

|            |                         | W                                                                                                                                                 | /INTER- 17 EXAMINATION                                            | N                       |                     |                                         |
|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|---------------------|-----------------------------------------|
| 9          | Subject                 | Name: Theory of Structures                                                                                                                        | Model Answer                                                      | Subject Code:           | 17422               |                                         |
| Impo       | ortant I                | nstructions to examiners:                                                                                                                         |                                                                   |                         |                     |                                         |
| 1          | ) The<br>sche           | answers should be examined by eme.                                                                                                                | key words and not as wo                                           | ord-to-word as given    | in the model answ   | wer                                     |
| 2          | unde                    | model answer and the answer wri<br>erstanding level of the candidate.                                                                             |                                                                   | •                       |                     |                                         |
| 3          |                         | language errors such as gramm icable for subject English and Con                                                                                  |                                                                   | ould not be given m     | ore Importance (    | Not                                     |
| 4          |                         | e assessing figures, examiner ma                                                                                                                  |                                                                   |                         |                     |                                         |
|            |                         | es drawn by candidate and model<br>e drawn.                                                                                                       | I answer may vary. The ex                                         | caminer may give cree   | dit for any equival | ent                                     |
| 5          |                         | dits may be given step wise for n                                                                                                                 | numerical problems. In so                                         | me cases, the assur     | ned constant valu   | ues                                     |
|            |                         | vary and there may be some diffe                                                                                                                  |                                                                   |                         |                     |                                         |
| 6          |                         | ase of some questions credit ma                                                                                                                   | ly be given by judgement                                          | t on part of examine    | r of relevant answ  | wer                                     |
| 7          |                         | ed on candidate's understanding.                                                                                                                  | aradit may be given to                                            | ony other program k     | and an aquival      | ont                                     |
| 7          | ) FOI<br>cond           | programming language papers,                                                                                                                      | credit may be given to                                            | any other program t     | ased on equival     |                                         |
|            | 00110                   | :eor                                                                                                                                              |                                                                   |                         |                     | on                                      |
| <b>)</b> . |                         | ept.                                                                                                                                              |                                                                   |                         |                     |                                         |
| -          | Sub                     |                                                                                                                                                   | Answer                                                            |                         |                     | Markir                                  |
| -          | Q.                      |                                                                                                                                                   | Answer                                                            |                         |                     | Markir<br>g                             |
| vo.        |                         |                                                                                                                                                   | Answer                                                            |                         |                     | Markir<br>g<br>Schem                    |
| -          | Q.                      |                                                                                                                                                   | Answer                                                            |                         |                     | Markir<br>g                             |
| lo.        | Q.                      | Attempt any SIX of the following                                                                                                                  |                                                                   |                         |                     | Markir<br>g<br>Schem                    |
| lo.<br>2.1 | Q.<br>N.                |                                                                                                                                                   |                                                                   |                         |                     | Markir<br>g<br>Schem<br>e               |
| lo.<br>2.1 | Q.<br>N.<br>(A)         | Attempt any SIX of the following                                                                                                                  | j.                                                                | ch the line of action o |                     | Markin<br>g<br>Schem<br>e               |
| No.<br>Q.1 | Q.<br>N.<br>(A)<br>A)a) | Attempt any SIX of the following<br><b>Define core of the section.</b><br>It is the portion of a section arou<br>so as to produce only compressiv | ,<br>und the center within whice<br>ve stress is called as core o |                         |                     | Markir<br>g<br>Schem<br>e<br>(12)       |
| -          | Q.<br>N.<br>(A)<br>A)a) | Attempt any SIX of the following<br><b>Define core of the section.</b><br>It is the portion of a section arou<br>so as to produce only compressiv | und the center within whic                                        | of the section.         |                     | Markin<br>g<br>Schem<br>e<br>(12)<br>01 |
| lo.<br>2.1 | Q.<br>N.<br>(A)<br>A)a) | Attempt any SIX of the following<br><b>Define core of the section.</b><br>It is the portion of a section arou<br>so as to produce only compressiv | ,<br>und the center within whice<br>ve stress is called as core o |                         |                     | Marki<br>g<br>Schen<br>e<br>(12)<br>01  |

| Q.1 | A)b)                                                                                            | Define slope and deflection of a beam.                                                                 |      |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|--|--|--|
|     | Ans                                                                                             | <b>Definition of Slope of beam:</b> The slope at any point on the elastic curve of the beam is defined | 01   |  |  |  |
|     |                                                                                                 | as the angle in radians that the tangent at that point makes with the original axis of the beam.       | Mark |  |  |  |
|     |                                                                                                 | It is measured in radians                                                                              |      |  |  |  |
|     |                                                                                                 | Definition of deflection of beam: when a beam is loaded, the beam is deflected from its                | 01   |  |  |  |
|     | original position in the direction perpendicular to its longitudinal axis. Then displacement of |                                                                                                        |      |  |  |  |
|     | beam measured from its neutral axis from unloaded condition of the beam to loaded condition     |                                                                                                        |      |  |  |  |
|     |                                                                                                 | is called deflection of beam.                                                                          |      |  |  |  |
|     |                                                                                                 | OR                                                                                                     |      |  |  |  |
|     |                                                                                                 | The deflection at any point on the axis of the beam is the distance between its positions before       |      |  |  |  |
|     |                                                                                                 | and after loading.                                                                                     |      |  |  |  |
| Q.1 | A)c)                                                                                            | Write the value of max. slope and deflection in case of simply supported beam loaded with              |      |  |  |  |
|     |                                                                                                 | udl over entire span.                                                                                  |      |  |  |  |

1

b/3

y¦ b Rectangular Column d/4

**Circular** Column

ł

Mark



|     | Anc  | Signs at the ends of $S$ $S$ here $= \frac{1}{2} - \frac{3}{24}$                                             | 01 14  |
|-----|------|--------------------------------------------------------------------------------------------------------------|--------|
|     | Ans  | Slope at the ends of S.S. beam = $(\Theta)=wL^3/24EI$                                                        | 01 M   |
|     |      | Deflection at the centre= $y_{max}=y_{centre}= 5/384 \text{ wL}^4/\text{EI}$                                 | 01 M   |
|     |      | Where                                                                                                        |        |
|     |      | w= rate of loading.(KN/m)                                                                                    |        |
|     |      | L= leangth of beam(m)                                                                                        |        |
|     |      | E= modulus of elasticity(N/mm <sup>2</sup> )                                                                 |        |
|     |      | I= moment of inertia of a beam mm <sup>4</sup>                                                               |        |
| Q.1 | A)d) | State the boundary conditions for simply supported beam using deflected shape.                               |        |
|     | Ans  | Boundary conditions of simply supported beam (slope exists but deflection is zero)                           |        |
|     |      | 1) slope ( $\Theta$ )= dy/dx $\neq$ 0                                                                        |        |
|     |      | 2) deflection = $y=0$                                                                                        |        |
|     |      | W                                                                                                            |        |
|     |      |                                                                                                              |        |
|     |      | K X Beam                                                                                                     |        |
|     |      | $\theta_A$ $CD = y_A$ $\theta_B$                                                                             | 01     |
|     |      | Tangent                                                                                                      | 01     |
|     |      | $R_A$ = Reaction force at support A = W/2                                                                    | Mark   |
|     |      | $R_B$ = Reaction force at support B = W/2                                                                    | 01     |
|     |      | $\theta_{A}$ = Slope at support A                                                                            | Mark   |
|     |      | $\theta_{\rm B}$ = Slope at support B                                                                        | IVIAIK |
| Q.1 | A)e) | Define fixing and fixed beam                                                                                 |        |
| Q.1 | Ans  | <b>Fixing:</b> - When the ends of the beam are firmly built in the support so as the slopes at the           | 01 M   |
|     | AIIS | support become zero i.e tangent to the deflected curve at support will be zero.                              | OT IVI |
|     |      | <b>Fixed beam:</b> - A beam whose end supports are such that the end slopes remain zero is called a          | 01 M   |
|     |      | fixed beam.                                                                                                  | UTIVI  |
| Q.1 | A)f) | Define distribution factor and carry over factor.                                                            |        |
| Q.1 | Ans  | <b>Distribution factor:-</b> it is the ratio of relative stiffness of a member to the total stiffness of all | 01 M   |
|     | AIIS | the members meeting at a point.                                                                              | OT IVI |
|     |      | <b>Carry over factor:-</b> it is the ratio of moment produce at a joint to the moment applied at the         | 01 M   |
|     |      | other joint without displacing it.                                                                           |        |
| Q.1 | A)g) | Write the concept of carry over factor                                                                       |        |
| ~   | Ans  | <b>Carry over factor:-</b> it is the ratio of moment produce at a joint to the moment applied at the         | 01 M   |
|     |      | other joint without displacing it.                                                                           |        |
|     |      | 1) The beam fixed at one end and simply supported at other end, the carry over factor is ½.                  | 01 M   |
|     |      | 2) The beam simply supported at both ends, the carry over factor is zero.                                    |        |
| Q.1 | A)h) | Define with sketch deficient frame and redundant frame                                                       |        |
|     | Ans  | Deficient frame                                                                                              |        |
|     |      | Assume, n = number of members, j= number of joints. If the number of members are less than                   | 01 M   |
|     |      | the required number of members ( $n < 2j-3$ ) then the corresponding frame is called as deficient            |        |
|     |      | frame.                                                                                                       |        |
|     |      | Redundant frame                                                                                              |        |
|     |      | Assume, n = number of members, j= number of joints. If the number of members are less than                   | 01 M   |
|     |      | the required number of members ( $n > 2j-3$ ) then the corresponding frame is called as deficient            |        |
|     |      | frame.                                                                                                       |        |
|     |      |                                                                                                              |        |
|     | L    |                                                                                                              |        |







|     |      | E= 2.596 ≈2.6m                                                                                   |        |
|-----|------|--------------------------------------------------------------------------------------------------|--------|
|     |      |                                                                                                  |        |
|     |      | Consider the right part of section 1-1 in equilibrium taking moment at joint E<br>We get         |        |
|     |      | $\Sigma M_{\rm E} = -F_{\rm BA} \times 2.6 + 40 \times 4.5$                                      |        |
|     |      | $F_{AB} = 69.23KN \text{ (tensile)}$                                                             | 02 M   |
|     |      | To find $F_{AE}$ and $F_{DE}$ using condition of equilibrium                                     | 02 101 |
|     |      | $\Sigma fx = 0$                                                                                  |        |
|     |      | $-F_{BA} - F_{EA}\cos 30 - F_{ED}\cos 30 = 0$                                                    |        |
|     |      | $F_{EA} = F_{EA} \cos 30 = F_{ED} \cos 30 = 0$<br>$F_{EA} \cos 30 = -69.23$ A                    |        |
|     |      | $\Sigma_{\rm EAC0350} = 1_{\rm EDC0350} = -03.23$                                                |        |
|     |      | $-40 + F_{EA}\sin 30 - F_{EDsin}\cos 30 = 0$                                                     |        |
|     |      | $F_{EA}sin30 - F_{ED}cos30 = 40$ B                                                               |        |
|     |      | Solving equations A and B                                                                        |        |
|     |      | We get                                                                                           |        |
|     |      | F <sub>EA</sub> = 0.003KN≈ 0KN (tensile)                                                         | 02 M   |
|     |      | F <sub>EA</sub> = 0.005KN~ 0KN (tensile)<br>F <sub>ED</sub> = - 79.969KN≈ -80KN(compressive)     | 02 101 |
| Q.2 | a)   | A tie rod of rectangular section having 15mm thickness it carries load of 200KN acts at an       |        |
| Q.2 | a)   | eccentricity of 10mm along a plane bisecting thickness. Calculate the width of section if        |        |
|     |      | maximum tensile stress shall not exceed 100MPa.                                                  |        |
|     | Ans  | maximum tensile stress shall not exceed 100MPa.                                                  |        |
|     | AIIS |                                                                                                  |        |
|     |      | b = ?                                                                                            |        |
|     |      |                                                                                                  | 01M    |
|     |      |                                                                                                  | UTIVI  |
|     |      | e=10mm                                                                                           |        |
|     |      |                                                                                                  |        |
|     |      | Given:-                                                                                          |        |
|     |      | D=15mm                                                                                           |        |
|     |      | e= 10mm                                                                                          |        |
|     |      | load line bisecting the thickness                                                                |        |
|     |      | maximum tensile stress ( $\sigma_{max}$ ) = 100 MPa = 100 N/mm <sup>2</sup>                      |        |
|     |      | Since the load is tensile on the right side of YY axis, the maximum tensile stress will occur on |        |
|     |      | the right face of section face BC                                                                |        |
|     |      | Let 'b' be the minimum width of the rod                                                          |        |
|     |      | If the load is eccentric about YY axis                                                           | 01 M   |
|     |      | $\sigma_{max} = P/A + M/Zyy = (P/A) + [P.e/(db^2/6)]$                                            |        |
|     |      | $100 = 200 \times 10^3 / b \times 15 + [(200 \times 10^3 \times 10)/(15 \times (b^2/6)]$         |        |
|     |      | $100 = 1.3333 \times 10^4 / b + 8 \times 10^5 / b^2$                                             | 01M    |
|     |      | $b^2 - 1.3333 \times 10^2 b - 8 \times 10^3 = 0$                                                 | 01101  |
|     |      | on solving we get                                                                                | 01 M   |
|     |      | b=178.23mm                                                                                       | OTIVI  |
|     |      | N-1/0.42111111                                                                                   |        |



| Q.2 | b)  | A rectangular column of size 0-35m x0.25 m carries an eccentric load of 150 KN. The load acts                               |         |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|
| Q.2 | 5)  | at 0.15m from c.g. of the section on axis bisecting the shorter side. Determine resultant                                   |         |
|     |     | stress at the base and draw stress distribution diagram.                                                                    |         |
|     | Anc | -                                                                                                                           |         |
|     | Ans | Given:- 150 kN 150 mm                                                                                                       |         |
|     |     | b= 0.35m = 350mm                                                                                                            | 1/204   |
|     |     | d= 0.25m= 250mm                                                                                                             | 1/2M    |
|     |     | P = 150 KN                                                                                                                  | 4 /21.4 |
|     |     | e= 150mm                                                                                                                    | 1/2M    |
|     |     | load line bisecting shorter face i.e. thickness                                                                             | 1/2M    |
|     |     | area (A)= b xd = $350 \times 250 = 87500 \text{ mm}^2$                                                                      |         |
|     |     | direct stress ( $\sigma$ ) = P/A =150 x10 <sup>3</sup> / 87500 =1.71 N/mm <sup>2</sup> (comp)                               | 1 M     |
|     |     | bending stress ( $\sigma$ b) = M/Z=P.e/Zyy =150 x10 <sup>3</sup> x 150/ ((250 x350 <sup>2</sup> )/6) =                      |         |
|     |     | 4.41 N/mm <sup>2</sup> (Comp. at right face and Tensile at left face)                                                       | 1 M     |
|     |     | $\sigma_{max} = \sigma_0 + \sigma_b = 1.71 + 4.41 = 6.12 \text{ N/mm}^2 \text{ (comp)}$                                     | for     |
|     |     | $\sigma_{min} = \sigma_o - \sigma_b = 1.71 - 0.44 = -2.7 \text{ N/mm}^2 \text{ i.e. } 2.7 \text{ N/mm}^2 \text{ (Tensile)}$ | diagra  |
|     |     | 6.12 mPa                                                                                                                    | m       |
| Q.2 | c)  | A hollow C.I. column of external diameter 300mm and internal diameter 250mm carries an                                      |         |
| ~   | ~,  | axial load of 'W' KN and load of 100KN at an eccentricity of 175mm. calculate minimum value                                 |         |
|     |     | of W so as to avoid tensile stresses.                                                                                       |         |
|     | Ans | Given                                                                                                                       |         |
|     |     | External diameter D= 300mm                                                                                                  |         |
|     |     | Internal diameter d= 250mm                                                                                                  |         |
|     |     | Axial load = W KN                                                                                                           |         |
|     |     | Eccentric load (P)= 100 KN                                                                                                  |         |
|     |     | Eccentricity e= 175mm                                                                                                       |         |
|     |     | Avoid tensile stress i.e. assume no tension condition i.e                                                                   |         |
|     |     | direct stress ( $\sigma$ o)= bending stress ( $\sigma$ b)                                                                   |         |
|     |     | To find                                                                                                                     |         |
|     |     |                                                                                                                             | 1M      |
|     |     | Axial load W<br>Area (A) = $\pi/4(D^2-d^2) = \pi/4(300^2-250^2) = 21.6 \times 10^3 \text{mm}^2$                             | 1141    |
|     |     | Direct stress ( $\sigma o$ ) = (W+P)/A =[W + 100 x10 <sup>3</sup> / 21.6x10 <sup>3</sup> mm <sup>2</sup> ] (1)              | 1M      |
|     |     | Bending stress ( $\sigma$ b) = M/Z=P.e/Zyy                                                                                  |         |
|     |     | $=\{100 \times 10^{3} \times 175 / [\pi/32((300^{4} - 250^{4}) / 300)]\}$                                                   | 1M      |
|     |     | bending stress ( $\sigma$ b) = 12.75 N/mm <sup>2</sup> (2)                                                                  |         |
|     |     | to avoid tensile stress we have to assume no tension condition                                                              | 1M      |
|     |     | i.e                                                                                                                         | TIM     |
|     |     | Direct stress (σο)= Bending stress (σb)                                                                                     |         |
|     |     | equating (1) and (2)                                                                                                        |         |
|     |     | $[(W + 100) \times 10^3 / 21.6 \times 10^3] = 12.75$                                                                        |         |
|     |     |                                                                                                                             |         |
|     |     | We will get<br>W= 175.4 kN                                                                                                  |         |
| 0.2 | d)  |                                                                                                                             |         |
| Q.2 | d)  | A cantilever beam of span 1.8m carries 30 KN/m udl over entire span. if deflection at free end                              |         |
|     | ۸   | is limited to 25mm, determine the elastic modulus of material I=1.3x10 <sup>8</sup> mm <sup>4</sup> .                       |         |
|     | Ans | Given                                                                                                                       |         |
|     |     | L= 1.8m                                                                                                                     |         |
|     |     | W= 30 KN/m                                                                                                                  | 1       |



|     |       | y = 25 mm<br>I = 1.3x10 <sup>8</sup> mm <sup>4</sup> 30 kN/m                                                                                                                                          |              |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     |       | For a cantilever beam carrying UDL over entire                                                                                                                                                        |              |
|     |       | span A 25mm                                                                                                                                                                                           | 2M           |
|     |       | The deflection is given by the formula                                                                                                                                                                | 2111         |
|     |       | $y = wL^4/8EI$ 1.8m                                                                                                                                                                                   | 1M           |
|     |       | $25 = (30 \times (1.8 \times 10^3)^4)/(8 \times E \times 1.3 \times 10^8)$                                                                                                                            | 1141         |
|     |       | On solving we get                                                                                                                                                                                     | 1M           |
|     |       | $E=12.112 \times 10^3 \text{ N/mm}^2$                                                                                                                                                                 | 1111         |
| Q.2 | e)    | A beam of span 3m is simply supported and carries udl of 'W' N/m if slope at the ends is not                                                                                                          |              |
| Q.2 | C)    | to exceed 1 <sup>°</sup> , find the maximum deflection.                                                                                                                                               |              |
|     | Ans   | $\Theta$ = slope at the end =1° =(1 x $\pi$ /180) radians = 0.017 rad                                                                                                                                 | 1/2M         |
|     | Alls  | $\Theta$ = slope at the end simply supported and carries udl on entire span is given by =wL <sup>3</sup> /24 El                                                                                       | 1/21vi<br>1M |
|     |       | $0.017 = (w/El)x (L^3/24)$                                                                                                                                                                            | TIM          |
|     |       | (w/EI) = 0.0151                                                                                                                                                                                       |              |
|     |       |                                                                                                                                                                                                       |              |
|     |       | To find maximum deflection for simply supported and carries udl (for downward deflection) $Y_{max} = [5/384(wL^4/EI)]$                                                                                | 02M          |
|     |       | $Y_{max} = 5L^4/384 \text{ (w/EI)}$                                                                                                                                                                   | 02101        |
|     |       | $Y_{max} = -5L^{4}/384 \times 0.0151$                                                                                                                                                                 |              |
|     |       |                                                                                                                                                                                                       |              |
| 0.2 | L)    | Y <sub>max</sub> = 15.9 mm ≈ 16mm                                                                                                                                                                     |              |
| Q.2 | f)    | Clapeyron's theorem of three moments with neat sketch and give meaning of each term                                                                                                                   |              |
|     | Ans   | For a two span continuous beam                                                                                                                                                                        |              |
|     |       | having uniform moment of inertia, (a)                                                                                                                                                                 |              |
|     |       | supported at ends A, B and C                                                                                                                                                                          |              |
|     |       | subjected to any external loading ,<br>the support moments MA. MB and $dx = M_x$                                                                                                                      |              |
|     |       | the support moments MA, MB and $dx M_x$<br>MC at the supports A,B and C                                                                                                                               |              |
|     |       |                                                                                                                                                                                                       |              |
|     |       | respectively are given by the + + (b)                                                                                                                                                                 |              |
|     |       | $M_{A}L_{1}+ 2MB(L_{1}+L_{2})+MCL_{2} = \overline{x_{1}}$                                                                                                                                             |              |
|     |       | $M_{L_1} + 2M_{L_1} + 2M_{L_1} + M_{L_2} - $                                                                                                                                                          | 114          |
|     |       | $-(6a_1x_1/L_1+6a_2x_2/L_2)$ Free B.M.D Where                                                                                                                                                         | 1M           |
|     |       | dx M' MP                                                                                                                                                                                              | 1 \ 1        |
|     |       | $L_1$ = length of span BC                                                                                                                                                                             | 1M           |
|     |       | $L_2$ = length of span BC 4 + $M_c$ (c)                                                                                                                                                               |              |
|     |       | a <sub>1</sub> = area of free BMD for the span<br>AB (figure b) $\overline{x_1}'$ $\overline{x_2}'$                                                                                                   |              |
|     |       |                                                                                                                                                                                                       | 2M for       |
|     |       | a <sub>2</sub> = area of free BMD for the span Fixed B.M.D<br>BC (figure b)                                                                                                                           | dia.         |
|     |       |                                                                                                                                                                                                       | ula.         |
|     |       | $x_1$ = distance of C.G. of free BMD<br>over the span AB from Left end A $M_A$ + ve - ve + ve + ve $M_C$ (d)                                                                                          |              |
|     |       | over the span AB from Left end A $x_2$ = distance of C.G. of free BMD                                                                                                                                 |              |
|     |       |                                                                                                                                                                                                       |              |
|     |       | over the span BC from right end C                                                                                                                                                                     |              |
| 0.2 | 2)    | A contilouer beam 2 m long corruing und of intensity 6 kN/m over full longth. Coloulate the                                                                                                           |              |
| Q.3 | a)    | A cantilever beam 2 m long carrying udl of intensity 6 kN/m over full length. Calculate the depth of the beam if may, deflection is limited to 5 mm and depth to width ratio is $2.5 - 2 \times 10^5$ |              |
|     |       | depth of the beam if max. deflection is limited to 5 mm and depth to width ratio is 2. $E = 2 \times 10^5$                                                                                            |              |
|     | 4.000 | mPa.                                                                                                                                                                                                  |              |
|     | Ans   |                                                                                                                                                                                                       |              |



|      |     | 6 kN/m                                                                                                      |                  |
|------|-----|-------------------------------------------------------------------------------------------------------------|------------------|
|      |     |                                                                                                             |                  |
|      |     | 2 m                                                                                                         |                  |
|      |     |                                                                                                             | 01 M             |
|      |     | $Y_{max} = (wl^4) / (8El)$                                                                                  |                  |
|      |     | $5 = (6 \times 2000^{4}) / (8 \times 2 \times 10^{5} \times I)$<br>I = 12 x 10 <sup>6</sup> mm <sup>4</sup> | 01 M             |
|      |     | $I = bd^{3} / 12$                                                                                           |                  |
|      |     | $12 \times 10^6 = b \times (2b)^3 / 12$ (d = 2b)                                                            | 01 M             |
|      |     | b = 65.136 mm<br>d = 2 x 65.136 = 130.27 mm                                                                 | 01 M             |
| Q.3  | b)  | A simply supported beam carries udl of 4KN/m over entire span of 4m find deflection at mid                  |                  |
| Q.15 | ~,  | span in terms of El.                                                                                        |                  |
|      | Ans | W= 4KN/m                                                                                                    |                  |
|      |     | L= 4m<br>EI= flexural Rigidity (kN-m <sup>2</sup> )                                                         |                  |
|      |     | The formula for the deflection of simply supported beam carrying udl over entire span is given              |                  |
|      |     | by                                                                                                          |                  |
|      |     | $Y_{max} = (5 \times w \times L^4) / 384EI$                                                                 | 2M               |
|      |     | $Y_{max} = (5 \times 4 \times 4^4)/384EI$<br>$Y_{max} = 13.33/EI m.$                                        | 2M               |
| Q.3  | c)  | A fixed beam AB of span 4m carries a point load of 80 KN at its centre. Find fixed end                      |                  |
|      |     | moments by using the first principle and draw                                                               |                  |
|      | Ans | SF and BM diagrams 80 kN<br>Simply supported bending moment at mid-span                                     |                  |
|      |     | $= WL/4 = 80 \times 4 / 4 = 80 \text{ kN-m.}$                                                               |                  |
|      |     | Due to symmetry, $M_{AB} = M_{BA}$                                                                          | 1M               |
|      |     | Area of S. S. B. M. Dia. = $a_1 = 0.5 \times 4 \times 80 = 160$                                             | 114              |
|      |     | Area of simply supported bending moment                                                                     | 1M               |
|      |     | diagram = Area of fixed end moment diagram                                                                  |                  |
|      |     | a <sub>1</sub> = a <sub>2</sub> S. S. B. M. D.                                                              |                  |
|      |     | 160 = M <sub>AB</sub> x 4 MAB (2) MBA<br>Hence M <sub>AB</sub> = 40 kN-m And M <sub>BA</sub> = 40 kN-m      | 1M for<br>diagra |
|      |     | F. E.M. D.                                                                                                  | m                |
|      |     | 80 kN-M                                                                                                     |                  |
|      |     | 40 kN-M 40 kN-M                                                                                             |                  |
|      |     |                                                                                                             | 01 M             |
|      |     | B.M. D.                                                                                                     | for              |
|      |     | 40 kN                                                                                                       | BMD &            |
|      |     |                                                                                                             | SFD              |
|      |     | S.F. D. 40 kN                                                                                               |                  |
|      |     |                                                                                                             |                  |



| Q.3 | d)<br>Ans | <ul> <li>State any two advantages and dis advantages of fixed beam over simply supported beam</li> <li>Advantages of fixed beam over simply supported beam: <ol> <li>Due to end fixity ,end slope of a fixed beam is zero.</li> <li>A fixed beam is more stronger,stiffer and stable.</li> <li>For same span and loading,fixed beam has lesser value of Bending moment.</li> <li>Smaller moment permits smaller sections and there is saving in beam material.</li> <li>Fixed beam has lesser deflection for same span and loading as compared to S.S. beam</li> </ol> </li> <li>Disadvantages of fixed beam over simply supported beam: <ol> <li>A little sinking or settlement of support induces additional moment at each support.</li> <li>secondary stresses are develop due to temperature</li> <li>dynamic loading may disturb the fixity</li> </ol> </li> <li>Using method of joints, find nature and magnitude of forces in AE and DE in frame as shown</li> </ul> | 1M<br>each<br>for any<br>two<br>1M<br>each<br>for any<br>two |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Q.3 | e)<br>Ans | $\begin{array}{c} 15 \text{ kN} & 10 \text{ kN} & 20 \text{ kN} \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 M                                                         |
|     |           | joint A<br>Assuming forces tensile in nature.<br>Using condition of equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02 M                                                         |



|     |     | $\Sigma$ fy = 0 = -15 + 45 - F <sub>AE</sub> sin45 = 0                                                                 |       |
|-----|-----|------------------------------------------------------------------------------------------------------------------------|-------|
|     |     | F <sub>AE</sub> = 30KN (Tensile)                                                                                       |       |
|     |     | Member Force Nature                                                                                                    |       |
|     |     | AE 30 kN Tensile                                                                                                       |       |
|     |     | DE 50 kN Compressive                                                                                                   |       |
| Q.3 | f)  | What is meant by analysis of frame? Write the assumptions used for analysis                                            |       |
|     |     | Analysis of frame-                                                                                                     |       |
|     | Ans | To calculate the magnitude and nature of forces of the members of the frame (perfect frames)                           | 02    |
|     |     | using equilibrium conditions is called analysis of frames.                                                             | Marks |
|     |     | Assumptions made for analysis of frame:-                                                                               |       |
|     |     | 1) the frame is perfect frame                                                                                          |       |
|     |     | 2) All members are hinged or pinned connected at the ends.                                                             |       |
|     |     | 3) the loads are acting only at the joints                                                                             | 02 M  |
|     |     | 4)self-weight of the member is neglected                                                                               |       |
| Q.4 |     | Attempt any FOUR of the following.                                                                                     | (16)  |
| Q.4 | a)  | A beam ABC is simply supported at A, B and C. Span AB and BC are of length 4 m and 5 m                                 |       |
|     |     | respectively. AB carries a point load of 20 kN at center. BC carries a udl of 10 kN/m over entire                      |       |
|     |     | span. Calculate support moment at B using theorem of three moments.                                                    |       |
|     | Ans |                                                                                                                        |       |
|     |     | 20 kN 10 kN/m                                                                                                          |       |
|     | -   | 4m 5m                                                                                                                  |       |
|     |     |                                                                                                                        |       |
|     |     | 31.25 kN-m                                                                                                             |       |
|     |     | 20 kN-m                                                                                                                |       |
|     |     |                                                                                                                        | 01 M  |
|     |     |                                                                                                                        |       |
|     |     | x1=2m S. S. B. M. D. x2=2.5m                                                                                           |       |
|     |     | 0.0.0.0.                                                                                                               |       |
|     |     | $M_1 = 20 \times 4/4 = 20.0 \text{ kN-m}$ $a_1 = 0.5 \times 4 \times 20 = 40$ $x_1 = 4/2 = 2.0 \text{ m}$              | 01 M  |
|     |     | $M_2 = 10 \times 5^2/8 = 31.25 \text{ kN-m}$ $a_2 = 2 \times 5 \times 31.25/3 = 104.17$ $x_2 = 5/2 = 2.5 \text{ m}$    |       |
|     |     | Using three moment theorem;                                                                                            |       |
|     |     | $M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -[(6 \times a_1 \times x_1/L_1) + (6 \times a_2 \times x_2/L_2)]$ |       |
|     |     | M <sub>A</sub> = M <sub>C</sub> = 0 (End simple supports)                                                              | 01 M  |
|     |     | $0 + 2M_B(4 + 5) + 0 = -[(6 \times 40 \times 2/4) + (6 \times 104.17 \times 2.5/5)]$                                   |       |
|     |     | $18M_{\rm B} = -(120 + 312.51)$                                                                                        |       |
|     |     | $M_{\rm B} = -432.51 / 18$<br>= -24.03 kN-m                                                                            | 01 M  |
| Q.4 | b)  | Using three moments method, find support moments for continuous beam shown in fig. Draw                                |       |
| Q.4 |     | B. M. D.                                                                                                               |       |
|     | Ans |                                                                                                                        |       |
|     |     |                                                                                                                        |       |
|     |     |                                                                                                                        |       |
|     |     |                                                                                                                        |       |





| 101.8.8 | - technici |
|---------|------------|
|         | <b>D</b>   |
| 1.000   |            |

|     |     | 6M <sub>A</sub> +                      | $2M_B(6+8) + 0 =$              | - [(0) + (6 x 85.33 x 4   | l/8)]          |                       |                |      |  |
|-----|-----|----------------------------------------|--------------------------------|---------------------------|----------------|-----------------------|----------------|------|--|
|     |     | 6M <sub>A</sub> +                      | $28M_B = -(256)$               |                           |                |                       |                | 01 M |  |
|     |     | - 3M <sub>B</sub>                      | + 28M <sub>B</sub> = -256      |                           |                |                       |                |      |  |
|     |     | M <sub>B</sub> = -                     | - 256 / 25                     |                           |                |                       |                |      |  |
|     |     | = -                                    | - 10.24 kN-m                   |                           |                |                       |                |      |  |
|     |     | M <sub>A</sub> = -                     | - (-10.24/2) = 5.12            | 2 kN-m.                   |                |                       |                |      |  |
|     |     |                                        |                                |                           |                |                       |                |      |  |
|     |     |                                        |                                | •                         | 16 kN-m        |                       |                |      |  |
|     |     |                                        |                                | 10.24 kN-m                |                |                       |                |      |  |
|     |     |                                        |                                |                           |                |                       |                |      |  |
|     |     |                                        |                                | 111111/                   |                |                       |                | 01   |  |
|     |     |                                        |                                |                           |                |                       | Mark           |      |  |
|     |     |                                        |                                |                           |                |                       |                |      |  |
|     |     | 5.1                                    | 2 kN-m                         | B. M. D.                  |                |                       |                |      |  |
| Q.4 | d)  | A continuous                           | beam ABC is simp               | oly supported at A, B     | and C. Sp      | oan AB and span BC a  | re of length 5 |      |  |
|     |     |                                        |                                | over entire span. Cal     | culate su      | pport moments by us   | sing moment    |      |  |
|     |     | distribution m                         | nethod.                        |                           |                |                       |                |      |  |
|     | Ans |                                        | _30 kN/m                       |                           |                |                       |                |      |  |
|     |     | m                                      |                                | ~~~~                      |                |                       |                |      |  |
|     |     | A -                                    | 5m                             | B 5m                      |                | C                     |                |      |  |
|     |     |                                        | 2.                             |                           | 2.             |                       |                |      |  |
|     |     |                                        | <sup>2</sup> /12 = – 62.5 kN-  | m $M_{BA} = 30 x$         | $5^{2}/12 = 6$ | 52.5 kN-m             |                | 01 M |  |
|     |     | $M_{BC} = M_{BC} = 0$                  |                                | 1                         | -              | 1                     | 1              |      |  |
|     |     | Joint                                  | Member                         | Stiffness (k)             | Σ              |                       | -              |      |  |
|     |     | В                                      | BA                             | 3 x EI/5 = 0.6EI          | 1.2            | 0.6EI/1.2E            | 1 = 0.5        | 01 M |  |
|     |     | D                                      | BC                             | 3 x EI/5 = 0.6EI          | 1.2            | 0.6EI/1.2E            | I = 0.5        |      |  |
|     |     | <b>F</b>                               |                                |                           |                |                       |                |      |  |
|     |     | Joint                                  |                                | А                         |                | B                     | С              |      |  |
|     |     | Members                                |                                | AB                        | BA             | BC                    | CB             |      |  |
|     |     | Dist <sup>n</sup> . factor             |                                | 1.0                       | 0.5            | 0.5                   | 1.0            | 02 M |  |
|     |     | F.E.M.                                 |                                | -6 2.5                    | 62.5           | 0                     | 0              |      |  |
|     |     | Balancing                              |                                | 62.5                      | -31.25         | -31.25                | 0              |      |  |
|     |     | Carry over                             |                                |                           | 31.25          |                       |                |      |  |
|     |     | Balancing                              |                                |                           | -15.625        | -15.625               |                |      |  |
|     |     | Final momer                            | nts                            | 0.0                       | 46.875         | - 46.875              | 0.0            |      |  |
|     |     | $M_{\rm A} = 0, M_{\rm B} = 4$         | 16.875 kN-m (Hog               | gging) M <sub>c</sub> = 0 |                |                       |                |      |  |
| Q.4 | e)  |                                        |                                |                           | moment         | at fixed end of propp | ed cantilever  |      |  |
|     |     |                                        |                                | /m over entire span.      |                |                       |                |      |  |
|     | Ans |                                        |                                | 25 kN/m                   |                |                       |                |      |  |
|     |     |                                        | 25 kN/m                        |                           |                |                       |                |      |  |
| 1   |     |                                        |                                |                           |                |                       |                |      |  |
|     |     |                                        |                                |                           |                |                       |                |      |  |
|     |     | /                                      | A                              | 5 m                       | В              |                       |                |      |  |
|     |     | /                                      |                                |                           | В              |                       |                |      |  |
|     |     | M <sub>AB</sub> = - 25 x 5             | $A^{2}/12 = -52.083 \text{ k}$ |                           |                | = 52.083 kN-m         |                | 01 M |  |
|     |     | /<br>М <sub>АВ</sub> = – 25 х 5<br>Јој |                                |                           |                | = 52.083 kN-m<br>B    |                | 01 M |  |



|     | 1     |                                                                                                                                                                                                                                                                                                                                                                                    | embers                            | AB                |          |                                                     | BA                           |                | 03 M   |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|----------|-----------------------------------------------------|------------------------------|----------------|--------|
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | st <sup>n</sup> . factor          | 1.0               |          |                                                     | <u>ВА</u><br>1.0             |                | 05 101 |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | E.M.                              | - 52.             | 083      |                                                     | 52.083                       |                |        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | llancing                          |                   | 085      |                                                     | - 52.083                     |                |        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | irry over                         | - 26.             | 0/17     |                                                     | - 52.085                     |                |        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | nal moments                       | - 78.             |          |                                                     | 0.0                          |                |        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | kN-m (Hogging)                    | - 78.             | 125      |                                                     | 0.0                          |                |        |
| Q.4 | f)    |                                                                                                                                                                                                                                                                                                                                                                                    | istribution factors a             | t continuity fo   | r a cont | inuous heam                                         | ABCD which is                | fixed at A     |        |
| Q.4 | ''    |                                                                                                                                                                                                                                                                                                                                                                                    | ed at B, C and D. Tak             |                   |          |                                                     |                              |                |        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | В                                 |                   | С        |                                                     | D                            |                |        |
|     |       | A                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                   | 4        |                                                     |                              |                |        |
|     |       | 1.5                                                                                                                                                                                                                                                                                                                                                                                | 4m                                | 4m                | -1-      | 5m                                                  | -1                           |                |        |
|     | Ans   | Joint                                                                                                                                                                                                                                                                                                                                                                              | Member                            | Stiffness         | (k)      | Σk                                                  | D.F. = k                     | /Σk            |        |
|     | / 113 | 501110                                                                                                                                                                                                                                                                                                                                                                             | BA                                | 4 x El/4 =        | . ,      | ZR                                                  | EI/2EI =                     |                | 01 M   |
|     |       | В                                                                                                                                                                                                                                                                                                                                                                                  | BC                                | $4 \times EI/4 =$ |          | 2EI                                                 | EI/2EI =                     |                | for    |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | СВ                                | 4 x El/4 =        |          |                                                     | EI/1.6EI =                   |                | each   |
|     |       | C                                                                                                                                                                                                                                                                                                                                                                                  | CD CD                             | 3EI/5 =0.6        |          | 1.6EI                                               | 0.6EI/1.6EI                  |                | factor |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | CD                                | 3EI/5 =0.0        |          |                                                     | 0.0EI/1.0EI                  | = 0.375        | lactor |
| Q.5 |       | Attemnt any                                                                                                                                                                                                                                                                                                                                                                        | TWO of the followi                | nσ                |          |                                                     |                              |                | (16)   |
| Q.J | a)    | . ,                                                                                                                                                                                                                                                                                                                                                                                | nimney of uniform h               | 0                 |          |                                                     |                              |                | (10)   |
|     | Ans   | chimney if max. compressive stress at the base is limited to 280 kN/m <sup>2</sup> . Also sate nature of minimum stress. Take density of masonry = 22 kN/m <sup>3</sup> .<br>Data: External dimensions = 2.0 m x 1.4 m<br>Internal dimensions = 1.4 m x 0.8 m<br>Horizontal wind pressure (p) = $1.5 \text{ kN/m}^2$<br>Unit weight of material ( $\sigma$ ) = $22 \text{ kN/m}^3$ |                                   |                   |          |                                                     |                              |                | 01 M   |
|     |       | $6_d = \sigma h = 2$                                                                                                                                                                                                                                                                                                                                                               | $2 \times h = 22h \text{ kN/m}^2$ |                   |          |                                                     |                              |                |        |
|     |       | Case 01:- Lo<br>pressure:                                                                                                                                                                                                                                                                                                                                                          | onger face subjected              | l to wind         |          | e 02:- Shorter<br>sure:                             | face subjected               | to wind        |        |
|     |       | Horizontal v                                                                                                                                                                                                                                                                                                                                                                       |                                   | п x B<br>x h x 2  | Hori     | zontal wind fo                                      |                              | x B<br>h x 1.4 | 01 M   |
|     |       | Moment ab                                                                                                                                                                                                                                                                                                                                                                          | = 3h<br>out base (M) = P x h      | •                 | Mon      | nent about ba                                       | = 2.1h<br>se (M) = P x h/    |                | 01 M   |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | = 3h x<br>= 1.5h                  | •                 |          |                                                     | = 2.1h x<br>= 1.05h          | •              |        |
|     |       | = 0.3976 m                                                                                                                                                                                                                                                                                                                                                                         | ) - (1.4 x 0.8 <sup>3</sup> )]/12 |                   | = 0      | .7504 m <sup>4</sup>                                | ).8 x 1.4 <sup>3</sup> )]/12 |                | 01 M   |
|     |       | $y_{max} = 0.7$                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |          | = 1.0                                               |                              |                |        |
|     |       | $\int \mathbf{b}_{b} = \mathbf{M} \mathbf{x} \mathbf{y}_{ma}$                                                                                                                                                                                                                                                                                                                      |                                   |                   |          | $M x y_{max}/I$                                     |                              |                | 01 M   |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 / 0.3976                      |                   |          | : 1.05h <sup>2</sup> x 1.0 /<br>: 1.4h <sup>2</sup> | / 0.7504                     |                |        |
|     |       | $= 2.64 h^2$                                                                                                                                                                                                                                                                                                                                                                       |                                   |                   |          |                                                     |                              |                |        |



|     |     |                                                                                                                                                                                     | -                             |                                                                                      | -                     |               |                |                 | 11     |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|-----------------------|---------------|----------------|-----------------|--------|
|     |     | $6_{max} = 6_d + 6_b$                                                                                                                                                               |                               |                                                                                      | $6_{max} = 6_d + 6_b$ |               |                |                 |        |
|     |     | 280 = 22h +                                                                                                                                                                         |                               | $280 = 22h + 1.4h^2$                                                                 |                       |               | _              |                 |        |
|     |     | h = 6.943 m.                                                                                                                                                                        |                               |                                                                                      | h = 8.32 m.           |               |                | 01 M            |        |
|     |     | б <sub>d</sub> = 22 x 6.9                                                                                                                                                           |                               |                                                                                      |                       |               |                |                 |        |
|     |     |                                                                                                                                                                                     | .943 <sup>2</sup> = 127.26 kľ |                                                                                      |                       |               |                |                 | 01 M   |
|     |     | б <sub>тіп</sub> = 152.74                                                                                                                                                           | 46 – 127.26 = 25.4            | 8 kN/m <sup>2</sup> $f_{min} = 183.04 - 96.91 = 86.13 \text{ kN/m}^2 \text{ kN/m}^2$ |                       |               | /m² kN/m²      |                 |        |
|     |     | (Compressive)                                                                                                                                                                       |                               |                                                                                      | (Compr                | ressive)      |                |                 | 01 M   |
| Q.5 | b)  | A continuous                                                                                                                                                                        | beam ABCD is 15               | m long rests on s                                                                    | upports               | A, B and C al | l at same leve | el. AB = 6 m,   |        |
|     |     | BC = 5 m, CD = 4 m. It carries two concentrated loads 90 kN and 80 kN at 2 m and 8 m from A                                                                                         |                               |                                                                                      |                       |               |                |                 |        |
|     |     | respectively a                                                                                                                                                                      | nd a udl of 30 kN             | /m over CD. Find                                                                     | support               | moment by     | using momer    | nt distribution |        |
|     |     | respectively and a udl of 30 kN/m over CD. Find support moment by using moment distribution method and draw BMD.                                                                    |                               |                                                                                      |                       |               |                |                 |        |
|     | Ans |                                                                                                                                                                                     |                               |                                                                                      |                       |               |                |                 |        |
|     |     | 90                                                                                                                                                                                  | kN                            | 80 KN                                                                                |                       |               |                |                 |        |
|     |     | Α                                                                                                                                                                                   |                               |                                                                                      |                       | 30 kN/m       | ו<br>בייניים ד |                 |        |
|     |     | 2m                                                                                                                                                                                  | - 4m                          | B                                                                                    | C3m                   | - 4m          |                |                 |        |
|     |     | 2111                                                                                                                                                                                |                               | 211                                                                                  | JIII                  | -111          |                |                 |        |
|     |     | $M_{AB} = -90 \times 2 \times 4^2/6^2 = -80.0 \text{ kN-m}$ $M_{BA} = 90 \times 4 \times 2^2/6^2 = 40.0 \text{ kN-m}$                                                               |                               |                                                                                      |                       |               |                |                 | 02 M   |
|     |     | $M_{AB} = -90 \times 2 \times 4 / 6 = -80.0 \text{ kN-m}$ $M_{BC} = -80 \times 2 \times 3^2 / 5^2 = -57.6 \text{ kN-m}$ $M_{BC} = 80 \times 2^2 \times 3 / 5^2 = 38.4 \text{ kN-m}$ |                               |                                                                                      |                       |               |                |                 | 02 101 |
|     |     |                                                                                                                                                                                     |                               | = -                                                                                  | 00 / 2 /              | (3/3 - 30.4   |                |                 |        |
|     |     | $\begin{array}{ c c c c c } MCD = -30 \times 4^2/2 = -240.0 \text{ kN-m} \\ \hline Joint & Member & Stiffness (k) & \Sigma k & D.F. = k/\Sigma k \\ \hline \end{array}$             |                               |                                                                                      |                       |               |                | k/5k            |        |
|     |     | JOINT                                                                                                                                                                               |                               |                                                                                      |                       | ZK            | 0.5EI/1.1E     |                 | 02 M   |
|     |     | B BA                                                                                                                                                                                |                               | $3 \times EI/6 = 0.5EI$                                                              |                       | - 1.1EI       |                |                 | 02 101 |
|     |     |                                                                                                                                                                                     | BC                            | 3 x EI/5 =0.6                                                                        |                       |               | 0.6EI/1.1      | EI = 0.5        |        |
|     |     | Joint A                                                                                                                                                                             |                               |                                                                                      | ВС                    |               |                |                 |        |
|     |     | Joint                                                                                                                                                                               |                               | AB                                                                                   | BA                    | BC            | СВ             | CD              |        |
|     |     | Members                                                                                                                                                                             |                               |                                                                                      |                       |               |                |                 |        |
|     |     | Dist <sup>n</sup> . factor                                                                                                                                                          |                               | 1.0                                                                                  | 0.45                  | 0.55          | 1.0            | 0.0             | 02 M   |
|     |     | F.E.M.                                                                                                                                                                              |                               | - 80.0                                                                               | 40.0                  | - 57.6        | 38.4           | - 240.0         | 02 101 |
|     |     | Balancing                                                                                                                                                                           |                               | 80.0                                                                                 | 7.92                  | 9.68          | 201.6          | 0.0             |        |
|     |     | Carry over<br>Balancing                                                                                                                                                             |                               |                                                                                      | 40.0                  | 100.8         |                |                 |        |
|     |     |                                                                                                                                                                                     |                               |                                                                                      | -63.36                | -77.44        |                |                 |        |
|     |     | Final momer                                                                                                                                                                         | nts                           | 0.0                                                                                  | 24.56                 | - 24.56       | 240.0          | -240.0          |        |
|     |     |                                                                                                                                                                                     |                               |                                                                                      |                       |               |                |                 |        |
|     |     | 240 kN-m                                                                                                                                                                            |                               |                                                                                      |                       |               |                |                 |        |
|     |     |                                                                                                                                                                                     |                               |                                                                                      |                       |               |                |                 |        |
|     |     | 120 kN-m                                                                                                                                                                            |                               |                                                                                      |                       |               |                | 02.14           |        |
|     |     | 24.56 kN-m 96 kN-m                                                                                                                                                                  |                               |                                                                                      |                       |               |                | 02 M            |        |
|     |     |                                                                                                                                                                                     |                               |                                                                                      |                       |               |                |                 |        |
|     |     | B. M. D.                                                                                                                                                                            |                               |                                                                                      |                       |               |                |                 |        |
|     |     |                                                                                                                                                                                     |                               |                                                                                      |                       |               |                |                 |        |







|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BE                                        | 0                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02 M                  |  |  |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EF                                        | 23.33 kN                    | Compressive                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02                    |  |  |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EC                                        | 18.85 kN                    | Compressive                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
| Q.6 |     | Attempt any TWO of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (16)                  |  |  |
| Q.6 | a)  | A simply supported beam of span 8 m is subjected to point loads of 60 kN, 80 kN and 50 kN at 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     | ,   | m, 4 m and 6 m from left support respectively. Determine slope at left support and deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | under 60 kN and 80 kN loads. EI = $2.668 \times 10^9 \text{ kNm}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     | Ans |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | 60 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 kN 80 kN 50 kN X X 60 kN 80 kN 50 kN   |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | RA=97.5 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | $ \underbrace{OR}_{x} \underbrace{2m}_{x} 2$ |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | Reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | $\Sigma M_A = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | $60 \times 2 + 80 \times 4 + 50 \times 6 - R_B \times 8 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | $R_{\rm B} = (120 + 320 + 300) / 8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | = 92.5 kN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 80 + 50 – 92.5 = 97.5 kN.               |                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | Taking section 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                             | -                                                  | n X-X at distance 'X' from B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |
|     |     | $M_x = 97.5 \times X - (X, C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 x (X-2) – 80                           | x (X-4) – 50 x              |                                                    | $-50 \times (X-2) - 80 \times (X-4) - 60 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 M                  |  |  |
|     |     | $\left  \begin{array}{c} (X-6) \\ EId^2y/dx^2 = -Mx \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                             | (X-6)<br>Eld <sup>2</sup> y/dx <sup>2</sup> = - I  | My                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |  |
|     |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ^<br>′.5 x X + 60 x (X                    | (-2) + 80 x (X-             | • •                                                | 92.5 x X + 50 x (X-2) + 80 x (X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |
|     |     | 4) + 50 x (X-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5 X X * 66 X ()                          | (2) 00 x (x                 | 4) + 60 x (X-6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | Integrating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                             | Integrating                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |
|     |     | Eldy/dx = -97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x X^{2}/2 + 60 x (2)$                    | X-2) <sup>2</sup> /2 + 80 x | EIdy/dx = -92                                      | $.5 \times X^2/2 + 50 \times (X-2)^2/2 + 80 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 M                  |  |  |
|     |     | $(X-4)^2/2 + 50 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(X-6)^2/2 + C_1$                         |                             |                                                    | $(X-6)^2/2 + C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |
|     |     | Integrating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( /·····) <sup>3</sup>                    |                             | Integrating                                        | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |  |  |
|     |     | Ely = $-97.5 \times X^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                             |                                                    | $(x^{3}/6 + 50 \times (X-2)^{3}/6 + 80 \times (X-1)^{3}/6 + $                                                                       | 01 M                  |  |  |
|     |     | $(4)^{3}/6 + 50 \times (X-6)^{3}/6 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • · · –                                   | $C_2$                       | $(4)^{1}/6 + 60 \times (7)^{1}$<br>At X = 0; y = 0 | $(x-6)^3/6 + C_1 \times X + C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |  |
|     |     | A = 0, y = 0<br>$0 = 0 + C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in ciy eq .                               |                             | A = 0, y = 0<br>$0 = 0 + C_2$                      | , in Eiveq .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |
|     |     | $C_2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                             | $C_2 = 0$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | At X = 8; y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in Ely eq <sup>n</sup> .                  |                             | At X = 8; y = 0                                    | ) in Ely eq <sup>n</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |  |  |
|     |     | $0 = -97.5 \times 8^{3}/6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $+60 \times (8-2)^{3}/6$                  | 5 + 80 x (8-                | $0 = -92.5 \times 8^{3}$                           | $(6 + 50 \times (8-2)^3/6 + 80 \times (8-2)^3/6 \times (8-2)^3/6 + 80 \times$ |                       |  |  |
|     |     | 4) <sup>3</sup> /6 + 50 x (8-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5) <sup>3</sup> /6 + C <sub>1</sub> x 8 + | 0                           | 4) <sup>3</sup> /6 + 60 x (8                       | $(3-6)^3/6 + C_1 \times 8 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |
|     |     | C <sub>1</sub> = 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                             | C <sub>1</sub> = 645                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 M                  |  |  |
|     |     | Hence $C_1 = 655$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                         |                             | Hence $C_1 = 64$                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |
|     |     | Slope equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | $0 \times (1 \times 2)^2$   | Slope equation                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | dy/dx =(1/EI)[ -<br>80 x (X-4) <sup>2</sup> /2 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | • • •                       |                                                    | $[-92.5 \times X^2/2 + 50 \times (X-2)^2/2 + 60 \times (X-6)^2/2 + 645](01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |
|     |     | Deflection equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 000](01)                    | Deflection eq                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 M                  |  |  |
|     |     | y =(1/EI)[ -97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | X-2) <sup>3</sup> /6 + 80 × |                                                    | $2.5 \times X^3/6 + 50 \times (X-2)^3/6 + 80 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u><u><u></u></u></u> |  |  |
|     |     | $(X-4)^3/6 + 50 \times ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                             |                                                    | $x (X-6)^{3}/6 + 645 x X$ ](02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | For slope at sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                             | For slope at s                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |
|     |     | Put X = 0 in eq <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .01                                       |                             | Put X = 8 in e                                     | q <sup>n</sup> .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |  |



|     |     |                                                                                                                                                                                            |                                                                      | -      |  |  |  |  |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|--|--|--|--|
|     |     | $(dy/dx)_A = (1/EI) x (655) = 655 / EI$                                                                                                                                                    | $(dy/dx)_{A} = (1/EI)[-92.5 \times 8^{2}/2 + 50 \times (8-2)^{2}/2$  |        |  |  |  |  |
|     |     | $= 655 / 2.668 \times 10^9 = 2.455 \times 10^{-7}$ rad.                                                                                                                                    | $+80 \times (8-4)^2/2 + 60 \times (8-6)^2/2 + 645$ ]                 |        |  |  |  |  |
|     |     | For deflection at B                                                                                                                                                                        | $= 655 / 2.668 \times 10^9 = 2.455 \times 10^{-7}$ rad.              | 01 M   |  |  |  |  |
|     |     | Put $X = 2$ in eq <sup>n</sup> .02                                                                                                                                                         | For deflection at B                                                  | •= ··· |  |  |  |  |
|     |     | $y_{\rm B} = (1/EI)[-97.5 \times 2^3/6 + 655 \times 2]$                                                                                                                                    |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            | Put X = 6 in eq <sup>n</sup> .02                                     |        |  |  |  |  |
|     |     | $= 1180 / 2.668 \times 10^9 = 4.423 \times 10^{-7} \text{ m.}$                                                                                                                             | $y_{\rm B} = (1/EI)[-92.5 \times 6^3/6 + 50 \times (6-2)^3/6 + 80$   |        |  |  |  |  |
|     |     | = 4.423 x 10 <sup>-4</sup> mm.                                                                                                                                                             | $x (6-4)^3/6 + 645 \times 6$                                         |        |  |  |  |  |
|     |     | For deflection at C                                                                                                                                                                        | = 1180 / 2.668 x 10 <sup>9</sup> = <b>4.423 x 10<sup>-7</sup> m.</b> |        |  |  |  |  |
|     |     | Put X = 4 in $eq^{n}$ .02                                                                                                                                                                  | = 4.423 x 10 <sup>-4</sup> mm.                                       |        |  |  |  |  |
|     |     | $Y_{\rm C} = (1/EI)[-97.5 \times 4^3/6 + 60 \times (4-2)^3/6 + 655$                                                                                                                        | For deflection at C                                                  | 01 M   |  |  |  |  |
|     |     | [x4]                                                                                                                                                                                       | Put X = 4 in $eq^{n}$ .02                                            |        |  |  |  |  |
|     |     | $= 1660 / 2.668 \times 10^9 = 6.222 \times 10^{-7} \text{ m.}$                                                                                                                             | $Y_{c} = (1/EI)[-92.5 \times 4^{3}/6 + 50 \times (4-2)^{3}/6 + 645]$ |        |  |  |  |  |
|     |     | $= 100072.008 \times 10^{-9} = 0.222 \times 10^{-4}$ mm.                                                                                                                                   |                                                                      |        |  |  |  |  |
|     |     | = 6.222 x 10 mm.                                                                                                                                                                           | x 4]                                                                 |        |  |  |  |  |
|     |     |                                                                                                                                                                                            | = 1660 / 2.668 x $10^9$ = <b>6.222 x <math>10^{-7}</math> m.</b>     |        |  |  |  |  |
|     |     |                                                                                                                                                                                            | $= 6.222 \text{ x } 10^{-4} \text{ mm.}$                             |        |  |  |  |  |
| Q.6 | b)  | A fixed beam AB of span 6 m carries point loac                                                                                                                                             | ls of 120 kN and 90 kN at 2 m and 4 m from left                      |        |  |  |  |  |
|     | -   | hand support. Find fixed end moments and su                                                                                                                                                |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     | Ans | 120 kN S                                                                                                                                                                                   | 90 kN                                                                |        |  |  |  |  |
|     |     | A                                                                                                                                                                                          | B                                                                    |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     | MAB RA 2m 2m                                                                                                                                                                               | 2m MBA                                                               |        |  |  |  |  |
|     |     | KB                                                                                                                                                                                         |                                                                      |        |  |  |  |  |
|     |     | $M_{AB} = (120 \times 2 \times 4^2 / 6^2) + (90 \times 4 \times 2^2 / 6^2)$                                                                                                                |                                                                      |        |  |  |  |  |
|     |     | = 146.67  kN-m                                                                                                                                                                             |                                                                      |        |  |  |  |  |
|     |     | $M_{BA} = (120 \times 2^2 \times 4 / 6^2) + (90 \times 4^2 \times 2 / 6^2)$                                                                                                                |                                                                      |        |  |  |  |  |
|     |     | $M_{BA} = (120 \times 2 \times 4 / 6) + (90 \times 4 \times 2 / 6)$<br>= 133.33 kN-m                                                                                                       |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     | Reactions:                                                                                                                                                                                 |                                                                      |        |  |  |  |  |
|     |     | $\Sigma M_A = 0$                                                                                                                                                                           |                                                                      |        |  |  |  |  |
|     |     | $120 \times 2 + 90 \times 4 + 133.33 - 146.67 - R_B \times 6 = 0$                                                                                                                          |                                                                      |        |  |  |  |  |
|     |     | $R_B = (240 + 360 - 13.33) / 6$                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     | = 97.78 kN.                                                                                                                                                                                |                                                                      |        |  |  |  |  |
|     |     | $R_A = 120 + 90 - 97.78 = 112.22 \text{ kN}.$                                                                                                                                              |                                                                      |        |  |  |  |  |
|     |     | Bending moment at point load                                                                                                                                                               |                                                                      |        |  |  |  |  |
|     |     | $M_{\rm C} = -146.67 + 112.22 \times 2$                                                                                                                                                    |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     | = 77.77 kN-m                                                                                                                                                                               |                                                                      |        |  |  |  |  |
|     |     | $M_{\rm D} = -146.67 + 112.22 \text{ x} 4 - 120 \text{ x} 2$                                                                                                                               |                                                                      |        |  |  |  |  |
|     |     | = 62.21 kN-m                                                                                                                                                                               |                                                                      |        |  |  |  |  |
|     |     | Shear force calculations:                                                                                                                                                                  |                                                                      |        |  |  |  |  |
|     |     | At B = – 97.78 kN                                                                                                                                                                          |                                                                      |        |  |  |  |  |
|     |     | At D, just right = –97.78 kN                                                                                                                                                               |                                                                      |        |  |  |  |  |
|     |     | At D, just left = $-97.78 + 90 = -7.78 \text{ kN}$                                                                                                                                         |                                                                      |        |  |  |  |  |
|     |     | $\Delta t C$ just right = -7.78 kN                                                                                                                                                         |                                                                      |        |  |  |  |  |
|     |     | 220 Kithi 200 kN m                                                                                                                                                                         | -                                                                    |        |  |  |  |  |
|     |     | $\begin{array}{c} 200 \text{ NV-m} \\ 146.67 \text{ kN-m} \end{array} \qquad \begin{array}{c} \text{At C, just left} = -7.78 + 120 = 112.22 \text{ kN} \\ 133.33 \text{ kN-m} \end{array}$ |                                                                      |        |  |  |  |  |
|     |     | At A = 112.22 kN                                                                                                                                                                           |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      |        |  |  |  |  |
|     |     | B. M. D.                                                                                                                                                                                   |                                                                      |        |  |  |  |  |
|     |     |                                                                                                                                                                                            |                                                                      | 1      |  |  |  |  |







