(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

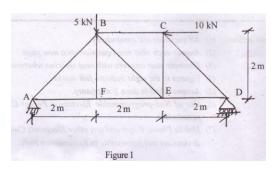
Subject Name: THEORY OF STRUCTURES Model Answer Subject Code: 17422

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

		T	1
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
Q.1	(A)	Attempt any six of the following:	(12)
	a)	Define direct stress and bending stress.	
	Ans	Direct stress:	
		Direct stress is defined as the ratio of direct load to cross section area. It of compressive	01 M
		nature.	
		Bending stress:	
		The stress developed across the cross section due to bending moment is called bending	01 M
		stress. It may compressive or tensile in nature.	
Q.1	(A)b)	Define slope and deflection of beam.	
	Ans	Slope of beam: The slope at any point on the elastic curve of the beam is defined as the	
		angle in radians that the tangent at that point makes with the original axis of the beam.	
		OR	01 M
		The angle made by a tangent at a point of a deflected beam with its neutral surface of	
		loaded beam is called slope	
		Deflection of beam: The deflection at any point on the axis of the beam is the (vertical)	
		distance between its positions before and after loading.	
		OR	01 M
		When a beam is loaded, it will deflect from its original position in the direction	
		perpendicular to its longitudinal axis. This displacement of beam measured from its	
		neutral axis from unloaded condition to loaded condition of beam is known as	
		deflection of beam.	
Q.1	(A)c)	A cantilever beam of span L carries point load W at free end state the slope and	
	Ans	deflection at free end in terms of El.	
		Slope at the free end $\theta = WL^2/2EI$	01 M
		Deflection at free end y = WL ³ /3EI	
		W: Point load acting at free end of cantilever.	01 M
		E: Modulus of Elasticity. L- Span of the cantilever beam.	
		I - Moment of Inertia of beam.	

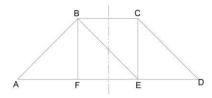
.1	(A)d) State the situations where Macaulay's method is used to find slope and deflection.					
	Ans This method is convenient					
	/	When beam carries several point loads.	Any two 01 M for			
		 When u.d.l. acts over the entire span with or without point loads. 	each			
		3. When u.d.l. starts from an intermediate point but extends up to one of the ends	Cacii			
		of the beam.				
Q.1	(A)e)	Define fixed beam with sketch.				
Q.1	Ans					
	AIIS	The beam whose end supports are such that the slopes remain zero is called fixed beam				
		OR	01 M			
		A beam whose ends are firmly built in the support like wall, pillar or any other structure,				
		such beams are called as fixed beam				
		Sacin Scams are canca as fixed Scam				
		W1 W2				
		A B	01 M			
		C				
		MA TO ME				
Q.1	(A)f)	Define distribution factor.				
	Ans	The distribution factor for a member at a joint is the ratio of stiffness factor for that				
		member and the total stiffness of all the members meeting at a joint.				
		OR	02 M			
		It is the ratio of moment shared by one of the members at joint with total moment				
		applied at joint.				
Q.1	(A)g)	State types of portal frames.				
	Ans	Types of portal frames:				
		1. Symmetrical portal frame (frame having identical supports, equal column length,	01 M			
		symmetrical loading, same MI and same modulus of elasticity.)				
		2. Unsymmetrical portal frame ((frame having different supports, column length,	01 M			
		loading, same MI and same modulus of elasticity.)				
Q.1	(A)h)	Define perfect and imperfect frames.				
	Ans	Perfect frame: It is the simple frame in which number of joints (j) and number of				
		members (m) satisfies the equation $m = 2j - 3$. Such frames are internally determinate	01 M			
		i.e. can be analysed by using basic equations of equilibrium ($\Sigma M_A = 0$, $\Sigma F_x = 0$ and $\Sigma F_v = 0$).				
		Imperfect frame : It is the simple frame in which number of joints (j) and number of				
		members (m) does not satisfy the equation $m = 2j - 3$. Such frames are internally				
		indeterminate/redundant or deficient.				
		If $m > 2j - 3$; then frame is called as indeterminate/redundant frame and cannot be				
		analysed by using basic equations of equilibrium ($\Sigma M_A = 0$, $\Sigma F_x = 0$ and $\Sigma F_y = 0$).	01 M			
		If $m < 2j - 3$; then frame is called as deficient frame and it is unstable frame.				
Q.1	(B)	Attempt any two of the following:	(08)			
•	a) a	Define core of the section and derive the equation for core of the section for circular	' '			
		section.				
	Ans	The centrally located portion of a section within the load line falls so as to produce only				
		compressive stress is called core of the section.				
			02 M			
	1		1			



	Kern/core d d d d Circular Column	
	For circular section having diameter 'd' M = Bending Moment acting on column =P x e P= load on column (KN)	
02 M		
02 101	e = eccentricity of column (mm) $y_{max} = Max. centroidal distance = d/2;$	
	Z = Section modulus	
	$Z = Zxx = Zyy = I/ymax = (\pi d^4/64)/(d/2)$ = $\pi d^3/32$	
	Now, for no tension condition; This limiting eccentricity when load 'P' act anywhere	
	form center.	
	e ≤ Z/A	
	$e \le (\pi d^3/32) / (\pi d^2/4)$	
	e ≤ d/8	
	$e_{max}=d/8$	
	$2e_{max}=2 \times d/8$	
	$2e_{max}=d/4$	
	For no tension condition, the load must lie within a circle of diameter d/4 as shown in	
	figure.	
		Q.1
	condition.	
	Ans When direct stress is greater than or equal to bending stress so as to avoid tensile	
	stresses and creates only compressive stress, this condition is known as no tension condition. Or zero stress condition as the minimum stress is zero.	
	If σ_0 = direct stress (N/mm ²)	
	$\sigma_b = \text{bending stress (N/mm}^2)$	
02 M	Then or no tension condition ($\sigma_o = \sigma_b$)	
	σ_{max} = maximum stress at the base (N/mm ²)= σ_{o} + σ_{b} = 2 σ_{o}	
	σ_{min} = minimum stress at the base (N/mm ²)= σ_{o} - σ_{b} = 0	
02 M	omin + B	
	omin + omax	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Q.1 (B)c) Find the forces in the members of BC, BE and FE of the frame shown in fig. 1 using method of section.


Ans

Calculation of reactions:

$$R_{DV} = (5 \times 2 - 10 \times 2) / 6 = -1.67 \text{ kN}$$
 i.e. 1.67 kN downwards

$$R_{AV} = 5 + 1.67 = 6.67 \text{ kN upwards}$$

 $R_{AH} = 10 \text{ kN towards right.}$

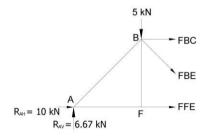
Consider section as shown in fig. and considering left part of the section.

Assuming all forces tensile in nature.

1. Taking moment about joint B $(\Sigma M_B = 0)$

$$-10 \times 2 + 6.67 \times 2 - F_{FE} \times 2 = 0$$

F_{FE} = - 3.33 kN; i.e. 3.33 kN (Compressive)


2. Taking moment about joint E ($\Sigma M_E = 0$)

 $-5 \times 2 + 6.67 \times 4 + F_{BC} \times 2 = 0$

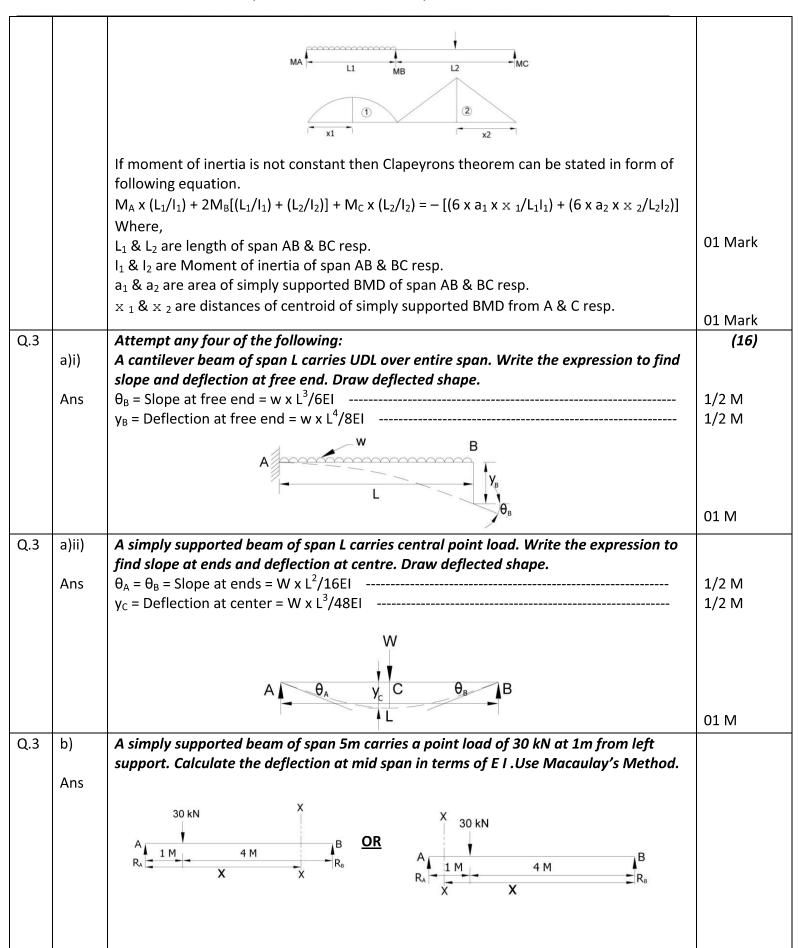
 F_{BC} = -8.34 kN; i.e. 8.34 kN (Compressive)

3. $\Sigma F_Y = 0 = -5 + 6.67 - F_{BE} \cos 45^0$

 $F_{BE} = 2.36 \text{ kN (Tensile)}$

01 M

01 M for each mamber



			10.01
Q.2	a)	Attempt any four of the following: A rectangular column 350 mm wide and 250 mm thick carries an axial load of 225 kN and a clockwise moment of 3.5 kN- m in plane bisecting 250 mm side. Calculate the resultant stresses induced at the base. Draw stress distribution diagram.	(16)
	Ans	b= 250mm d= 350mm P= 225KN= 225 \times 10 ³ N M= 3.5 KN-m = 3.5 \times 10 ⁶ N.mm To calculate σ_{max} and σ_{min} Area A = b \times d= 350 \times 250 = 8.75 \times 10 ⁴ mm ² σ_{o} = P/A = 225 \times 10 ³ /8.75 \times 10 ⁴ = 2.57 N/mm ² (compressive) σ_{b} = M/ Z_{yy} = [M/ (bd ² /6)] = (3.5 \times 10 ⁶) / [(250 \times 350 ²) / 6] = 0.69 N/mm ² resultant stresses (σ_{max} and σ_{min}) σ_{max} = σ_{o} + σ_{b} = 2.57 + 0.69 = 3.26 N/mm ² (compressive) σ_{min} = σ_{o} - σ_{b} = 2.57 - 0.69 = 1.88 N/mm ² (compressive)	04 M
Q.2	b)	A cast iron column, 300 mm external diameter and 200 mm internal diagram carries a vertical compressive load of 250 kN. Find the maximum allowable eccentricity for this load for no tension condition.	
	Ans	External diameter D= 300mm Internal diameter d= 200 mm Area = $[\pi(D^2 - d^2)/4] = 3.927 \times 10^4 \text{mm}^2$	01 M
		$\begin{split} Z_{yy} &= [\pi(300^4\text{-}200^4)/64]/(300/2) = 2127120 \text{ mm}^3 \\ \text{Direct stress} \\ \sigma_o &= \text{P/A} = 250 \times 10^3/3.927 \times 10^4 = 6.36 \text{ N/mm}^2 \text{ (compressive)} \\ \sigma_b &= (\text{P.e})/Z_{yy} = \text{M/}Z_{yy} = \text{M/}\{[\pi(\text{D}^4\text{-d}^4)/64]/(\text{D/2})\} = (250 \times 10^3 \times \text{e}) / 2127120 \text{ N/mm}^2 \\ \sigma_b &= 0.0.11 \text{e} \\ \text{for no tension condition} \end{split}$	01 M 01 M
		$\begin{split} \sigma_o &= \sigma_b \\ 6.36 &= 0.11 \ e \\ e &= 54.11 mm \end{split}$ The maximum allowable eccentricity for this load will be 54.11 mm.	01 M
Q.2	c)	Find maximum and minimum stress intensities induced on the base of masonry wall 12m high, 6 m wide and 1.5m thick subjected to a horizontal wind pressure of 1:2 kN/m^2 acting on 6 m side. The density of wall material is 22 kN/m^3 .	
	Ans	H= 12m, b= 6m, t= 1.5m, p= 1.2 KN/m ² , ρ = 22KN/m ³ To calculate:- maximum and minimum stress intensities (σ_{max} and σ_{min}) 1. Direct stress σ_{o} H x ρ = 12 x 22= 264 kN/m ²	01 M

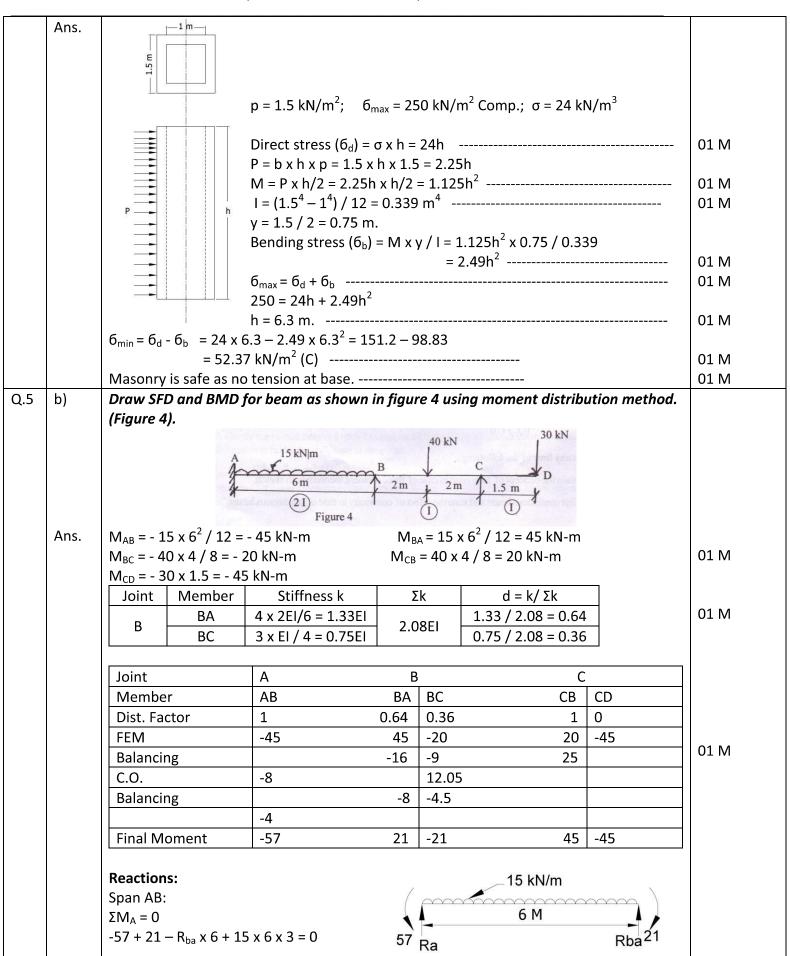
		(150/1EC - 27001 - 2013 Certified)	
		2. Total wind load (P)= p x projected area = p x b x H= 1.2 x 6 x 12 = 86.4 kN	
		3. Moment of P about the base = (M) = P x $(H/2)$ = 518.4 kN.m	
		4. Section modulus of the base section about the axis of bending $(Z) = [(b \times t^2)/6] =$	
		$(Z) = 2.25 \text{m}^3$	
		5. Bending stress= σ_b = M/Z= 230.4 kN/m ²	01 M
		σ_{max} = maximum stress at the base = σ_{o} + σ_{b} = 494.4 kN/m ² (compressive)	01 M
		σ_{min} = minimum stress at the base = σ_{o} - σ_{b} = 33.6 kN/m ² (compressive)	01 M
Q.2	d)	A cantilever beam 150 mm wide and 225 mm deep projects 1.75 m out of wall and	
		carries point load of 30 kN at a distance 1m from the fixed end. Find the deflection of	
		cantilever at the free end. Take $E = 200 \text{ kN/m}^2$.	
	Ans	20 I-N	
		30 kN	
		•	
		Α Ι Β	
		1.0 m 0.75 m	
		L ₁ = 1.0 m, L ₂ = 0.75 m b= 150mm, d= 225mm,	
		$W = 30 \text{ KN}$ $E = 200 \text{ kN/m}^2$	
		To calculate :- deflection at free end (y)	
		$I = I_{xx} = (b \times d^3)/12 = 150 \times 225^3 / 12 = 1.423 \times 10^8 \text{ mm}^4 = 1.423 \times 10^{-4} \text{ m}^4$	01 M
		$y = \{[(wL_1^3)/3EI] + [((wL_1^2)/2EI) \times (L_2)]\}$	02 M
		$ = \{(30 \times 1^{3})/(3 \times 2.00 \times 1.42 \times 10^{-4}) + ((30 \times 1^{2})/(2 \times 2.00 \times 1.42 \times 10^{-4})) \times 0.75)\} $	
		= 352.11 +396.13 =748.24 m	
			01 M
		y= 748.24 m	01111
		The deflection of cantilever at the free end will be 748.24m.	
		Note: Value of E given is very less. But if students take E = 200 kN/mm ² then y = 0.75	
0.0	,	mm.	
Q.2	e)	A simply supported beam of span 4 m carries a UDL of 15 kN/m over entire span. Find	
		the deflection at mid span and slope at the ends. $Ixx = 2 \times 10^8 \text{mm}^4$, $E = 2 \times 10^5 \text{ N/mm}^2$.	
	Ans	15 kN/m	
		13 KIV/III	
		▲ 4 M ▲	
		$EI = 2 \times 10^8 \times 2 \times 10^5 = 4 \times 10^{13} \text{ N-mm}^2 = 4 \times 10^4 \text{ kN-m}^2$	
		$\theta_a = \theta_b = (WL^3)/24EI = (15 \times 4^3)/(24 \times 4 \times 10^4) = 1 \times 10^{-3} \text{ rad.}$	02 M
		Y at mid span = ymax = $5 \text{ WL}^4 / 384 \text{EI} = (5 \times 15 \times 4^4) / (384 \times 4 \times 10^4)$	
		= 1.25 x 10-3 m = 1.25 mm	02 M
Q.2	f)	State Clapeyron's theorem and also write the Clapeyron's three moment theorem for	
		beam with different moment of inertial giving meaning of each term.	
	Ans	Clapeyrons theorem: For two span continuous beam having uniform moment of inertia	
		supported at A, B, and C and subjected to any external loading, the support moments	
		M_A , M_B and M_C at the supports A, B and C respectively are given by the relation,	02 Marks
		$M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -[(6 \times a_1 \times x_1/L_1) + (6 \times a_2 \times x_2/L_2)]$	
i			

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

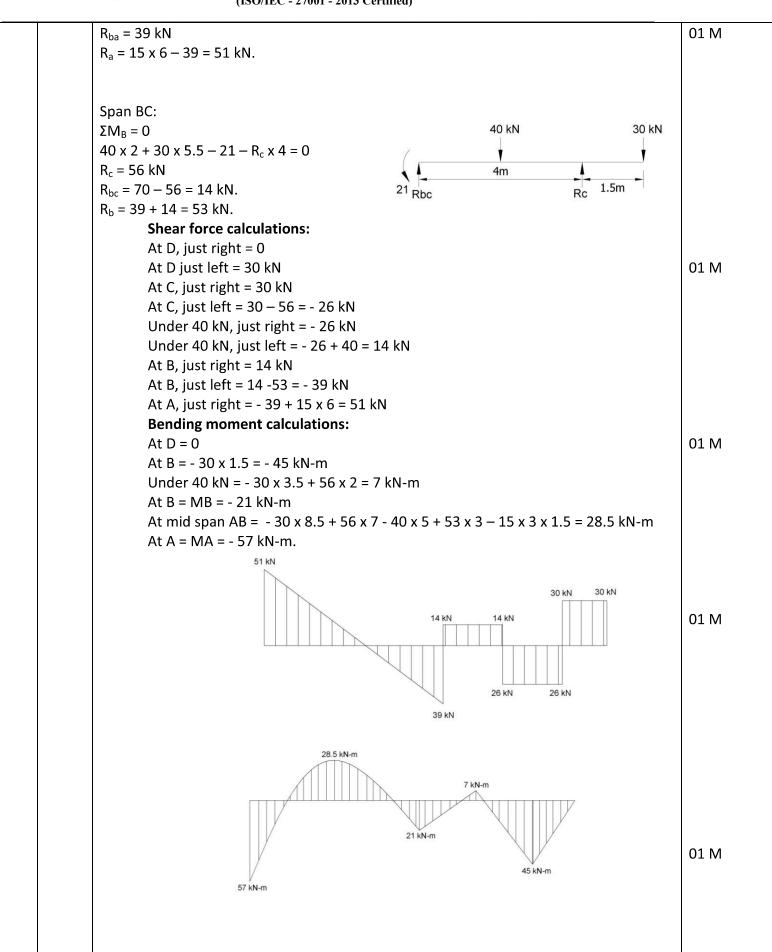
(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

		(ISO/IEC - 27001 - 2013 Cert	meu)				
		Reactions-					
			0 – 24 = 6 kN	1/2 Mark			
		Taking section X-X at distance 'X' from A	Taking section X-X at distance 'X' from B				
		$M_x = 24 \times X - 30(X - 1)$	$M_x = 6 \times X - 30(X - 4)$	01 Mark			
		$EId^2y/dx^2 = -Mx$	$EId^2y/dx^2 = -Mx$				
		$= -24 \times X + 30(X - 1)$	$= -6 \times X + 30(X - 4)$				
		Integrating	Integrating				
		Eldy/dx = $(-24 \times X^2)/2 + [30(X - 1)^2]/2 + C_1$	Eldy/dx = $(-6 \times X^2)/2 + [30(X-4)^2]/2 + C_1$				
		Integrating	Integrating				
		Ely = $(-12 \times X^3)/3 + [15(X-1)^3]/3 + C_1X + C_2$	Ely = $(-3 \times X^3)/3 + [15(X-4)^3]/3 + C_1X + C_2$				
		At $X = 0$; $y = 0$ in Ely eq ⁿ .	At $X=0$; $y=0$ in Ely eq ⁿ .				
		$0 = 0 + C_2$	$0 = 0 + C_2$				
		$C_2 = 0$	$C_2 = 0$				
		At $X = 5$; $y = 0$ in Ely eq ⁿ .	At $X = 5$; $y = 0$ in Ely eq ⁿ .				
		$0 = (-4 \times 5^{3}) + [5 \times (5-1)^{3}] + C_{1} \times 5 + 0$	$0 = (-1 \times 5^{3}) + [5(5-4)^{3}] + C_{1} \times 5 + 0$				
		$C_1 = 36$	C ₁ = 24	1/2 Mark			
		Hence $C_1 = 36$ and $C_2 = 0$	Hence $C_1 = 24$ and $C_2 = 0$				
		Deflection equation-	Deflection equation-				
		$y = (1/EI)[(-4 \times X^3) + 5 \times (X - 1)^3 + 36X]$	$y = (1/EI)[(-1 \times X^3) + 5(X - 4)^3 + 24X]$	1/2 Mark			
		For deflection at mid span	For deflection at mid span				
		Put $X = 2.5$ in eq ⁿ .	Put X= 2.5 in eq ⁿ .				
		$y_c = (1/EI)[(-4 \times 2.5^3)+5 \times (2.5-1)^3+36 \times$	$y_c = (1/EI)[(-1 \times 2.5^3) + 0 + 24 \times 2.5]$	01 M			
		2.5] = 44.375 / El	= 44.375 / El	1/2 M			
Q.3	c)		nt loads W_1 and W_2 at 3 m and 6m from left				
		hand support respectively. If fixed end mon					
		of right hand support. Find the ratio of W_1 a	ind W ₂ .				
	Anc	W1	W2				
	Ans	A	B				
		3 M C 3 M	D 4 M				
		MA	м́в				
		$M_A = [(W_1 \times 3 \times 7^2) / 10^2] + [(W_2 \times 6 \times 4^2) / 10^2]$	² 1				
		$= (147W_1 + 96W_2) / 10^2$	· 1	01 M			
		$M_B = [(W_1 \times 7 \times 3^2) / 10^2] + [(W_2 \times 4 \times 6^2) / 10^2]$	² 1				
		$= (63W_1 + 144W_2) / 10^2$	1	01 M			
		But $M_A = 1.25M_B$					
		$(147W_1 + 96W_2) / 10^2 = 1.25(63W_1 + 144W_2)$	$1/10^{2}$	01 M			
		Solving equation, Ratio $W_1 / W_2 = 1.23$	•	01 M			
Q.3	d)	State the advantages and disadvantages of	fixed beam.				
	Ans	Advantages of fixed beam: -	-				
		1. The beam is stiffer and stronger.		1/2 M for			
		2. The bending moment at center of spa	an is reduced.	each			
		3. The deflection at center of span is re-	duced.				
		4. The slopes at ends of beam are zero.					
		Disadvantages of fixed beam: -					
		1. The slight sinking of support induces	additional moment at each end.				

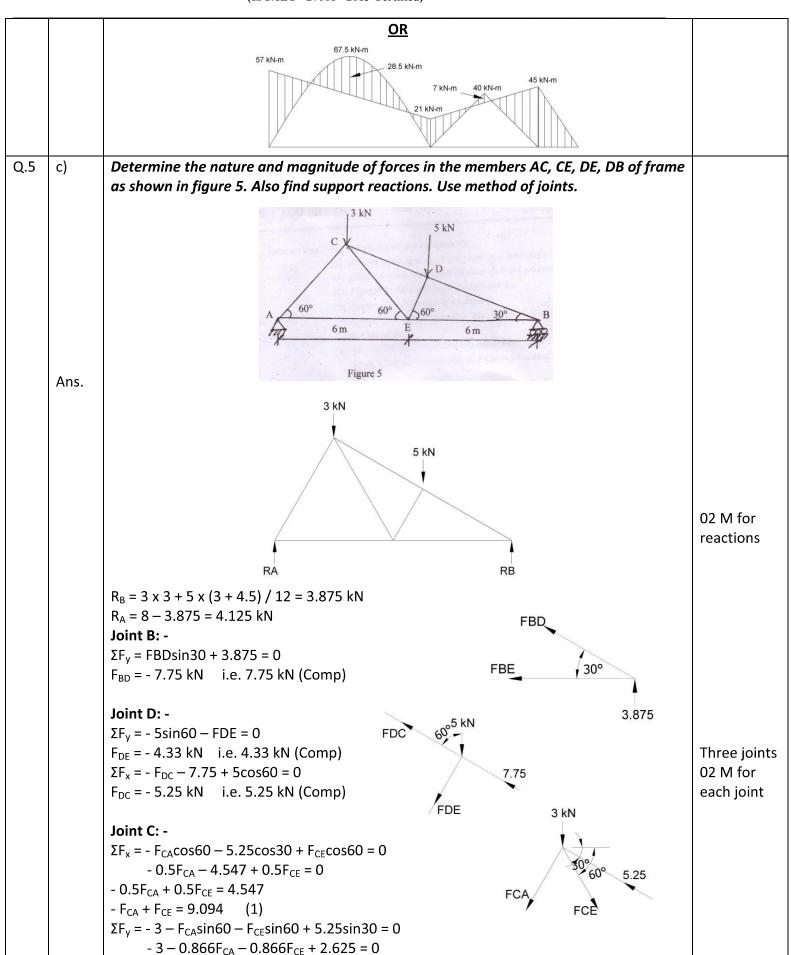
		(ISO/IEC - 27001 - 2013 Certified)	
		2. Temperature stresses are induced due to variation in temperature.	1/2 M for
		3. Extra care has to be taken to achieve 100% fixity at ends.	each
		4. Frequent fluctuations in loading due to moving loads are likely to disturb end	
		fixity.	
Q.3	e)	State the assumptions made in analysis of simple frames.	
	Ans	1. The ends of members are pin jointed.	
		2. The loads act only at joints.	01 M for
		3. Self-weight of members are neglected.	each
		4. Members have uniform cross section throughout the length of member.	
Q.3	f)	A cantilever truss of 3 m span is loaded as shown in Figure 2. Find the forces in the	
	•	members AB, BC, BD and AD using method of joints.	
	Ans	Joint A: $\Sigma F_y = F_{AB} \sin 60 - 15 = 0$ $F_{AB} = 15 / \sin 60 = 17.32 \text{ kN (Tensile)}$ $\Sigma F_x = -F_{AB} \cos 60 - F_{AD} = 0$ $F_{AD} = -17.32 \cos 60 = -8.66 \text{ kN i.e. } 8.66 \text{ kN (Compressive)}$ Joint B: $\Sigma F_y = -F_{BD} \sin 60 - 17.32 \sin 60 = 0$	02 M
		$F_{BD} = -17.32 \text{ kN} = i.e. \ 17.32 \text{ kN} \ (Compressive})$ $\Sigma F_{X} = -F_{BD} \cos 60 - F_{BC} + 17.32 \cos 60 = 0$ $= -(-17.32) \cos 60 - F_{BC} + 17.32 \cos 60 = 0$ $F_{BC} = 17.32 \text{ kN} \ (Tensile)$ $FBD = 17.32 \text{ kN}$	02 M
		17.32 KN	
Q.4	,	Attempt any four of the following:	(16)
	a)	Explain the concept of zero span in case of three moment theorem with sketch.	
	Ans	When the ends of continuous beam are fixed, then an imaginary span is considered to	
		the left or right of the fixed support as the case may be and Clapeyrons theorem is	02.14
		applied to the imaginary span and its adjacent span as per regular procedure.	02 M
		If left end is fixed then consider imaginary span left of this support and If right end	
		is fixed then consider imaginary span on right side of that support.	
		Clapeyrons theorem is applied as below.	
		Ao Lo L1 R L2	01 M
		LO LI B LZ	01 141
		A_0 -A is imaginary span left to fixed end A.	



_		For span A ₀ -A and AB					
		$M_{A0} \times L_0 + 2M_A(L_0 + L_1) + M_B \times L_1 = -[(6 \times a_0 \times x_0/L_0) + (6 \times a_1 \times x_1/L_1)]$	01 M				
		$0 + 2M_A(L_1) + M_B \times L_1 = -[0 + (6 \times a_1 \times x_1/L_1)]$					
		Where M_{A0} , L_0 and \times $_0$ are terms related to imaginary span.					
Q.4	b)	Define continuous beam and state the effect of continuity in case of continuous beam.					
	Ans	Definition: - It is defined as the beam which is supported over more than two supports.	02 M				
		Effect of continuity: -					
		1. Deflection of entire beam reduces.					
		2. Slope on both sides of intermediate support is same.	02 M				
		3. Moments are developed at intermediate supports.4. Sagging bending moments are developed at mid span and hogging bending					
		moment developed at intermediate supports.					
Q.4	c)	Calculate the support moment of continuous beam simply supported at A, B and C.					
ζ		Span AB =4 m and span BC =5m (i) Span AB carries point load of 75 kN at 1.5m from					
		support A (ii) Span BC carries a UDL of 25 kN/m. Use three moment theorem.					
	Ans	75 kN					
		25 kN/m					
		A					
		1.5 M 2.5 M B 5 M					
		78.125 kN-m					
		70.31 kN-m					
			01 M				
		X1					
		C C D M don 75 l-N lood					
		S.S.B.M. under 75 kN load = 75 x 1.5 x 2.5 / 4 = 70.31 kN-m S.S.B.M. at mid span of BC = 25 x 5^2 / 8 = 78.125 kN-m	01 M				
		3.5.6.W. at find span of BC = 25 x 5 / 8 = 78.125 kN-III $A_1 = 0.5 \times 4 \times 70.31 = 140.625$ $X_1 = (4 + 1.5)/3 = 1.83 \text{ m}$	OT IAI				
		$A_1 = 0.5 \times 4 \times 70.51 = 140.025$ $A_1 = (4 + 1.5)/5 = 1.85 \text{ m}$ $A_2 = 2 \times 5 \times 78.125 / 3 = 260.41$ $X_2 = 2.5 \text{ m}$					
		$M_A = M_B = 0$ End simple supports.					
		Applying theorem of three moment for span AB and BC-					
		$M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -6 [(A_1 \times X_1 / L_1) + [(A_2 \times X_2 / L_2)]$	01 M				
		$0 + 2M_B(4 + 5) + 0 = -6[(140.625 \times 1.83 / 4) + [(260.41 \times 2.5 / 5)]$					
		$18M_B = -6 (64.33 + 130.205)$					
		= - 1167.23	04.84				
	الم ا	M _B = - 64.84 kN-m i.e 64.84 kN-m (Hogging)	01 M				
Q.4	d) Ans.	Explain the concept of stiffness factor and carry over moment. Stiffness factor: - It is the moment required at the simply supported end of beam to					
	AIIS.	produce unit rotation at the end without translation of either ends of member.	02 M				
		produce afficionate the cha without translation of either chas of member.	02 IVI				
		Carry over factor: - It is defined as moment induced at the fixed end of a beam by the					
		action of the moment applied at the other simply supported or hinged end. The	02 M				

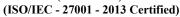

				(180/1EC - 27001 - 2013 C	er unieu)			
		moment end.	induced at t	he fixed end is half o	f the mome	nt applied at the sim	ply supported	
Q.4	e)		the distribu	ıtion factor at joint () for joint a	s shown in figure 2		
J.4	Ε)	Calculate	tile distribi	ition juctor at joint (o joi joint a	s snown in jigure 3.		
				bottoth a Mothod		F.		
				4	0 311 (21)			
				1111 +m (21)	\times ,			
					Sh			
				/8	E 30/	To high the		
				/2		B		
				a self-in coord C		1997		
				Eio	gure 3			
				rig	gure 3			
	Ans.	Joint	Member	Stiffness k	Σk	d = k/ Σk		01 M for
			OA	4 x 2EI/3 = 2.67EI		2.67 / 5.97 = 0.446		each
			ОВ	3 x 3EI / 5 = 1.8EI		1.8 / 5.97 = 0.302		
		0	OC	0	5.97EI	0		
			OD	3 x 2EI / 4 = 1.5EI		1.5 / 5.97 = 0.252		
(.4	f)	Calculate	the suppor	t moment using mor	nent distrib	ution method for qu	estion 4 (C)	
	Ans.	having s	ame M.I.					
		75 kN						
						25 kN/m		
			Α		<u> </u>	······································	m c	
			1.5	M 2.5 M		5 M		
				2 . 2	J		•	
		$M_{AB} = -75 \times 1.5 \times 2.5^2 / 4^2 = -43.94 \text{ kN-m}$ $M_{BA} = 75 \times 2.5 \times 1.5^2 / 4^2 = 26.36 \text{ kN-m}$ $M_{BC} = -25 \times 5^2 / 12 = -52.08 \text{ kN-m}$ $M_{CB} = 25 \times 5^2 / 12 = 52.08 \text{ kN-m}$						
		Joint	Member	Stiffness k	Σk	d = k/ Σk		
			ВА	3 x EI/4 = 0.75EI		0.75 / 1.35 = 0.56		01 M
		В	BC	3 x El / 5 = 0.60El	1.35EI	0.60 / 1.35 = 0.44		
						· · · · · · · · · · · · · · · · · · ·		
		Joint		Α		В	С	
		Membe	r	AB	ВА	ВС	СВ	
		Dist. Fac		1	0.56	0.44	1	02 M
		FEM		-43.94	26.36	-52.08	52.08	
		Balancir	ng	43.94	14.4	11.32	-52.08	
		C.O.			21.97	-26.04		
		Balancir	ng		2.28	1.79		
		Final Mo	oment	0	65.01	-65.01	0	
.5		Attempt	any two of	the following:			<u> </u>	(16)
	a)	_	-	•	sions 1.5 m	x 1.5m with wall this	ckness 250	
						e maximum height oj		
		which ca	n be allowe	d so that maximum s	stress in ma	sonry is not to excee	d 250 kN/m ²	
		-		_	safe if no te	nsion is allowed. Con	sider weight	
		of masor	nry 24 kN/m	•				

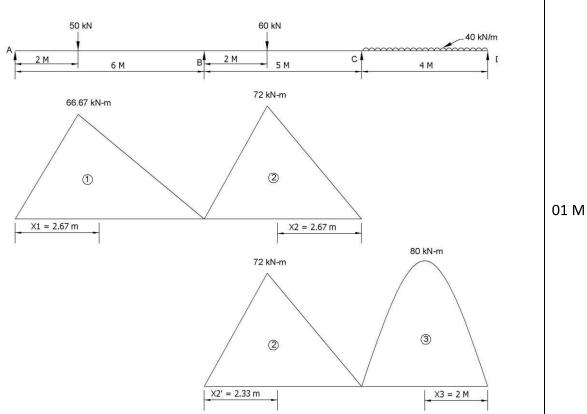
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2013 Certified)



		(150/1EC - 27001 - 2013 Certified)	
		$-0.866F_{CA} - 0.866F_{CE} = 0.375$	
		$-F_{CA} - F_{CE} = 0.433$ (2)	
		Solving eq. 1 and eq.2 simultaneously	
		$F_{CA} = -4.76 \text{ kN}$ i.e. 4.76 kN (Comp)	
		$F_{CE} = 4.33 \text{ kN (Tensile)}$	
Q.6		Attempt any two of the following:	(16)
	a)	Find the slope and deflection at the centre of a simply supported beam as shown in	, ,
	,	figure 6 take EI =4000 kN.m². Use Macaulay's method.	
		20 kN 15 kN/m	
		$\frac{A}{C}$	
		4m - 2m - 2m	
		Figure 6	
	Ans.	20 kN X	
		15 kN/m	
		A AM COMMANDA	
		4 M	
		RA RB	
		$R_A = (20 \times 2 + 15 \times 4 \times 2) / 8 = 20 \text{ kN}$	
		$R_B = 15 \times 4 + 20 - 20 = 60 \text{ kN}.$	
		Taking section x-x at distance x from A between DB.	
		$Mx = 20 \times X - 20 \times (X - 6) - 15 \times (X - 4)^2 / 2$	01 M
		$EI(d^2y/dx^2) = -Mx = -20 \times X + 20 \times (X - 6) + 15 \times (X - 4)^2 / 2$	
		Integrating-	
		$EI(dy/dx) = -20 \times X^2/2 + 20 \times (X - 6)^2/2 + 15 \times (X - 4)^3 / 6 + C1$ (A)	01 M
		Integrating-	
		Ely = $-20 \times X^3/6 + 20 \times (X - 6)^3/6 + 15 \times (X - 4)^4/24 + C_1 \times X + C_2$ (B)	01 M
		At $X = 0$; $Y = 0$ in equation B	
		$C_2 = 0$	
		At X = 8 m; Y = 0 in equation B	
		$0 = -20 \times 8^{3}/6 + 20 \times (8-6)^{3}/6 + 15 \times (8-4)^{4}/24 + C_{1} \times 8 + C_{2}$	
		C ₁ = 190	01 M
		Equations are-	
		$(dy/dx) = (1/EI)[-20 \times X^2/2 + 20 \times (X - 6)^2/2 + 15 \times (X - 4)^3/6 + 190]$ (1)(1)	01 M
		$y = (1/EI)[-20 \times X^3/6 + 20 \times (X-6)^3/6 + 15 \times (X-4)^4/24 + 190 \times X + 0]$ (2)	01 M
		For slope at mid span, put X = 4 m in equation 1.	
		$(dy/dx)_C = (1/4000)[-20 \times 4^2/2 + 190] = 7.5 \times 10^{-3} \text{ rad.}$	01 M
		For deflection at mid span, put X = 4 m in equation 2.	
		$y_C = (1/4000)[-20 \times 4^3/6 + 190 \times 4 + 0] = 0.1367 \text{ m} \text{ i.e. } 136.7 \text{ mm.}$	01 M
Q.6	b)	A continuous beam ABCD 15m long rests on supports A, B, C and D all at same level.	
-	′	Span AB = 6m, BC = 5 m and CD = 4 m. It carries two concentrated loads 50 kN and 60	
		kN at 2 m and 8 m from support A and UDL of 40 kN/m over span CD. Find the	
		moments and reactions at the supports. Draw BMD using three moment theorem.	
		ggg	
	•		

(Autonomous)

S.S.B.M. under 50 kN load =
$$50 \times 2 \times 4 / 6 = 66.67 \text{ kN-m}$$

S.S.B.M. under 60 kN load =
$$60 \times 2 \times 3 / 5 = 72.0 \text{ kN-m}$$

S.S.B.M. at mid span of CD =
$$40 \times 4^2 / 8 = 80.0 \text{ kN-m}$$

$$A_1 = 0.5 \times 6 \times 66.67 = 200.00$$

$$X_1 = (6 + 2)/3 = 2.67 \text{ m}$$

$$A_2 = 0.5 \times 5 \times 72 = 180$$

$$X_2 = (5 + 3)/3 = 2.67 \text{ m}$$
 $X_2' = (5 + 2)/3 = 2.33 \text{ m}$

$$A_3 = 2 \times 4 \times 80 / 3 = 213.33$$

$$X_3 = 2 \text{ m}$$

 $M_A = M_B = 0$ End simple supports.

Applying theorem of three moment for span AB and BC-

$$M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -6 [(A_1 \times X_1 / L_1) + [(A_2 \times X_2 / L_2)]]$$

$$0 + 2M_B(6 + 5) + M_C \times 5 = -6 [(200 \times 2.67 / 6) + [(180 \times 2.67 / 5)]]$$

$$22M_B + 5M_C = -6 (88.89 + 96)$$

$$M_B + 0.227M_C = -50.424$$
 ----- (1)

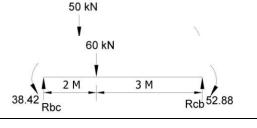
Applying theorem of three moment for span BC and CD-

$$M_B \times L_2 + 2M_C(L_2 + L_3) + M_D \times L_3 = -6 [(A_2 \times X_2' / L_2) + [(A_3 \times X_3 / L_3)]$$

$$M_B \times 5 + 2M_C(5 + 4) + 0 = -6[(180 \times 2.33 / 5) + [(213.33 \times 2.0 / 4)]$$

$$5M_B + 18M_C = -6 (84 + 106.67)$$

$$M_B + 3.6M_C = -228.8$$
 ----- (2)


Solving equation 1 and 2 simultaneously.

$$M_C = -52.88 \text{ kN-m}$$
 and $M_B = -38.42 \text{ kN-m}$.

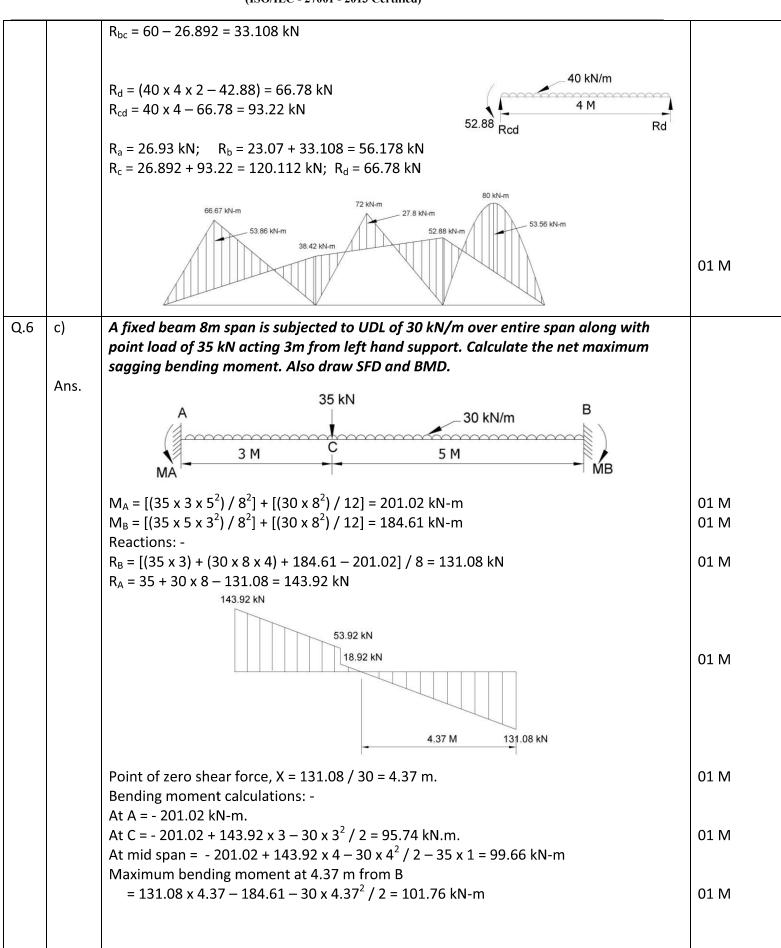
$$R_{ba} = (50 \times 2 + 38.42)/6 = 23.07 \text{ kN}$$

$$R_a = 50 - 23.07 = 26.93 \text{ kN}$$

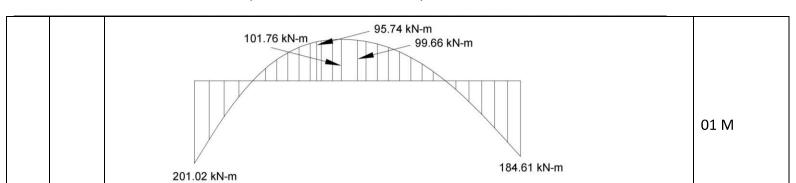
$$R_{cb} = (60 \times 2 + 52.88 - 38.42)/5 = 26.892 \text{ kN}$$

01 M

01 M


01 M

01 M


01 M

01 M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

