MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Model Answer: Summer 2018

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(c)	What is the principle of Manometer?		
	Ans.	Manometer measure the pressure at a point in fluid by balancing the column of fluid by same or another column of fluid.	2	2
	(d)	Convert pressure head of 50 m of oil of sp. Gravity 0.8 into corresponding head of water.		
	Ans.	$\mathrm{h}_{\text {Oil }}=50 \mathrm{~m}, \mathrm{~S}_{\text {Oil }}=0.8$		
		$\mathrm{S}_{\text {Water }}=1$	1	
		$\mathrm{P}=\gamma_{\text {oil }} \times \mathrm{h}_{\text {oill }}=\gamma_{\text {Water }} \times \mathrm{h}_{\text {Water }}$		
		$\mathrm{P}=\mathrm{S}_{\text {Oii }} \times \gamma_{\text {Water }} \times h_{\text {Oil }}=S_{\text {Water }} \times \gamma_{\text {Water }} \times h_{\text {Water }}$ $0.8 \times 9810 \times 50=1 \times 9810 \times \mathrm{h}_{\mathrm{w}}$		
		$\mathrm{h}_{\text {Water }}=40 \mathrm{~m}$	1	2
	(e)	Write modified Darcy's Weisbach equation.		
	Ans.	Modified Darcy-Weisbach equation is as following :- $h_{f}=\frac{f L Q^{2}}{12.1 D^{5}}$	2	2
		Where, $\mathrm{h}_{\mathrm{f}}=$ Head loss due to friction. $\mathrm{L}=$ Length of pipe. $\mathrm{D}=$ Diameter of pipe. $\quad \mathrm{f}=$ Friction factor. $\mathrm{Q}=$ Discharge through pipe.		
	(f)	Define hydraulic gradient line and total energy line.		
	Ans.	Hydraulic Gradient Line (HGL) is defined as the line which gives the sum of pressure head and datum head of a flowing fluid in a pipe with respect to some reference line.	1	2
		Total Energy Line (TEL) is defined as the line which gives the sum of pressure head, datum head and velocity head of a flowing fluid in a pipe with respect to some reference line.	1	
	(g)	Enlist any four velocity measuring devices for canal. Velocity measuring devices for canal:	1/2	
	Ans.	a) Pitot Tube b) Cup type current meter, c) Single float d) Double float e) Rod float f) Screw type current meter or propeller type	each (any	2
	(h)	Write the principle on which venturemeter works.	four)	
	Ans.	Principle of venturimeter: It is based on Bernoulli's equation that is the velocity increases in an accelerated flow by reducing the cross section area of the flow passage due to which the pressure head is reducing at that section. A pressure difference is created which enables to the determination of discharge through the pipe.	2	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	(B)	Attempt any TWO of the following:		8
	(a)	If Specific gravity of oil is 0.80 . What is the specific weight in $\mathrm{N} / \mathrm{m}^{3}$?		
	Ans.	$\mathrm{S}_{\text {Oil }}=0.8$		
		$S_{\text {oil }}=\frac{\gamma_{\text {oil }}}{\gamma_{\text {water }}}$	2	
		$0.8=\frac{\gamma_{\text {oil }}}{9810}$		
		$\gamma_{\mathrm{Oil}}=7848 \mathrm{~N} / \mathrm{m}^{3}$	2	4
	(b)	A shaft of $\mathbf{1 5 0} \mathbf{~ m m}$ diameter rotates at $\mathbf{7 5} \mathbf{~ r p m}$ in a $\mathbf{5 0 0} \mathbf{~ m m}$ long bearing taking that two surfaces are uniformly separated by a distance of 1 mm and considering linear velocity distribution having viscosity of $0.005 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$. Find the power absorbed in the bearing.		
	Ans.	$\begin{aligned} & \text { Diameter of shaft }(\mathrm{D})=150 \mathrm{~mm}=0.150 \mathrm{~m} \\ & \text { Length of bearing }(\mathrm{L})=500 \mathrm{~mm}=0.5 \mathrm{~m} \\ & \mathrm{t}=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m} \\ & \mu=0.005 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2} \\ & \mathrm{~N}=75 \mathrm{rpm} \end{aligned}$		
		Power absorbed in the bearing $P=\frac{\mu \pi^{3} D^{3} N^{2} L}{60 X 60 X t}$	2	
		$\begin{aligned} & \mathrm{P}=\frac{0.005 \times \pi^{3} \times(0.150)^{3} \times(75)^{2} \times 0.5}{60 \times 60 \times 1 \times 10^{-3}} \\ & \mathrm{P}=0.408 \text { Watt } \end{aligned}$	2	4
	(c)	State Pascal's law of fluid pressure. Enlist any four application of it.		
	Ans.	Pascal's Law: It states that the pressure intensity or pressure at a point in a static fluid is equal in all directions.	2	
		Applications of Pascal law: It is applied in the construction of machines used for multiplying forces e.g. i. Hydraulic Jacks ii. Hydraulic Press iii. Hydraulic Lifts iv. Hydraulic Crane v. Braking system of motor vi. Artesian well	$1 / 2$ each any four	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(b) Ans.	Find the intensity of pressure in $\mathrm{N} / \mathrm{m}^{2}$ on the base of container when (i) Water stands to a height of 1.25 m in it. (ii) When oil for 0.625 m height stands on water of 1 m height. Draw pressure diagrams in all cases. Case i) Water stands to a height of $\mathbf{1 . 2 5 m}$: $P=$ Pressure intensity at bottom $\begin{aligned} & P=\gamma_{w} \times h \\ & P=9.81 \times 1.25 \\ & P=12.2625 \mathrm{kN} / \mathrm{m}^{2} \\ & P=12262.5 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$ Case (i) Case ii) When oil for $\mathbf{0 . 6 2 5 m}$ height stands on a water of $\mathbf{1 m}$ height: for Water, $P=$ Pressure intensity at bottom $P=w_{w} \times h$ $P_{1}=9.81 \times 1$ $P_{1}=9.81 \mathrm{kN} / \mathrm{m}^{2}$ $P_{1}=9810 \mathrm{~N} / \mathrm{m}^{2}$ for Oil, $P_{2}=$ Pressure intensity at bottom $P_{2}=w_{\text {oil }} \times h$ $P_{2}=S_{\text {oil }} \times w_{\text {water }} \times 0.625$ $P_{2}=6.13125 \times S_{\text {oil }} k N / \mathrm{m}^{2}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(b)	$\begin{aligned} & \hline P_{2}=6131.25 \times S_{\text {oil }} N / \mathrm{m}^{2} \\ & P=P_{1}+P_{2} \\ & P=\left(9810+6131.25 \times S_{\text {oil }}\right) \mathrm{N} / \mathrm{m}^{2} \end{aligned}$ Note: If $\mathbf{S p}$. Gr. of oil is assumed then appropriate marks should be given Case (ii) Explain the concept of pressure diagram with neat sketches and explain the use of pressure diagram. Pressure diagram is defined as "It gives the variation of pressure on the surface with depth". The total pressure per unit length is the area of pressure diagram. The position of center of the pressure is the position of center of gravity of the pressure diagram. Use of pressure diagram: i. To calculate pressure due to liquid on the side of surface. ii. To calculate pressure due to liquid on both the side of surface.	1/2	4

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
3.	(c) Ans.	What are major and minor loss of head in flow through pipes? Write any two equations of minor loss. Major loss: The major loss of head is caused due to friction when fluid flow through a pipe. Minor loss: The minor loss of head is caused due to change in velocity of flowing fluid either in magnitude or direction. 1. Loss of head at the entrance. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ Where, $\mathrm{H}_{\mathrm{L}}=$ Head loss $\mathrm{V}=$ Velocity 2. Loss of head due to sudden expansion. $\mathrm{H}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{1}-V_{2}\right)^{2}}{2 \mathrm{~g}}$ 1. Loss of head due to sudden contraction. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ 2. Loss of head due to bend. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ 3. Loss of head due to exit. $\mathrm{H}_{\mathrm{L}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$ 4. Loss of head due to obstruction. $\mathrm{H}_{\mathrm{L}}=\left[\frac{\mathrm{A}}{\mathrm{C}_{\mathrm{c}} \times \mathrm{a}}-1\right]^{2} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ $\mathrm{A}=\mathrm{c} / \mathrm{s}$ Area of pipe $\mathrm{a}=\mathrm{c} / \mathrm{s}$ Area of Opening $\mathrm{C}_{\mathrm{C}}=$ Coefficient contraction 7. Loss of head due to pipe fitting. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$	1 1 1 each (any two)	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(d) Ans. (e) Ans.	An oil of specific gravity 0.9 and viscosity of 0.06 poise is flowing through a pipe of diameter 200 mm at rate of 60 litres $/ \mathrm{sec}$. Find the head lost due to friction for $\mathbf{5 0 0} \mathbf{m}$ length of pipe. Take $f=\mathbf{0 . 0 2}$. $\begin{aligned} & \mathrm{S}_{\text {oil }}=0.9, \\ & \mu=0.06 \text { Poise }, \\ & \mathrm{d}=200 \mathrm{~mm}=0.2 \mathrm{~m}, \\ & \mathrm{~L}=500 \mathrm{~m}, \\ & \mathrm{f}=0.02 \\ & \mathrm{Q}=60 \mathrm{lit} / \mathrm{sec}, \\ & \mathrm{Q}=60 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \\ & \mathrm{~V}=\frac{Q}{a}=\frac{60 \times 10^{-3}}{\frac{\pi}{4} \times 0.2^{2}}=1.9098 \\ & \mathrm{~h}_{\mathrm{f}}=\frac{f \mathrm{~L} \mathrm{~V}^{2}}{2 g d} \\ & \mathrm{~h}_{\mathrm{f}}=\frac{0.02 \times 500 \times(1.9098)^{2}}{2 \times 9.81 \times 0.2} \\ & \mathrm{~h}_{\mathrm{f}}=9.2949 \mathrm{~m} \\ & \mathrm{~h}_{\mathrm{f}}=\frac{f \mathrm{~L}}{12.1 \mathrm{Q}^{2}} \\ & \mathrm{~h}_{\mathrm{f}}=\frac{0.02 \times 500 \times\left(60 \times 10^{-3}\right)^{2}}{12.1 \times 0.2^{5}} \\ & \mathrm{~h}_{\mathrm{f}}=9.2975 \mathrm{~m} \end{aligned}$ What do you mean by water hammer? State its causes (any three). Water Hammer: When the water flowing in a long pipe is suddenly brought to rest by closing the valve, there will be a sudden rise in pressure due to the momentum of the moving water being destroyed. This causes a wave of high pressure to be transmitted along the pipe which creates noise known as water hammer. Causes : i. Sudden increasing velocity of flow ii. Sudden closure of valve with high speed. iii. Sudden increase in pressure in pipe	2 2 Or 2 2 1 1 each	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(f) Ans.	Define with a neat sketch for a trapezoidal channel (1) Hydraulic depth (2) Hydraulic Radius. 1) Hydraulic depth (D): The depth of flow in a channel above bed surface is called as hydraulic depth (D). Or It is ratio of wetted area to top width $\begin{aligned} & \mathrm{D}=\frac{\text { Wetted area }}{\text { Top width }}=\frac{\mathrm{A}}{\mathrm{~T}} \\ & T=b+2 n d \\ & \mathrm{~A}=\mathrm{bd}+\mathrm{nd}^{2} \\ & \mathrm{D}=\frac{\mathrm{bd}+\mathrm{nd}^{2}}{b+2 n d} \end{aligned}$ 2) Hydraulic Radius (R): It is the ratio of the wetted area to wetted perimeter. It is also called as Hydraulic mean depth. Fig. Trapezoidal channel $\mathrm{R}=\frac{\text { Wetted area }}{\text { Wetted perimeter }}=\frac{\mathrm{A}}{\mathrm{P}}$ For Trapezoidal Channel. $\begin{aligned} & \mathrm{A}=\mathrm{bd}+\mathrm{nd}^{2} \\ & \mathrm{P}=\mathrm{b}+2 \mathrm{~d} \sqrt{\mathrm{n}^{2}+1} \\ & \mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}=\frac{\mathrm{bd}+\mathrm{nd}^{2}}{\mathrm{~b}+2 \mathrm{~d} \sqrt{\mathrm{n}^{2}+1}} \end{aligned}$ Where, $\mathrm{R}=$ Hydraulic radius. $\mathrm{b}=$ width of the channel at bottom d= Hydraulic depth of the flow $\mathrm{P}=$ Wetted perimeter The side slope is given as 1 vertical to n horizontal	1 $1 / 2$ 1 1 $1 / 2$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(c) Ans.	What do you mean by Hydraulic jump? Explain with sketch.	1	
		Hydraulic jump: It is the phenomenon in which supercritical flow is converted to subcritical flow.		
		HYDRAULIC Jump		
	(d)	Fig \rightarrow HYDRAULIC JUMP.		
		1) It is the phenomenon occurring in an open channel when rapidly flowing stream abruptly change to slowly flowing stream causing a distance rise or jump in level of liquid surface.		
		2) Hydraulic jump formed on a horizontal floor of canal and at the downstream side of spillway, at the downstream side of sluice gate, or at the downstream side of canal fall.	2	4
		What flows through a rectangular open channel having width of 2 m with flow depth of 0.6 m with discharge of $4 \mathrm{~m}^{3} / \mathrm{sec}$. Find Fraud's number.		
	Ans.	$\mathrm{b}=2 \mathrm{~m}, \mathrm{~d}=0.6 \mathrm{~m}$		
		$\mathrm{Q}=4 \mathrm{~m}^{3} / \mathrm{sec}$		
		Find froude's no.		
		$\mathrm{A}=\mathrm{b} \times \mathrm{d}$		
		$\mathrm{A}=2 \times 0.6$		
		$\mathrm{A}=1.2 \mathrm{~m}^{2}$		
		$\mathrm{Q}=\mathrm{AV}$	1	
		$\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4}{1.2}$		
		$\mathrm{V}=3.333 \mathrm{~m} / \mathrm{sec}$		
		$\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}=\frac{1.2}{3.2}=0.375$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(e) Ans. (f) Ans.	$\begin{aligned} & \mathrm{F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gR}}} \\ & \mathrm{~F}_{\mathrm{r}}=\frac{3.333}{\sqrt{9.81 \times 0.375}} \\ & \mathrm{~F}_{\mathrm{r}}=1.7377 \end{aligned}$ F_{r} is greater than 1 flow is super critical flow Define hydraulic coefficients. State the relationship among the hydraulics coefficient for an orifice. 1. Coefficient of discharge $\left(\mathbf{C}_{d}\right)$: The ratio of the actual discharge to the theoretical discharge is called as the coefficient of discharge. 2. Coefficient of contraction $\left(\mathbf{C}_{\mathfrak{c}}\right)$: The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction. 3. Coefficient of velocity $\left(\mathbf{C}_{\mathbf{v}}\right)$: The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity. Relation: $\mathrm{C}_{\mathrm{d}}=\mathrm{C}_{\mathrm{v}} \times \mathrm{C}_{\mathrm{c}}$ A $30 \times 15 \mathrm{~cm}$ venturimeter is provided in a vertical pipe line carrying oil of specific gravity 0.90 the flow being upward. The difference in elevations of the throat section and entrance section of the venturimeter is 50 cm . The differential U-tube mercury manometer shows a gauge deflection of 30 cm . Calculate discharge of oil. $(\mathbf{c d}=0.98)$ Inlet area, $A_{1}=\frac{\pi}{4} \times 0.3^{2}=0.0706 \mathrm{~m}^{2}$ Throat area, $A_{2}=\frac{\pi}{4} \times 0.15^{2}=0.0176 \mathrm{~m}^{2}$ Gauge deflection interms of oil $h=30 \mathrm{~cm} \text { of } \mathrm{Hg}=0.30 \mathrm{~m}$	1 1 1 1 1 1 1 1 1 $1 / 2$ $1 / 2$ 1	4

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(f)	$\begin{aligned} & h=x\left(\frac{S_{m}}{S_{\text {oil }}}-1\right) \\ & h=0.30 \times\left(\frac{13.6}{0.9}-1\right) \\ & h=4.233 m \text { of oil } \\ & Q=\frac{C_{d} \times a_{1} \times a_{2} \times \sqrt{2 g h}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \\ & Q=\frac{0.98 \times 0.0706 \times 0.0176 \times \sqrt{2 \times 9.81 \times 4.233}}{\sqrt{0.0706^{2}-0.0176^{2}}} \end{aligned}$	1 1 1 1	4

		Model Answers			Marks	Total Marks

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline \& (c)

Ans. \& \begin{tabular}{l}
Pressure at summit:

Applying Bernoulli's equation between A and C
$$
\begin{aligned}
& \frac{P_{A}}{\gamma_{C}}+\frac{V_{A}^{2}}{2 g}+Z_{A}=\frac{P_{C}}{\gamma_{C}}+\frac{V_{C}^{2}}{2 g}+Z_{C}+\text { Losses } \\
& 0=\frac{P_{C}}{\gamma_{C}}+\frac{2.801^{2}}{2 \times 9.81}+3+\left(\frac{4 \times 0.005 \times 100 \times 2.801^{2}}{2 \times 9.81 \times 0.2}\right) \\
& 0=\frac{P_{C}}{\gamma_{C}}+3.39+4 \\
& 0=\frac{P_{C}}{9810}+7.39 \\
& P_{\mathrm{C}}=-72.49 \mathrm{KN} / \mathrm{m}^{2} \\
& \mathbf{P}_{\mathrm{C}}=\mathbf{7 2 . 4 9} \mathbf{~ k N} / \mathbf{m}^{2}(\text { Vacuum })
\end{aligned}
$$

A trapezoidal channel of most economical section has side slopes 1.5 horizontal to 1 vertical. It is required to discharge $16 \mathrm{~m}^{3} / \mathrm{sec}$ with a bed slope of 0.5 meter in 3.2 km . Design the section using Manning's formula. Take $\mathbf{N}=\mathbf{0 . 0 1 5}$.
$$
\mathrm{Q}=16 \mathrm{~m}^{3} / \mathrm{sec}
$$

Bed slope $(S)=\frac{0.5}{3200}=\frac{1}{6400}$
$$
\mathrm{n}=\frac{1.5}{1}=1.5
$$

Manning's constant $(\mathrm{N})=0.015$

Most economical condition for trapezoidal section having following condition

i) $R=\frac{d}{2}$
$$
\text { ii) } \begin{aligned}
\frac{(\mathrm{b}+2 \mathrm{nd})}{2}= & d \sqrt{\left(1+n^{2}\right)} \\
\frac{(\mathrm{b}+2 \mathrm{nd})}{2} & =d \times \sqrt{\left(1+n^{2}\right)} \\
\mathrm{b}+(2 \times 1.5 \times \mathrm{d}) & =2 \times \mathrm{d} \sqrt{\left(1+1.5^{2}\right)} \\
\mathrm{b}+3 \mathrm{~d} & =3.606 \mathrm{~d} \\
\mathrm{~b} & =0.606 \mathrm{~d}
\end{aligned}
$$

 \&

2

1

1

$1 / 2$

$1 / 2$

$1 / 2$

$1 / 2$

$1 / 2$
\end{tabular} \& 8

\hline
\end{tabular}

