint without displacing it.	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 1	A)g) Ans	Write the concept of carry over factor Carry over factor:- it is the ratio of moment produce at a joint to the moment applied at the other joint without displacing it. 1) The beam fixed at one end and simply supported at other end , the carry over factor is $1 / 2$. 2) The beam simply supported at both ends, the carry over factor is zero.	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 1	A)h) Ans	Define with sketch deficient frame and redundant frame Deficient frame Assume, $n=$ number of members, $j=$ number of joints. If the number of members are less than the required number of members $(\mathrm{n}<2 \mathrm{j}-3)$ then the corresponding frame is called as deficient frame. Redundant frame Assume, $n=$ number of members, $j=$ number of joints. If the number of members are less than the required number of members $(n>2 j-3)$ then the corresponding frame is called as deficient frame.	01 M 01 M

		$\mathrm{E}=2.596 \approx 2.6 \mathrm{~m}$ Consider the right part of section 1-1 in equilibrium taking moment at joint E We get $\begin{aligned} & \Sigma \mathrm{M}_{\mathrm{E}}=-\mathrm{F}_{\mathrm{BA}} \times 2.6+40 \times 4.5 \\ & \mathrm{~F}_{\mathrm{AB}}=69.23 \mathrm{KN} \text { (tensile) } \end{aligned}$ To find F_{AE} and F_{DE} using condition of equilibrium $\Sigma \mathrm{fx}=0$ $-F_{B A}-F_{E A} \cos 30-F_{E D} \cos 30=0$ $\Sigma f y=0$ $-40+\mathrm{F}_{\mathrm{EA}} \sin 30-\mathrm{F}_{\text {EDSin }} \cos 30=0$ $\mathrm{F}_{\text {EA }} \sin 30-\mathrm{F}_{\text {ED }} \cos 30=40----------------------------------\quad B$ Solving equations A and B We get $\mathrm{F}_{\mathrm{EA}}=0.003 \mathrm{KN} \approx 0 \mathrm{KN} \text { (tensile) }$ $F_{E D}=-79.969 \mathrm{KN} \approx-80 \mathrm{KN}$ (compressive)	02 M 02 M
Q. 2	a)	A tie rod of rectangular section having 15 mm thickness it carries load of 200KN acts at an eccentricity of 10 mm along a plane bisecting thickness. Calculate the width of section if maximum tensile stress shall not exceed 100 MPa . Given:- $D=15 \mathrm{~mm}$ $\mathrm{e}=10 \mathrm{~mm}$ load line bisecting the thickness maximum tensile stress $\left(\sigma_{\max }\right)=100 \mathrm{MPa}=100 \mathrm{~N} / \mathrm{mm}^{2}$ Since the load is tensile on the right side of YY axis, the maximum tensile stress will occur on the right face of section face $B C$ Let ' b ' be the minimum width of the rod If the load is eccentric about $Y Y$ axis $\begin{aligned} & \sigma_{\max }=P / A+M / Z y y=(P / A)+\left[P . e /\left(\mathrm{db}^{2} / 6\right)\right] \\ & 100=200 \times 10^{3} / \mathrm{b} \times 15+\left[\left(200 \times 10^{3} \times 10\right) /\left(15 \times\left(\mathrm{b}^{2} / 6\right)\right]\right. \\ & 100=1.3333 \times 10^{4} / \mathrm{b}+8 \times 10^{5} / \mathrm{b}^{2} \\ & \mathrm{~b}^{2}-1.3333 \times 10^{2} \mathrm{~b}-8 \times 10^{3}=0 \\ & \text { on solving we get } \\ & \mathrm{b}=178.23 \mathrm{~mm} \end{aligned}$	01M

Q. 2	b)	A rectangular column of size $0-35 \mathrm{~m} \times 0.25 \mathrm{~m}$ carries an eccentric load of 150 KN . The load acts at 0.15 m from $\mathrm{c} . \mathrm{g}$. of the section on axis bisecting the shorter side. Determine resultant stress at the base and draw stress distribution diagram. Given:- $\begin{aligned} & b=0.35 \mathrm{~m}=350 \mathrm{~mm} \\ & d=0.25 \mathrm{~m}=250 \mathrm{~mm} \\ & P=150 \mathrm{KN} \\ & e=150 \mathrm{~mm} \end{aligned}$ load line bisecting shorter face i.e. thickness $\text { area }(A)=b \times d=350 \times 250=87500 \mathrm{~mm}^{2}$ direct stress ($\sigma 0$) $=P / A=150 \times 10^{3} / 87500=1.71 \mathrm{~N} / \mathrm{mm}^{2}$ (comp) bending stress $(\sigma b)=M / Z=P . e / Z y y=150 \times 10^{3} \times 150 /\left(\left(250 \times 350^{2}\right) / 6\right)=$ $4.41 \mathrm{~N} / \mathrm{mm}^{2}$ (Comp. at right face and Tensile at left face) $\begin{aligned} & \sigma_{\max }=\sigma_{0}+\sigma_{b}=1.71+4.41=6.12 \mathrm{~N} / \mathrm{mm}^{2} \text { (comp) } \\ & \sigma_{\min }=\sigma_{0}-\sigma_{b}=1.71-0.44=-2.7 \mathrm{~N} / \mathrm{mm}^{2} \text { i.e. } 2.7 \mathrm{~N} / \mathrm{mm}^{2} \text { (Tensile) } \end{aligned}$	1/2M 1/2M 1/2M 1 M 1 M for diagra m
Q. 2	c)	A hollow C.I. column of external diameter 300 mm and internal diameter 250 mm carries an axial load of ' W ' KN and load of 100 KN at an eccentricity of 175 mm . calculate minimum value of W so as to avoid tensile stresses. Given External diameter $D=300 \mathrm{~mm}$ Internal diameter d=250mm Axial load = W KN Eccentric load (P)=100 KN Eccentricity e $=175 \mathrm{~mm}$ Avoid tensile stress i.e. assume no tension condition i.e direct stress ($\sigma 0$) = bending stress ($\sigma \mathrm{b}$) To find Axial load W Area $(A)=\pi / 4\left(D^{2}-d^{2}\right)=\pi / 4\left(300^{2}-250^{2}\right)=21.6 \times 10^{3} \mathrm{~mm}^{2}$ Direct stress (oo) $=(\mathrm{W}+\mathrm{P}) / \mathrm{A}=\left[\mathrm{W}+100 \times 10^{3} / 21.6 \times 10^{3} \mathrm{~mm}^{2}\right]$ Bending stress (σb) $=\mathrm{M} / \mathrm{Z}=\mathrm{P} . \mathrm{e} / \mathrm{Zyy}$ $\begin{equation*} =\left\{100 \times 10^{3} \times 175 /\left[\pi / 32\left(\left(300^{4}-250^{4}\right) / 300\right)\right]\right\} \tag{1} \end{equation*}$ bending stress ($\sigma \mathrm{b}$) $=12.75 \mathrm{~N} / \mathrm{mm}^{2}----(2)$ to avoid tensile stress we have to assume no tension condition i.e Direct stress ($\sigma \mathrm{o}$) = Bending stress ($\sigma \mathrm{b}$) equating (1) and (2) $\left[(W+100) \times 10^{3} / 21.6 \times 10^{3}\right]=12.75$ We will get $\mathrm{W}=175.4 \mathrm{kN}$	1M 1M 1M 1M
Q. 2	d) Ans	A cantilever beam of span 1.8 m carries $30 \mathrm{KN} / \mathrm{m}$ udl over entire span. if deflection at free end is limited to 25 mm , determine the elastic modulus of material $\mathrm{I}=1.3 \times 10^{8} \mathrm{~mm}^{4}$. Given $\begin{aligned} & \mathrm{L}=1.8 \mathrm{~m} \\ & \mathrm{~W}=30 \mathrm{kN} / \mathrm{m} \end{aligned}$	

		$\begin{aligned} & \mathrm{y}=25 \mathrm{~mm} \\ & \mathrm{l}=1.3 \times 10^{8} \mathrm{~mm}^{4} \end{aligned}$ For a cantilever beam carrying UDL over entire span The deflection is given by the formula $\begin{aligned} & y=w L^{4} / 8 \mathrm{EI} \\ & 25=\left(30 \times\left(1.8 \times 10^{3}\right)^{4}\right) /\left(8 \times E \times 1.3 \times 10^{8}\right) \end{aligned}$ On solving we get $\mathrm{E}=12.112 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$	$2 \mathrm{M}$ 1 M $1 \mathrm{M}$
Q. 2		A beam of span 3 m is simply supported and carries udl of ' W ' N / m if slope at the ends is not to exceed 1^{0}, find the maximum deflection. $\theta=$ slope at the end $=1^{\circ}=(1 \times \pi / 180)$ radians $=0.017 \mathrm{rad}$ $\Theta=$ slope at the end simply supported and carries udl on entire span is given by $=\mathrm{wL}^{3} / 24 \mathrm{El}$ $\begin{aligned} & 0.017=(\mathrm{w} / \mathrm{EI}) \times\left(\mathrm{L}^{3} / 24\right) \\ & (\mathrm{w} / \mathrm{EI})=0.0151 \end{aligned}$ To find maximum deflection for simply supported and carries udl (for downward deflection) $\begin{aligned} & Y_{\max }=\left[5 / 384\left(\mathrm{wL}^{4} / \mathrm{EI}\right)\right] \\ & Y_{\max }=5 L^{4} / 384 \times(\mathrm{w} / \mathrm{EI}) \\ & Y_{\max }=-5 L^{4} / 384 \times 0.0151 \\ & Y_{\max }=15.9 \mathrm{~mm} \approx 16 \mathrm{~mm} \end{aligned}$	$1 / 2 \mathrm{M}$ 1M
Q. 2	$\begin{array}{\|l\|} \hline \text { f) } \\ \text { Ans } \end{array}$	Clapeyron's theorem of three moments with neat sketch and give meaning of each term For a two span continuous beam having uniform moment of inertia, supported at ends A, B and C subjected to any external loading, the support moments $M A, M B$ and $M C$ at the supports A, B and C respectively are given by the relation $\begin{aligned} & M_{A} L_{1}+2 M B\left(L_{1}+L_{2}\right)+M C L_{2}= \\ &-\left(6 a_{1} x_{1} / L_{1}+6 a_{2} x_{2} / L_{2}\right) \end{aligned}$ Where $L_{1}=$ length of span $A B$ $L_{2}=$ length of span $B C$ $\mathrm{a}_{1}=$ area of free BMD for the span $A B$ (figure b) $a_{2}=$ area of free BMD for the span $B C$ (figure b) $\mathrm{x}_{1}=$ distance of C.G. of free BMD over the span $A B$ from Left end A $\mathrm{x}_{2}=$ distance of C.G. of free BMD	1M 1M 2M for dia.
Q. 3		A cantilever beam 2 m long carrying udl of intensity $6 \mathrm{kN} / \mathrm{m}$ over full length. Calculate the depth of the beam if max. deflection is limited to 5 mm and depth to width ratio is $2 . \mathrm{E}=2 \times 10^{5}$ mPa .	

		$\begin{aligned} & Y_{\max }=\left(\mathrm{wl}^{4}\right) /(8 \mathrm{EI}) \\ & 5=\left(6 \times 2000^{4}\right) /\left(8 \times 2 \times 10^{5} \times \mathrm{I}\right) \\ & \mathrm{I}=12 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}=\mathrm{bd} \mathrm{~d}^{3} / 12 \\ & 12 \times 10^{6}=\mathrm{b} \times(2 \mathrm{~b})^{3} / 12 \quad(\mathrm{~d}=2 \mathrm{~b}) \\ & \mathrm{b}=65.136 \mathrm{~mm} \\ & \mathrm{~d}=2 \times 65.136=130.27 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \\ & \\ & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 3	b) Ans	A simply supported beam carries udl of $4 \mathrm{KN} / \mathrm{m}$ over entire span of 4 m find deflection at mid span in terms of El. $\begin{aligned} & \mathrm{W}=4 \mathrm{KN} / \mathrm{m} \\ & \mathrm{~L}=4 \mathrm{~m} \\ & \mathrm{EI}=\text { flexural Rigidity }\left(\mathrm{kN}-\mathrm{m}^{2}\right) \end{aligned}$ The formula for the deflection of simply supported beam carrying udl over entire span is given by	2 M 2 M
Q. 3	c) Ans	A fixed beam $A B$ of span $4 m$ carries a point load of 80 KN at its centre. Find fixed end moments by using the first principle and draw SF and BM diagrams Simply supported bending moment at mid-span $=\mathrm{WL} / 4=80 \times 4 / 4=80 \mathrm{kN}-\mathrm{m}$. Due to symmetry, $M_{A B}=M_{B A}$ Area of S. S. B. M. Dia. $=a_{1}=0.5 \times 4 \times 80=160$ Area of F. E. M. Dia. $=M_{A B} \times 4$ Area of simply supported bending moment diagram = Area of fixed end moment diagram $a_{1}=a_{2}$ $160=M_{A B} \times 4$ Hence $\mathrm{M}_{\mathrm{AB}}=40 \mathrm{kN}-\mathrm{m}$ And $\mathrm{M}_{\mathrm{BA}}=40 \mathrm{kN}-\mathrm{m}$ F. E.M. D. B.M. D. 40 kN	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & \\ & \\ & 1 \mathrm{M} \text { for } \\ & \text { diagra } \\ & \mathrm{m} \\ & \\ & \\ & 01 \mathrm{M} \\ & \text { for } \\ & \text { BMD \& } \\ & \text { SFD } \end{aligned}$

Q. 3	d) Ans	State any two advantages and dis advantages of fixed beam over simply supported beam Advantages of fixed beam over simply supported beam: (1) Due to end fixity ,end slope of a fixed beam is zero. (2)A fixed beam is more stronger, stiffer and stable. (3) For same span and loading,fixed beam has lesser value of Bending moment. (4) Smaller moment permits smaller sections and there is saving in beam material. (5) Fixed beam has lesser deflection for same span and loading as compared to S.S. beam Disadvantages of fixed beam over simply supported beam: 1) A little sinking or settlement of support induces additional moment at each support. 2) secondary stresses are develop due to temperature 3) dynamic loading may disturb the fixity	1M each for any two 1M each for any two
Q. 3	e) Ans	Using method of joints, find nature and magnitude of forces in AE and DE in frame as shown Step 1 Calculation of support reaction at support A (roller)I.e. $R A_{H}$ and at support D (hinged) $R D_{H}$ and $R D_{V}$ as shown in diagram Using conditions of equilibrium $\Sigma M_{D}=0$ $R A_{H} \times 2+10 \times 2+20 \times 4=0$ $R A_{H}=-50 \mathrm{KN}$ i.e 50 kN towards left $\Sigma \mathrm{fx}=0$ $\mathrm{RD}_{\mathrm{H}}-\mathrm{RA}_{\mathrm{H}}=0$ $\mathrm{RD}_{\mathrm{H}}=50 \mathrm{kN}$ towards right $\Sigma \mathrm{fy}=0=-15-10-20+R D_{v}=0$ $R D_{\mathrm{V}}=45 \mathrm{KN}$ (upward) Joint D Assuming forces tensile in nature. Using condition of equilibrium $\Sigma \mathrm{fy}=0$ l.e. $F_{D A}=-45 K N$ i.e 45 kN (Compressive) $\Sigma \mathrm{fx}=0$ $\mathrm{F}_{\mathrm{DE}}+50=0$ i.e. $\mathrm{F}_{\mathrm{DE}}=-50 \mathrm{KN}$ i.e. 50 kN (Compressive) joint A Assuming forces tensile in nature. Using condition of equilibrium	02 M

		Using three moment theorem; $\begin{aligned} & M_{A} \times L_{1}+2 M_{B}\left(L_{1}+L_{2}\right)+M_{C} \times L_{2}=-\left[\left(6 \times a_{1} \times x x_{1} / L_{1}\right)+\left(6 \times a_{2} \times x_{2} / L_{2}\right)\right] \\ & \quad M_{A}=M_{C}=0(\text { End simple supports }) \\ & 0+2 M_{B}(4+6)+0=-[(6 \times 53.33 \times 2 / 4)+(6 \times 240 \times 2.67 / 6)] \\ & 20 M_{B}=-(160+640) \\ & M_{B}=-800 / 20 \\ & =-40.0 \mathrm{kN}-\mathrm{m} \end{aligned}$ B. M. D.	01 M 01 M 01 M 01 M
Q. 4	c)	A continuous beam $A B C$ is fixed at A and simply supported at B and C. Only span $B C$ is loaded with udl $2 \mathrm{kN} / \mathrm{m}$, span $A B=6 \mathrm{~m}$, span $B C=8 \mathrm{~m}$. Draw B. M. D. for beam. Use three moments theorem only. Consider zero span at $A\left(\right.$ span $\left.A_{0}-A\right)$ $M_{2}=2 \times 8^{2} / 8=16.0 \mathrm{kN}-\mathrm{m} \quad a_{2}=2 \times 8 \times 16.0 / 3=85.33 \quad x_{2}=8 / 2=4 \mathrm{~m}$ Using three moment theorem; Span $\mathrm{A}_{0}-\mathrm{A}$ and $\mathrm{A}-\mathrm{B}$ $\begin{aligned} & \left.M_{0} \times I_{0}+2 M_{A}\left(I_{0}+I_{1}\right)+M_{B} \times I_{1}=-\left[\left(6 \times a_{0} \times x_{0} / I_{0}\right)+6 \times a_{1} \times x_{1} / I_{1}\right)\right] \\ & \quad M_{0}=0 \text { (Imaginary support) } \\ & 0+2 M_{A}(0+6)+M_{B} \times 6=0+0 \\ & 12 M_{A}+6 M_{B}=0 \\ & M_{B}=-2 M_{A} \end{aligned}$ Span A-B and B-C $\begin{gathered} M_{A} \times L_{1}+2 M_{B}\left(L_{1}+L_{2}\right)+M_{C} \mathbf{x} L_{2}=-\left[\left(6 \mathbf{x} a_{1} \mathbf{x} x_{1} / L_{1}\right)+\left(6 \mathbf{x} a_{2} \mathbf{x} x_{2} / L_{2}\right)\right] \\ M_{C}=0 \text { (End simple support) } \end{gathered}$	01 M

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{5}{|l|}{\[
\begin{aligned}
\& \hline \hline 6 M_{A}+2 M_{B}(6+8)+0=-[(0)+(6 \times 85.33 \times 4 / 8)] \\
\& 6 M_{A}+28 M_{B}=-(256) \\
\& -3 M_{B}+28 M_{B}=-256 \\
\& M_{B}=-256 / 25 \\
\& \quad=-10.24 \mathrm{kN}-\mathrm{m} \\
\& M_{A}=-(-10.24 / 2)=5.12 \mathrm{kN}-\mathrm{m} .
\end{aligned}
\]} \& \begin{tabular}{l}
\[
01 \text { M }
\] \\
01 \\
Mark
\end{tabular} \\
\hline Q. 4 \& d) \& A continuous beam \(A B C\) is si m . AB carries a udl of \(30 \mathrm{kN} / \mathrm{m}\) distribution method. \& \begin{tabular}{l}
ly supported at A, over entire span. \\
A \\
AB \\
1.0 \\
\(-62.5\) \\
62.5 \\
0.0 \\
gging) \(M_{C}=0\)
\end{tabular} \& \begin{tabular}{l}
and C. Sp \\
lculate sup
\[
\times 5^{2} / 12=6
\]

\end{tabular} \& \& span \(B C\) are of length 5 ments by using moment \& 01 M
01 M

02 M \\
\hline Q. 4 \& e)

Ans \& \begin{tabular}{l}
Using moment distribution m of span 5 m carrying udl 25 k
A
$$
M_{A B}=-25 \times 5^{2} / 12=-52.08
$$ \\
Joint

 \&

hod, determine the m over entire span 25 kN/m

$$
M_{B A}=2
$$ \\

A

 \&

moment \\
B

$$
5 \times 5^{2} / 12=
$$

\end{tabular} \& at fixed end

\[
=52.083 \mathrm{k}

\] \& | d of propped cantilever |
| :--- |
| $\mathrm{N}-\mathrm{m}$ | \& 01 M \\

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)

		$\begin{aligned} & \hline \hline(\mathrm{dy} / \mathrm{dx})_{\mathrm{A}}=(1 / \mathrm{EI}) \times(655)=655 / \mathrm{EI} \\ & 655 / 2.668 \times 10^{9}=2.455 \times 10^{-7} \mathrm{rad} . \end{aligned}$ For deflection at B Put $X=2$ in eq ${ }^{\text {n }} .02$ $\begin{aligned} & \mathrm{Y}_{\mathrm{B}}=(1 / E I)\left[-97.5 \times 2^{3} / 6+655 \times 2\right] \\ &= 1180 / 2.668 \times 10^{9}= \\ &=4.423 \times 10^{-7} \mathrm{~m} . \\ &=4.423 \times 10^{-4} \mathrm{~mm} . \end{aligned}$ For deflection at C $\text { Put } X=4 \text { in eq }{ }^{n} .02$ $Y_{C}=(1 / E I)\left[-97.5 \times 4^{3} / 6+60 \times(4-2)^{3} / 6+655\right.$ x 4] $\begin{aligned} =1660 / 2.668 \times 10^{9}= & 6.222 \times 10^{-7} \mathrm{~m} \\ & =6.222 \times 10^{-4} \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \hline(\mathrm{dy} / \mathrm{dx})_{\mathrm{A}}=(1 / \mathrm{EI})\left[-92.5 \times 8^{2} / 2+50 \times(8-2)^{2} / 2\right. \\ & \left.+80 \times(8-4)^{2} / 2+60 \times(8-6)^{2} / 2+645\right] \\ & =655 / 2.668 \times 10^{9}=\mathbf{2 . 4 5 5} \times 10^{-7} \mathbf{r a d} . \end{aligned}$ For deflection at B Put $X=6$ in eq ${ }^{\text {n }} .02$ $\begin{aligned} & y_{\mathrm{B}}=(1 / \mathrm{EI})\left[-92.5 \times 6^{3} / 6+50 \times(6-2)^{3} / 6+80\right. \\ & \left.\times(6-4)^{3} / 6+645 \times 6\right] \\ & =1180 / 2.668 \times 10^{9}= \end{aligned}$ For deflection at C Put $X=4$ in eq ${ }^{\text {n }} .02$ $Y_{C}=(1 / E I)\left[-92.5 \times 4^{3} / 6+50 \times(4-2)^{3} / 6+645\right.$ x4] $\begin{aligned} =1660 / 2.668 \times 10^{9}= & 6.222 \times 10^{-7} \mathrm{~m} \\ & =6.222 \times 10^{-4} \mathrm{~mm} . \end{aligned}$	01 M
Q. 6	b) Ans	A fixed beam AB of span 6 m carries point loads of 120 kN and 90 kN at 2 m and 4 m from left hand support. Find fixed end moments and support reactions. Draw S.F.D and B.M.D. $\begin{aligned} \mathrm{M}_{\mathrm{AB}} & =\left(120 \times 2 \times 4^{2} / 6^{2}\right)+\left(90 \times 4 \times 2^{2} / 6^{2}\right) \\ & =146.67 \mathrm{kN}-\mathrm{m} \\ \mathrm{M}_{\mathrm{BA}} & =\left(120 \times 2^{2} \times 4 / 6^{2}\right)+\left(90 \times 4^{2} \times 2 / 6^{2}\right) \\ & =133.33 \mathrm{kN}-\mathrm{m} \end{aligned}$ Reactions: $\begin{aligned} & \quad \Sigma M_{A}=0 \\ & 120 \times 2+90 \times 4+133.33-146.67-R_{B} \times 6=0 \\ & R_{B}=(240+360-13.33) / 6 \\ & =97.78 \mathrm{kN} . \\ & R_{A}=120+90-97.78=112.22 \mathrm{kN} . \end{aligned}$ Bending moment at point load $\begin{aligned} \mathrm{M}_{\mathrm{C}} & =-146.67+112.22 \times 2 \\ & =77.77 \mathrm{kN}-\mathrm{m} \\ \mathrm{M}_{\mathrm{D}} & =-146.67+112.22 \times 4-120 \times 2 \\ & =62.21 \mathrm{kN}-\mathrm{m} \end{aligned}$ Shear force calculations: At $B=-97.78 \mathrm{kN}$ At D , just right $=-97.78 \mathrm{kN}$ At D, just left $=-97.78+90=-7.78 \mathrm{kN}$ At C, just right $=-7.78 \mathrm{kN}$ At C, just left $=-7.78+120=112.22 \mathrm{kN}$ At $\mathrm{A}=112.22 \mathrm{kN}$ B. M. D.		
				01 M 01 M
				01 M
				02 M
				01 M

