

Subject: Hydraulics

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Marks	Marks
Q. 1	(A)	Attempt any SIX of the following:		12
	(a)	Define surface tension and state its unit.		
	Ans.	Surface tension of a liquid is the properties by which a fluid is enabled		
		resist tensile stress.		
		OR	1	
		The tension of the surface film of a liquid caused by the attraction of		
		the particles (cohesion) in the surface layer by the bulk of the liquid,		
		which tends to minimize surface area.		
		SI unit = N/m	1	2
	(b)	A pressure of 1.2 Pascal applied to 650 liters of a liquid caused a		
		volume reduction by 1.5 liters respectively. Calculate the bulk		
		modulus of elasticity for liquid.		
	Ans.	$P = 1.2 Pascal = 1.2 N/m^2$		
		$V = 650 lit. = 650 \times 10^{-3} m^3$		
		$dV = 1.5 \ lit. = 1.5 \times 10^{-3} m^3$		
		Bulk modulus (K),		
		$K = \frac{dI}{(dV)} = \frac{112}{(1.5 \times 10^{-3})}$	1	
		$K = \frac{dP}{\left(\frac{dV}{V}\right)} = \frac{1.2}{\left(\frac{1.5 \times 10^{-3}}{650 \times 10^{-3}}\right)}$		
		$K=520 \text{ N/m}^2$	1	2

Subject: Hydraulics

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1.	(c)	What is the principle of Manometer?		
	Ans.	Manometer measure the pressure at a point in fluid by balancing the	2	2
		column of fluid by same or another column of fluid.		
	(d)	Convert pressure head of 50 m of oil of sp. Gravity 0.8 into		
		corresponding head of water.		
	Ans.	$h_{Oil} = 50m, S_{Oil} = 0.8$		
		$S_{water} = 1$	1	
		$P = \gamma_{\text{Oil}} \times h_{\text{Oil}} = \gamma_{\text{Water}} \times h_{\text{Water}}$		
		$\mathbf{P} = \mathbf{S}_{\mathrm{Oil}} \times \gamma_{\mathrm{Water}} \times \mathbf{h}_{\mathrm{Oil}} = \mathbf{S}_{\mathrm{Water}} \times \gamma_{\mathrm{Water}} \times \mathbf{h}_{\mathrm{Water}}$		
		$0.8 \times 9810 \times 50 = 1 \times 9810 \times h_{Water}$		_
		$h_{\text{Water}} = 40 \text{m}$	1	2
	(e)	Write modified Darcy's Weisbach equation.		
		Modified Darcy-Weisbach equation is as following :-		
	Ans.			
		$h_f = \frac{f L Q^2}{12.1 D^5}$	2	2
		Where,		
		h_f = Head loss due to friction. L = Length of pipe. D = Diameter of pipe. f = Friction factor.		
		Q = Discharge through pipe.		
	(f)	Define hydraulic gradient line and total energy line.		
	Ans.	Hydraulic Gradient Line (HGL) is defined as the line which gives	1	
		the sum of pressure head and datum head of a flowing fluid in a pipe with respect to some reference line.		
		Total Energy Line (TEL) is defined as the line which gives the sum		2
		of pressure head, datum head and velocity head of a flowing fluid in a	1	
	(g)	pipe with respect to some reference line. Enlist any four velocity measuring devices for canal.		
	(8/	Velocity measuring devices for canal:	1/2	
	Ans.	a) Pitot Tube b) Cup type current meter, c) Single float	each	
	<i>a</i> >	d) Double float e) Rod floatf) Screw type current meter or propeller type	(any	2
	(h)	Write the principle on which venturemeter works.	four)	
	Ans.	Principle of venturimeter: It is based on Bernoulli's equation that is		
	A113.	the velocity increases in an accelerated flow by reducing the cross		
		section area of the flow passage due to which the pressure head is reducing at that section A pressure difference is created which	2	2
		reducing at that section. A pressure difference is created which enables to the determination of discharge through the pipe.		

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	(B)	Attempt any TWO of the following:		8
	(a)	If Specific gravity of oil is 0.80. What is the specific weight in N/m^3 ?		
	Ans.	$\mathbf{S}_{\text{Oil}} = 0.8$		
			2	
		$\mathbf{S}_{\mathrm{Oil}} = rac{\gamma_{\mathrm{Oil}}}{\gamma_{\mathrm{water}}}$		
		$0.8 = \frac{\gamma_{\text{Oil}}}{9810}$		
		$\gamma_{\text{Oil}} = 7848 \text{N/m}^3$	2	4
	(b)	A shaft of 150 mm diameter rotates at 75 rpm in a 500 mm long bearing taking that two surfaces are uniformly separated by a		
		distance of 1 mm and considering linear velocity distribution		
		having viscosity of 0.005 N-s/m ² . Find the power absorbed in the bearing.		
	Ans.			
	All5 .	Diameter of shaft (D) = $150 \text{ mm} = 0.150 \text{ m}$ Length of bearing (L) = $500 \text{ mm} = 0.5 \text{ m}$		
		$t = 1 mm = 1 x 10^{-3} m$		
		$\mu = 0.005 \text{ N-s/m}^2$		
		N = 75 rpm		
		Power absorbed in the bearing	2	
		$P = \frac{\mu \pi^3 D^3 N^2 L}{60X 60X t}$	_	
		$P = \frac{0.005 \text{ x } \pi^3 \text{ x } (0.150)^3 \text{ x } (75)^2 \text{ x } 0.5}{60 \text{ x } 60 \text{ x } 1 \text{ x } 10^{-3}}$		
		P = 0.408 Watt	2	4
			_	
	(c)	State Pascal's law of fluid pressure. Enlist any four application of		
		it.		
	Ans.	Pascal's Law: It states that the pressure intensity or pressure at a	2	
		point in a static fluid is equal in all directions.		
		Applications of Pascal law: It is applied in the construction of		
		machines used for multiplying forces e.g.i. Hydraulic Jacks		
		ii. Hydraulic Press	1/2	
		iii. Hydraulic Lifts	each	
		iv. Hydraulic Cranev. Braking system of motor	any	
		v. Braking system of motor vi. Artesian well	four	4

 $P = 493.10 \, kN/m^2$

 $\overline{h} = \frac{12.57 \times \sin^2 30^0}{12.566 \times 4} + \overline{y}$

 $\overline{h}=\frac{I_{G}sin^{2}\theta}{A\overline{y}}{+}\overline{y}$

 $\bar{h} = 4.0625 m$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Marks

1⁄2

1/2

1/2

1/2

1

1

Total

Marks

16

Que. No.	Sub. Que.	Model Answers
Q. 2	Que.	Attempt any FOUR of the following :
	(a)	A circular plate of 4m diameter is immersed in water such that its greatest and least depth below the free surface of water are 5m and 3m respectively, calculate i)Total pressure on one face of plate ii) The position of center of pressure.
	Ans.	
		$A = \frac{\pi}{4} \times 4^2$
		$A=4\times\pi$
		$A=12.566 \text{ m}^2$ 3 m
		$\frac{\overline{y} = \frac{5+3}{2}}{\overline{y} = \frac{5+3}{2}}$
		y = 4m
		$\overline{y} = 4m$ $\sin\theta = \frac{2}{4}$
		$\theta = \sin^{-1}(\frac{1}{2})$
		$\theta = 30^{\circ}$
		$I = \pi \sim D^4$
		$I_{G} = \frac{\pi}{64} \times D^{4}$
		$I_{G} = \frac{\pi}{64} \times 4^{4}$
		$I_{G} = \frac{\pi}{64} \times 4^{4}$ $\boxed{I_{G} = 12.57 \text{ m}^{4}}$
		$\mathbf{P} = \boldsymbol{\gamma}_{\mathrm{w}} \! \times \! \mathbf{A} \! \times \! \mathbf{y}$
		$P = 9.81 \times 12.566 \times 4$

4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics -----

_.

Sub. Code: 17421

Que.	Sub. Que	Model Answers	Marks	Total Marks
<u>No.</u> 2.	Que. (b) Ans.	Find the intensity of pressure in N/m ² on the base of container when (i) Water stands to a height of 1.25 m in it. (ii) When oil for 0.625 m height stands on water of 1 m height. Draw pressure diagrams in all cases. Case i) Water stands to a height of 1.25m: P = Pressure intensity at bottom $P = \gamma_w \times h$ $P = 9.81 \times 1.25$ $P = 12.2625 kN/m^2$ $P = 12262.5 N/m^2$ $P = 12262.5 N/m^2$ Case (i) Case (i) When oil for 0.625m height stands on a water of 1m height:	1	Marks
		for Water, P = Pressure intensity at bottom P = $w_w \times h$ P ₁ = 9.81×1 $\boxed{P_1 = 9.81kN/m^2}$ $\boxed{P_1 = 9810 N/m^2}$ for Oil, P ₂ = Pressure intensity at bottom P ₂ = $w_{oil} \times h$ P ₂ = $S_{oil} \times w_{water} \times 0.625$ $\boxed{P_2 = 6.13125 \times S_{oil} kN/m^2}$	1/2	

Subject: Hydraulics

Subject: Hydraulics

	Sub			Total
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Que.	iii. To calculate pressure on vertical and inclined faces of dam.		17101KS
		iv. To calculate pressure on sluice gate, side and bottom of water tank.	2	4
	(d)	An oil of specific gravity 0.8 is flowing through a pipe. A simple manometer is connected to the pipe containing mercury. The deflection of mercury level in left limb from center of pipe is 60		
		mm, where as in right limb (from center of pipe) it is 90 mm.		
		Calculate the pressure in kPa.		
	Ans.	$h_1 = 60mm = 0.06m,$ $h_2 = 90 + 60 = 150mm = 0.15m,$ $S_1 = 0.80, S_2 = 13.6,$	1	
		$\begin{array}{c c} & & & & \\ & & & \\ 30^{\text{mm}} & & & \\ h_A + S_1 h_1 = S_2 h_2 \\ & & & \\ h_A = S_2 h_2 - S_1 h_1 \end{array}$	1/2	
		$h_{A} = 13.6 \times 0.15 - 0.8 \times 0.06$ $h_{A} = 1.99m \ of \ water$	1	
		$P_{A} = \gamma_{w}h$ $P_{A} = \gamma_{Std} \times S_{w} \times h$ $P_{A} = 9.81 \times 1 \times 1.99$	1/2	
		$P_{A} = 19.81kN / m^{2}$ $P_{A} = 19.81kPa$	1	4
	(e)	Define: 1) Reynold's Number ii) Pressure head iii) Velocity head iv) Datum head.		
	Ans.	Reynold's Number: The Reynolds Number is defined as the ratio of inertia force to viscous force. $Re = \frac{inertial \text{ force}}{viscous \text{ force}} = \frac{F_i}{F_v}$	1	
		$Re = \frac{\rho V d}{\mu}$ Pressure head: Pressure head is the head possessed by fluid due to		
		having some pressure force by the flowing fluid. $h = \frac{P}{\gamma}$	1	
		Velocity head: Velocity head is the head possessed by fluid due to having some velocity of the flow. V^2	1	
		Velocity Head $=\frac{V^2}{2g}$		
		Datum head: The energy possessed by fluid particle by virtue of its position is called as potential energy. Potential energy per unit weight is called datum head.	1	4

Subject: Hydraulics

Que. No.	Sub.	Model Answers	Marks	Total Marks
<u>1</u> NO. 2.	Que. (f)	State the Bernoulli's theorem. State any two application of it.		IVIALKS
	Ans.	Bernoulli's Theorem: It states that in an incompressible frictionless fluid, when the flow is steady and continuous the energy of each particle of the fluid is the same.		
		OR	2	
		Bernoulli's Theorem: It states that in an incompressible fluid, when the flow is steady and continuous the sum of total energy of each particle of the fluid is the same.(provided that no energy enters or leaves the system at any point).		
		Mathematically,		
		$\frac{P}{\gamma} + \frac{V^2}{2g} + z = \text{Constant}$		
		Where,		
		$\frac{P}{\gamma} = \text{Pressure energy}$ $\frac{V^2}{2g} = \text{Kinetic energy}$ $z = \text{Datum head}$ Applications:		
		1) To find the total energy at any section.		
		2) To find the head loss in the system.	1 each	
		3) To find the pressure difference at any given two points.	(any	4
		4) Practical applications of the following measuring devices.	two)	
		a) Venturimeter b) Orifice meter c) Pitot tube		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Model Answers

Subject: Hydraulics

Sub.

Que.

Marks

1⁄2

 $1/_{2}$

1/2

1/2

1

1

4

Total

Marks

16

No.	Que.	Model Answers	
Q. 3		Attempt any FOUR of the following:	Ī
	(a)	A pipe line carrying oil of specific gravity 0.8 changes in diameter from 300mm at position 1 to 600 mm diameter at position 2 which is at 5 m at higher level. If the pressure at position 1 and 2 are 100 kN/m^2 and 60 kN/m^2 respectively and the discharge is 300 lit/sec. Determine the loss of head.	
	Ans.	$d_1 = 300mm = 0.3 \text{ m}, \ Z_1 = 0, \ P_1 = 100kN / m^2$	
		$d_1 = 600mm = 0.6 \text{ m}, \ Z_2 = 5m, \ P_2 = 60kN / m^2$	
		$Q = 300 lit / sec = 300 \times 10^{-3} m^3 / sec,$	
		$A_{1} = \frac{\pi}{4} d_{1}^{2} = \frac{\pi}{4} (0.3)^{2} = 0.0706m^{2}$	
		$A_2 = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.6)^2 = 0.2827 m^2$	
		By continuity Eqution,	
		$Q = A_1 V_1 = A_2 V_2$	
		$Q = A_1 V_1$	
		$300 \times 10^{-3} = 0.0706 \times V_1$	
		$V_1 = 4.2492m / \sec$	
		$Q = A_2 V_2$	
		$300 \times 10^{-3} = 0.2827 \times V_2$	
		$V_2 = 1.061 m / sec$	
		By applying Bernoulli's eq ⁿ	
		$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 + h_L$	
		100×10^3 4.2492^2 60×10^3 1.061^2 -10^3	l

$$\frac{100 \times 10^{3}}{9810 \times 0.8} + \frac{4.2492^{2}}{2 \times 9.81} + 0 = \frac{60 \times 10^{3}}{9810 \times 0.8} + \frac{1.061^{2}}{2 \times 9.81} + 5 + h_{L}$$

$$\overline{h_{L} = 0.9574m}$$

Flow is flowing from Position 1 to Position 2

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(b)	A pipe line changes in size from 30 cm diameter at A to 60 cm at B. It is used to carry oil of specific gravity 0.80. Point A is 5 m lower than point B and the pressure are 80 kN/m ² and 60 kN/m ² respectively. If the discharge is 200 LPS. Find the loss of head and direction of flow.		
	Ans.	$d_1 = 30cm = 0.3 \text{ m}, \ Z_1 = 0, \ P_1 = 80kN / m^2$		
		$d_2 = 60mm = 0.6 \text{ m}, \text{ Z}_2 = 5m, \text{ P}_2 = 60kN / m^2$		
		$Q = 200 \ lps = 200 \times 10^{-3} m^3 / \text{sec},$		
		$A_{1} = \frac{\pi}{4} d_{1}^{2} = \frac{\pi}{4} (0.3)^{2} = 0.0706m^{2}$		
		$A_{2} = \frac{\pi}{4} d_{2}^{2} = \frac{\pi}{4} (0.6)^{2} = 0.287m^{2}$	1/2	
		By continuity Equation, $Q = A_1V_1 = A_2V_2$	1/2	
		$Q = A_A V_A$		
		$\frac{200 \times 10^{-3} = 0.0706 \times V_A}{ V_A = 2.8294 m / \text{sec} }$		
		$\frac{V_A - 2.625 \text{ mm/sec}}{Q = A_B V_B}$	1/2	
		$200 \times 10^{-3} = 0.287 \times V_B$	72	
		$\frac{V_B = 0.707 m / \text{sec}}{By \text{ applying Bernoulli's eq}^n}$		
		$\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + Z_A = \frac{P_B}{\gamma} + \frac{V_B^2}{2g} + Z_B + h_F$	1/2	
		$\frac{800 \times 10^{3}}{9810 \times 0.8} + \frac{2.8294^{2}}{2 \times 9.81} + 0 = \frac{60 \times 10^{3}}{9810 \times 0.8} + \frac{0.707^{2}}{2 \times 9.81} + 5 + h_{F}$	1	
		$h_F = -2.069m$	1/2	
		Flow is flowing from point B to point A	1/2	4

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(c)	What are major and minor loss of head in flow through pipes? Write any two equations of minor loss.		
	Ans.	Major loss: The major loss of head is caused due to friction when fluid flow through a pipe.	1	
		Minor loss: The minor loss of head is caused due to change in velocity of flowing fluid either in magnitude or direction.	1	
		1. Loss of head at the entrance. $H_{L} = \frac{0.5V^{2}}{2g}$ Where , $H_{L} = \text{Head loss}$		
		V = Velocity	1 each	
		2. Loss of head due to sudden expansion.	(any	4
		$H_{L} = \frac{\left(V_{1} - V_{2}\right)^{2}}{2g}$	two)	
		1. Loss of head due to sudden contraction. $0.5V^2$		
		$H_{L} = \frac{0.5V^{2}}{2g}$		
		2. Loss of head due to bend. $H_L = K \frac{V^2}{2g}$		
		2g 3. Loss of head due to exit.		
		$H_{L} = \frac{V^{2}}{2g}$		
		4. Loss of head due to obstruction.		
		$H_{L} = \left[\frac{A}{C_{c} \times a} - 1\right]^{2} \frac{V^{2}}{2g}$		
		A = c/s Area of pipe a = c/s Area of Opening		
		C_c =Coefficient contraction		
		7. Loss of head due to pipe fitting. $H_{L} = K \frac{V^{2}}{2g}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Sub. Code: 17421

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(d)	An oil of specific gravity 0.9 and viscosity of 0.06 poise is flowing through a pipe of diameter 200 mm at rate of 60 litres/sec. Find the head lost due to friction for 500 m length of pipe. Take f= 0.02.		
	Ans.			
		$S_{oil} = 0.9,$		
		$\mu = 0.06$ Poise,		
		d = 200 mm = 0.2 m,		
		L=500 m,		
		f = 0.02		
		Q = 60 lit/sec,		
		$Q = 60 \times 10^{-3} \text{ m}^3/\text{sec}$		
		$V = \frac{Q}{a} = \frac{60 \times 10^{-3}}{\frac{\pi}{4} \times 0.2^{2}} = 1.9098$	2	
		$h_{f} = \frac{f L V^{2}}{2gd}$		
		$h_{f} = \frac{0.02 \times 500 \times (1.9098)^{2}}{2 \times 9.81 \times 0.2}$	2 Or	
		$h_{\rm f} = 9.2949 {\rm m}$ Or	2	
		$h_{f} = \frac{f L Q^2}{12.1d^5}$		
		$h_{f} = \frac{0.02 \times 500 \times (60 \times 10^{-3})^{2}}{12.1 \times 0.2^{5}}$	2	4
		$h_{\rm f} = 9.2975 {\rm m}$		
	(e)	What do you mean by water hammer? State its causes (any three).		
	Ans.	Water Hammer:		
		When the water flowing in a long pipe is suddenly brought to rest by closing the valve, there will be a sudden rise in pressure due to the momentum of the moving water being destroyed. This causes a wave	1	
		of high pressure to be transmitted along the pipe which creates noise		
		known as water hammer.		
		Causes : i. Sudden increasing velocity of flow		
		i. Sudden increasing velocity of flowii. Sudden closure of valve with high speed.	1 oach	1
		iii. Sudden increase in pressure in pipe	1 each	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(f)	Define with a neat sketch for a trapezoidal channel (1) Hydraulic depth (2) Hydraulic Radius.		
	Ans.	 Hydraulic depth (D): The depth of flow in a channel above bed surface is called as hydraulic depth (D). Or 	1	
		It is ratio of wetted area to top width $D = \frac{\text{Wetted area}}{\text{Top width}} = \frac{A}{T}$	1/2	
		$T = b + 2nd$ $A = bd + nd^{2}$ $D = \frac{bd + nd^{2}}{dd^{2}}$		
		 b+2nd 2) Hydraulic Radius (R): It is the ratio of the wetted area to wetted perimeter. It is also called as Hydraulic mean depth. 	1	
		b + 2 nd	1	
		Fig. Trapezoidal channel Wetted area A	1/2	4
		$R = \frac{1}{Wetted perimeter} = \frac{1}{P}$ For Trapezoidal Channel. $A = bd + nd^{2}$ $P = b + 2d \sqrt{n^{2} + 1}$ $R = \frac{A}{P} = \frac{bd + nd^{2}}{b + 2d \sqrt{n^{2} + 1}}$ Where, R = Hydraulic radius.		
		 where, R = Hydraulic radius. b = width of the channel at bottom d= Hydraulic depth of the flow P = Wetted perimeter The side slope is given as 1 vertical to n horizontal 		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Que. No.	Sub.	Model Answers	Marks	Total Marks
Q. 4	Que.	Attempt any FOUR of the following:		16
	(a)	Define steady, unsteady, uniform and non-uniform flow in open channel.		
	Ans.	Steady flow: If the depth of flow, the discharge and mean velocity of the flow at any section does not change with respect to time, the flow is called as steady flow.	1	
		Unsteady flow: If the depth of flow, the discharge and mean velocity of the flow at any section changes with respect to time, the flow is called as unsteady flow.	1	
		Uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant do not change along the length of channel, the flow is called as Uniform flow.	1	
		Non-uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant changes along the length of channel, the flow is called as Non-uniform flow.	1	4
	(b)	What is meant by most economical channel section and write condition for most economical rectangular and trapezoidal channel section.		
	Ans.	Most economical channel section: A channel section is said to be most economical when it gives maximum discharge for a given cross section area, bed slope and coefficient of resistance.	2	
		Most economical condition:		
		Rectangular channel:	1/	
		b = 2d	1/2	
		$R = \frac{d}{2}$	1/2	
		Trapezoidal channel:	1/2	
		$\frac{(b+2nd)}{2} = d\sqrt{(1+n^2)}$ $R = \frac{d}{2}$	1/2	4
		$1 \frac{1}{2}$		

Subject: Hydraulics

Que.	Sub.	Model Answers	Marks	Total		
No. 4.	Que. (c)	What do you mean by Hydraulic jump? Explain with sketch.		Marks		
т.	Ans.	Hydraulic jump: It is the phenomenon in which supercritical flow is converted to subcritical flow.	1			
		DEPTH LESS DEPTH LESS THAN CRITICAL DAM SUPERCRITICAL Flow FLOW	1			
		 Fig- HYDRAULIC JUMP. 1) It is the phenomenon occurring in an open channel when rapidly flowing stream abruptly change to slowly flowing stream causing a distance rise or jump in level of liquid surface. 				
		2) Hydraulic jump formed on a horizontal floor of canal and at the downstream side of spillway, at the downstream side of sluice gate, or at the downstream side of canal fall.		4		
	(d)	(d) What flows through a rectangular open channel having width of 2m with flow depth of 0.6m with discharge of 4 m ³ /sec. Find Fraud's number.				
	Ans.	$b = 2m, d = 0.6m$ $Q = 4m^{3}/sec$ Find froude's no. $A = b \times d$ $A = 2 \times 0.6$				
		$\begin{vmatrix} \underline{A} = 1.2 \text{ m}^2 \\ Q = A V \\ V = \frac{Q}{A} = \frac{4}{1.2} \\ \boxed{V = 3.333 \text{ m/sec}}$	1			
		$R = \frac{A}{P} = \frac{1.2}{3.2} = 0.375$	1			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.		$F_{r} = \frac{V}{\sqrt{gR}}$ $F_{r} = \frac{3.333}{\sqrt{9.81 \times 0.375}}$ $F_{r} = 1.7377$ $F_{r} \text{ is greater than 1 flow is super critical flow}$	1	4
	(e)	Define hydraulic coefficients. State the relationship among the hydraulics coefficient for an orifice.		
	Ans.	 Coefficient of discharge (C_d): The ratio of the actual discharge to the theoretical discharge is called as the coefficient of discharge. Coefficient of contraction (C_c): The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction. Coefficient of velocity (C_v): The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity. Relation: 	1 1 1	
	(f)	$C_d = C_v \times C_c$ A 30 × 15 cm venturimeter is provided in a vertical pipe line carrying oil of specific gravity 0.90 the flow being upward. The difference in elevations of the throat section and entrance section of the venturimeter is 50 cm. The differential U-tube mercury manometer shows a gauge deflection of 30 cm. Calculate discharge of oil. (cd = 0.98)	1	4
	Ans.	Inlet area, $A_1 = \frac{\pi}{4} \times 0.3^2 = 0.0706 \ m^2$ Throat area,	1⁄2	
		$A_2 = \frac{\pi}{4} \times 0.15^2 = 0.0176 \ m^2$ Gauge deflection interms of oil h = 30cm of Hg = 0.30 m	1/2	

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(f)	$h = x \left(\frac{S_m}{S_{oil}} - 1 \right)$	1	
		$h = 0.30 \times \left(\frac{13.6}{0.9} - 1\right)$ $\boxed{h = 4.233 \text{ m of oil}}$		
		$Q = \frac{C_d \times a_1 \times a_2 \times \sqrt{2gh}}{\sqrt{a_1^2 - a_2^2}}$ $Q = \frac{0.98 \times 0.0706 \times 0.0176 \times \sqrt{2 \times 9.81 \times 4.233}}{\sqrt{0.0706^2 - 0.0176^2}}$	1	
		$Q = \frac{\sqrt{0.0706^2 - 0.0176^2}}{\sqrt{0.0706^2 - 0.0176^2}}$ $Q = 0.1622 \ m^3 \ / \ s$	1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Sub. Code: 17421

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	Que.	Attempt any FOUR of the following :		16
	(a)	Draw a neat sketch of cup type current meter and explain its		
		working.		
	Ans.	Chain or wire tape		
		Fish tail		
		o Direction of flow		
		Rider		
		Frame Flat section	2	
		Counter weight 5 kg		
		(Note: 1 mark for sketch and 1 mark for labeling.)		
		Working:		
		1. In a cup type current meter the wheel or revolving element has		
		the form of a series of conical cups, mounted on a spindle. Spindle is held vertical at right angle to the direction of flow.		
		2. Current meter is used to find out velocity of water. Current meter consist of a wheel containing blades on cups.		
		3. These cups are vertically immersed in stream of water. The thrust exerted by water on the cups.		
		4. The number of revolutions of the wheel per unit time is proportional to the velocity of flow.	2	4
		5. The revolution counter operated by dry cell. The counter is calibrated or a calibration curve is provided to read velocity.		
	(b)	Determine the discharge through 60° triangular notch in lit/sec. when the head is 0.20 m. take cd = 0.6.		
		$\theta = 60^{\circ}$, $H = 20 \text{ cm} = 0.20 \text{ m}$		
	Ans.	$C_{d} = 0.6$	2	
		$Q = \frac{8}{15} C_{d} \sqrt{2g} \tan \frac{\theta}{2} \times H^{5/2}$ $Q = \frac{8}{15} \times 0.6 \times \sqrt{2 \times 9.81} \times \tan \left(\frac{60}{2}\right) \times (0.20)^{5/2}$		
		$Q = \frac{8}{15} \times 0.6 \times \sqrt{2 \times 9.81} \times \tan\left(\frac{60}{2}\right) \times (0.20)^{5/2}$	2	4
		$Q = 0.0146 \text{ m}^3/\text{sec}$		
		Q = 14.6 lit/sec		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

0	Cul	1				Ta4a1		
Que. No.	Sub. Que.		Model A	nswers	Marks	Total Marks		
5	(c)	A rec	tangular notch 2.5 m wide	has a constant head of 40 cm.		WILLING		
			discharge over it if cd = 0.62.					
	Ans.		-					
		L = 2	.5m, $h = 40 \text{ cm} = 0.40 \text{m},$					
		$C_d =$	0.62					
		Q =						
			2					
		_	$=\frac{2}{3}\times 0.62\times 2.5\times \sqrt{(2\times 9.81)}\times (6\times 9.81)\times (6\times 9.8$	$(1, 40)^{\frac{3}{2}}$				
		_	$\frac{1}{3}$ $(102 \times 2.5 \times \sqrt{(2 \times 9.81)} \times \sqrt{(2 \times 9.81)})$	0.+0)-				
		0:	$= 1.157 \text{ m}^3 / s$		2	4		
	(d)	Defin	e (i) Static head (ii) Manom	etric head of pump.				
	Ans.		tic head:	delivery head is known as static				
		head.	The sum of suction head and	delivery head is known as static	1			
		neudi						
			$hs = h_s + h_d$					
					1			
		ii) Ma						
		and de	1					
		and delivery pipes and minor losses in the system.						
			$h_m = h_s + h_d + h_{fs} + h_{fc}$	1 + Minor losses	1	4		
	(e)	Diffe	rentiate between centrifugal a	and reciprocating pump.				
	(e)							
	Ans	Sr.	Centrifugal pump	Reciprocating pump				
	1115	No.	For Centrifugal pump					
		1	discharge is continuous.	For Reciprocating pump discharge is fluctuating.				
			Suitable for large discharge	Suitable for less discharge and				
		2	and small heads.	higher heads.	1			
			Simple in construction	Complicated in construction	_			
		3	due to less number of parts.	because of more number of	each	4		
			It has notating along onto as	parts.	(any			
		4	It has rotating elements so there is less wear and tear.	It has reciprocating element, there is more wear and tear.	four)			
		5	It can run at high speed.	It cannot run at high speed.				
		6	Air vessels are not required.	Air vessels are required.				
		7	Starting torque is more.	Starting torque is less.				
		8	It has less efficiency.	It has more efficiency.				
		9	It can handle dirty water.	It can not handle dirty water.				
		10	Requires less floor area and	Requires more floor area and				
			simple foundation.	requires heavy foundation.				

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(f)	A centrifugal pump delivers water at 30 lit/sec. to a height of 18m		
		through a pipe of 90m long and 100 mm in diameter if overall		
		efficiency of pump is 75%. Find power required to drive the pump		
		take f= 0.012.		
	Ans.	$Q = 30 lit / \sec = 30 \times 10^{-3} m^3 / \sec$		
		$\eta = 75\%$, f = 0.012, L = 90 m, D = 0.1 m		
		Velocity at section,		
		$V = Q = 30 \times 10^{-3}$		
		$V = \frac{Q}{A} = \frac{30 \times 10^3}{\frac{\pi}{4} \times (0.1)^2}$	1	
		V = 3.819 m/sec	-	
		Now, Loss of head due to friction,		
		$h_{f} = \frac{f L V^{2}}{2gD}$	1	
		$h_{f} = \frac{0.012 \times 90 \times 3.819^{2}}{2 \times 9.81 \times 0.1}$		
		$h_{\rm f} = 8.028$		
		Total manometric head,		
		$H_{\rm m} = 18 + 8.028$	1	
		$H_{\rm m} = 26.028 \ {\rm m}$	1	
		$P = \frac{\gamma_w \ Q \ H_m}{\eta}$		
		$P = \frac{9810 \times 30 \times 10^{-3} \times 26.028}{2}$		
		$P \equiv \phantom{100000000000000000000000000000000000$	1	4
		P =10213.39 Watt	1	4
		P =10.213 kW		
		OR	OR	OR
		<i>if</i> suction head is considered,		
		$h = \frac{V^2}{2g} = \frac{3.819^2}{2 \times 9.81} = 0.743m$	1	
		Total manometric head,		
		$H_{\rm m} = 18 + 8.028 + 0.743$		
		$H_{\rm m} = 26.771 {\rm m}$	1	
		$P = \frac{9810 \times 30 \times 10^{-3} \times 26.771}{0.75} = \boxed{P = 10504.94 \text{ Watt}}$	1	
		$ \begin{array}{c} 0.75 \\ \hline P = 10.504 \text{ kW} \end{array} $	1	4

Subject: Hydraulics

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(b)	A Syphon of diameter 20 cm connects two reservoirs having a difference in elevation 20 m. Total length of pipe is 500 m and summits is 3 m above the water level in the upper reservoir. The length of the pipe from upper reservoir to summit is 100 m. Determine the discharge through the Siphon and also pressure at summit. Neglect minor losses. Take coefficient of friction $f = 0.005$.		
	Ans.	H = 20m, L = 500m, $Z_c = 3 m$		
		$Z_c = 3 m$		
		L (Upper reservoir to summit) = 100m, Coefficient of friction = $f = 0.005$ Q =? P =? Diagram-		
		FA $F=20m$ $H=20m$ $F=20m$ $H=20m$ $F=2m$		
		$h_f = \frac{(4f) L V^2}{2gd}$ $20 = \frac{(4 \times 0.005) 500 V^2}{2 \times 9.81 \times 0.2}$ $20 = 0.637 \times 4V^2$ $V^2 = 7.848$ $\mathbf{V} = \mathbf{2.801 m/s}$	1	
		Discharge Q = a V $Q = \frac{\pi}{4} \times 0.2^2 \times 2.8014$	1	
		$Q = 0.0879 \text{ m}^3/\text{s}$	1	

Subject: Hydraulics

0	C1-			T-4-1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Pressure at summit:		
		Applying Bernoulli's equation between A and C		
		$P_A + V_A^2 + Z = P_C + V_C^2 + Z + Lecces$		
		$\frac{P_A}{\gamma_c} + \frac{V_A^2}{2g} + Z_A = \frac{P_c}{\gamma_c} + \frac{V_c^2}{2g} + Z_c + Losses$	2	
		$0 = \frac{P_C}{\gamma_C} + \frac{2.801^2}{2 \times 9.81} + 3 + (\frac{4 \times 0.005 \times 100 \times 2.801^2}{2 \times 9.81 \times 0.2})$	1	
		$0 = \frac{P_C}{\gamma_C} + 3.39 + 4$		
		Yc		
		$0 = \frac{P_C}{9810} + 7.39$		
		$P_{\rm C} = -72.49 \ {\rm KN/m^2}$		
			1	8
		$P_{\rm C} = 72.49 \ {\rm kN/m^2} \ ({\rm Vacuum})$		
	(c)	A trapezoidal channel of most economical section has side slopes		
		1.5 horizontal to 1 vertical. It is required to discharge 16 m ³ /sec		
		with a bed slope of 0.5 meter in 3.2 km. Design the section using		
		Manning's formula. Take N= 0.015.		
	Ang			
	Ans.	$Q = 16 \text{ m}^3 / \text{sec}$		
		Bed slope (S) = $\frac{0.5}{3200} = \frac{1}{6400}$	1/2	
		Bed slope(3) $-\frac{1}{3200} - \frac{1}{6400}$		
		$n = \frac{1.5}{1} = 1.5$	1⁄2	
		Manning's constant $(N) = 0.015$		
		Most economical condition for trapezoidal section having following		
		condition	1/2	
		i) $R = \frac{d}{2}$		
		ii) $\frac{(b+2nd)}{2} = d\sqrt{(1+n^2)}$	1/2	
		$\frac{(b+2nd)}{2} = d \times \sqrt{(1+n^2)}$		
		$b + (2 \times 1.5 \times d) = 2 \times d\sqrt{(1 + 1.5^2)}$		
		b+3d = 3.606 d		
		b = 0.606d	1/2	
		0 - 0.0000		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: Summer 2018

Subject: Hydraulics

Sub. Code: 17421

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(c)			Warks
		$A = bd+nd^2$	1/2	
		$= (0.606d) \times d + 1.5d^2$		
		$A = 2.106 d^2$	1/2	
		Manning formula,	72	
		$\mathbf{Q} = \frac{\mathbf{A}}{\mathbf{N}} \times (R)^{\frac{2}{3}} \times (S)^{\frac{1}{2}}$	1	
		$16 = \frac{\left(2.106\ d^2\right)}{0.015} \times \left(\frac{d}{2}\right)^{\frac{2}{3}} \times \left(\frac{1}{6400}\right)^{\frac{1}{2}}$	1	
		$16 = 140.4 \times d^2 \times 0.6299 \times d^{\frac{2}{3}} \times 0.0125$		
		$(d)^{\frac{8}{3}} = 14.47$	1/2	
		d = 2.72 m	,2	
		$b = 1.648 \ m$	1	
		$A = 15.581 m^2$ $R = 1.36m$	1	8