MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer 2017

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1		Attempt any TEN:		20
	a)	Define weight density and state its S.I unit.		
	Ans.	It is defined as weight per unit volume of a liquid at standard temperature and pressure.		
		OR	01	
		It is defined as ratio of weight to volume.		02
		SI unit $\mathrm{N} / \mathrm{m}^{3}$	01	
	b)	Define dynamic viscosity and kinematic viscosity.		
	Ans.	Dynamic Viscosity: -		
		It is defined as the shear stress required to produce unit rate of shear strain.	01	
		Kinematic Viscosity: -		
		It is the ratio of dynamic viscosity of a liquid to its mass density.		02
		OR	01	
		It is ratio of absolute viscosity to its mass density.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2		Solve any FOUR:		16
	a) Ans.	Define pressure diagram for vertical contact surface with neat sketch and mention two application of it. Pressure diagram is defined as "It gives the variation of pressure on the surface with depth". The total pressure per unit length is the area of pressure diagram. The position of center of the pressure is the position of center of gravity of the pressure diagram.	01	
		Applications: 1) To Calculate pressure due to liquid on the side of surface. 2) To Calculate pressure due to liquid on both the side of surface. 3) To Calculate pressure on vertical and inclined faces of dam. 4) To Calculate pressure on sluice gate, side and bottom of water tank.	01 mark each (any two)	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2	b) Ans.		01 01 01 01	04

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Que. } \\
& \text { No. } \\
& \hline
\end{aligned}
$$ \& Sub. Que. \& Model Answer \& Marks \& Total Marks

\hline 2 \& d)

Ans. \& | $\begin{aligned} & \text { for Oil, } \\ & P_{2}=\text { Pressure intensity at bottom } \\ & P_{2}=w_{\text {oil }} \times h \\ & P_{2}=S_{\text {oil }} \times w_{\text {water }} \times 0.625 \\ & P_{2}=6.13125 S_{\text {oil }} \mathrm{kN} / \mathrm{m}^{2} \\ & P_{2}=6131.25 S_{\text {oil }} N / \mathrm{m}^{2} \\ & P=P_{1}+P_{2} \\ & P=\left(9810+6131.25 S_{\text {oil }}\right) \mathrm{N} / \mathrm{m}^{2} \end{aligned}$ |
| :--- |
| Case (ii) |
| A simple \mathbf{U} tube manometer is used to measure water pressure in pipe. The left limb of manometer is connected to pipe and right limb is open to atmosphere. The mercury level in left limb is 80 mm below center of pipe and in right limb 40 mm above the center of pipe. Calculate water pressure in pipe. $\begin{aligned} & S_{1}=1 \\ & h_{1}=80 \mathrm{~mm}=0.08 \mathrm{~m} \\ & S_{2}=13.6 \\ & h_{2}=120 \mathrm{~mm}=0.12 \mathrm{~m} \\ & h_{A}+\left(S_{1} \times h_{1}\right)=\left(S_{2} \times h_{2}\right) \end{aligned}$ | \& 01 \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2	e) Ans.	$\begin{aligned} & h_{A}=(13.6 \times .0 .12)-(1 \times 0.08) \\ & \begin{array}{l} h_{A}=1.552 \mathrm{~m} \\ P_{A}=\gamma_{w} \times h_{A} \\ P_{A}=9.81 \times 1.552 \\ P_{A}=15.225 \mathrm{kN} / \mathrm{m}^{2} \\ O R \\ \frac{P_{A}}{\gamma_{w}}+(0.08 \times 1)-(0.12 \times 13.6)=0 \\ \frac{P_{A}}{\gamma_{w}}=1.552 \mathrm{~m} \\ P_{A}=1.552 \times \gamma_{w} \\ P_{A}=15.225 \mathrm{kN} / \mathrm{m}^{2} \end{array} \end{aligned}$ State four different types of flow of liquid with one practical example of each. Classification of fluid flow :- (1) Gravity Flow	01 01 01 OR 02 02	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2	f) Ans.	(2) Pressure Flow (3) Steady and Unsteady Flow (4) Uniform and Non-uniform Flow (5) Laminar and Turbulent Flow (6) Rotational and Irrotational flow (7) Laminar and Turbulent Flow Practical example: - Steady flow - Water flowing through a tap. Unsteady flow - Flow controlled by regulator. Uniform flow - Channel flow/canal flow having uniform c / s area. Non uniform flow - Flow in convergent \&divergent section. Laminar flow - Flow of oil through a tube. Turbulent flow - River flood. Rotational flow - Tea in a cup. Irrotational flow - Giant wheel motion. Gravity flow - Flow through channel. Pressure flow - Pipe flow under pressure. A partition wall 3 m long divides storage tank. On a side there is turpentine of Sp. Gr. 0.87 upto a depth of 3.5 m . On the other side there is paraffin oil of Sp . Gr. 0.8 stored to a depth of 2.5 m . Determine resultant pressure on partition wall. Pressure due to Turpentine $\begin{aligned} & \mathrm{P}_{1}=\frac{1}{2} \times \gamma_{\mathrm{L}} \times \mathrm{h}_{1} \times \mathrm{h}_{1} \\ & \mathrm{P}_{1}=\frac{1}{2} \times \mathrm{S}_{\mathrm{L}} \times \gamma_{\mathrm{w}} \times \mathrm{h}_{1}{ }^{2} \\ & \mathrm{P}_{1}=\frac{1}{2} \times .87 \times 9.81 \times 3.5^{2} \\ & \mathrm{P}_{1}=52.275 \mathrm{kN} / \mathrm{m} \end{aligned}$	1/2 mark each (any four) 1/2 mark each (any four) 01 01	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2		Pressure due to Paraffin oil $\begin{aligned} & \mathrm{P}_{2}=\frac{1}{2} \times \gamma_{\mathrm{L}} \times \mathrm{h}_{2} \times \mathrm{h}_{2} \\ & \mathrm{P}_{2}=\frac{1}{2} \times \mathrm{S}_{\mathrm{L}} \times \gamma_{\mathrm{w}} \times \mathrm{h}_{2}{ }^{2} \\ & \mathrm{P}_{2}=\frac{1}{2} \times .80 \times 9.81 \times 2.5^{2} \\ & \mathrm{P}_{2}=24.525 \mathrm{kN} / \mathrm{m} \end{aligned}$ Resultant Pressure $\begin{aligned} & \mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2} \\ & \mathrm{P}=52.275-24.525 \\ & \mathrm{P}=27.75 \mathrm{kN} / \mathrm{m} \end{aligned}$ And for 3 m lenght pressure will be $\mathrm{P}=3 \times 27.75=83.25 \mathrm{kN}$	01 01	04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3	b) Ans.	Two horizontal plates are placed 12.5 mm apart. The space between them being filled with oil of viscosity 14 poise. Calculate shear stress in oil if upper plate moves with velocity $2.5 \mathrm{~m} / \mathrm{sec}$. $\delta_{\mathrm{y}}=12.5 \mathrm{~mm}=12.5 \times 10^{-3} \mathrm{~m}$ Viscosity, $\mu=14$ Poise $=\frac{14}{10}$ $\mu=1.4 N-S / \mathrm{m}^{2}$ Lower plate fixed, $\mathrm{V}_{0}=0$ Upper plate moveable, $\mathrm{V}_{1}=2.5 \mathrm{~m} / \mathrm{sec}$ Change in velocity, $\begin{aligned} & \delta_{\mathrm{v}}=\mathrm{V}_{1}-\mathrm{V}_{0}=2.5 \mathrm{~m} / \mathrm{sec} \\ & \delta_{\mathrm{v}}=2.5 \mathrm{~m} / \mathrm{sec} \end{aligned}$ By Newton's law viscosity, Shear stress $\begin{gathered} \tau=\mu \cdot \frac{\partial v}{\partial y}=1.4 \times \frac{2.5}{12.5 \times 10^{-3}} \\ \tau=280 \mathrm{~N} / \mathrm{m}^{2} \end{gathered}$	01 01 01 01	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3	e) Ans.	$\begin{aligned} & \gamma_{\mathrm{L}}=\frac{\mathrm{W}}{\mathrm{~V}}=\frac{25 \times 10^{3}}{3.75} \\ & \gamma_{\mathrm{L}}=6666.66 \mathrm{~N} / \mathrm{m}^{3} \end{aligned}$ 2. Specific Gravity $(S)=\frac{\text { Sp.weight of liquid }}{\text { Sp.weight of pure water }}$ $\begin{aligned} & \mathrm{S}=\frac{\mathrm{V}_{\mathrm{L}}}{\gamma_{\mathrm{w}}}=\frac{6666.66}{9810} \\ & \mathrm{~S}=0.679 \end{aligned}$ 3. Specific Volume $\left(\mathrm{V}_{\mathrm{s}}\right)=\frac{\text { Volume }}{\text { Weight }}$ $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=\frac{1}{\gamma}=\frac{1}{6666.66} \\ & \mathrm{~V}_{\mathrm{s}}=1.5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{N} \end{aligned}$ OR $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{~W}}=\frac{3.75}{25 \times 10^{3}} \\ & \mathrm{~V}_{\mathrm{s}}=1.5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{N} \end{aligned}$ 4. Mass density (ρ) $\begin{aligned} \gamma & =\rho \times \mathrm{g} \\ 6666.66 & =\rho \times 9.81 \\ \rho & =679.577 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$ Explain Reynold's number with its equation and give significance. The Reynolds number is defined as the ratio of inertia force to viscous force. Reynolds number is dimensionless number. It is used to determine the laminar or turbulent flow type. $\begin{aligned} & \operatorname{Re}=\frac{\text { inertial force }}{\text { viscous force }}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{~F}_{\mathrm{v}}} \\ & \operatorname{Re}=\frac{\rho \mathrm{V} d}{\mu} \text { OR } \operatorname{Re}=\frac{V d}{\vartheta} \end{aligned}$ where, Re= Reynolds number $\rho=$ Mass density of fluid in $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	01 01 01 OR 01 01 02 01	04

Que. No.	Sub. Que.		Model Answer	Marks
Marks				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
4	e) Ans.	2. Casing: It is as air tight passage surrounding the impeller and is designed in such a way that the kinetic energy of water discharged at the outlet of the impeller is converted into pressure energy before the casing and enters the delivery pipe. 3. Suction pipe with a foot valve and a strainer: A foot valve which is a non- return valve or one any type of valve is fitted at the lower end of the suction pipe. The foot valve opens only in the upward direction. A strainer is also fitted at the lower end of the suction pipe. 4. Delivery pipe: A pipe whose on end is connected to the outlet of the pump and other delivers the water at the required height is known as delivery pipe. Two reservoirs are connected by a pipe line consisting of two pipes one of 15 cm . diameter and length $\mathbf{6 m}$ and other of 22.5 cm . diameter and 16 meter length. If the difference of water level in two reservoirs is $\mathbf{6 ~ m}$. Calculate discharge. Given- $\begin{aligned} & \mathrm{h}_{\mathrm{L}}=6 \mathrm{~m} \\ & \mathrm{~d}_{1}=15 \mathrm{~cm}=0.15 \mathrm{~m} \\ & \mathrm{~d}_{2}=22.5 \mathrm{~cm}=0.225 \mathrm{~m} \\ & \mathrm{~L}_{1}=6 \mathrm{~m} \\ & \mathrm{~L}_{2}=16 \mathrm{~m} \end{aligned}$ Assuming value of friction factor $=0.01$	02	

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
4		$\mathrm{Q}=$ discharge flowing through pipe $\begin{aligned} \text { Total head loss }= & \text { Entrance loss }+ \text { Friction loss }+ \text { Sudden expansion loss } \\ & + \text { Friction loss }+ \text { Exit loss } \end{aligned}$ By continuity equation, $\begin{aligned} & \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\ & \frac{\pi}{4} d_{1}{ }^{2} V_{1}=\frac{\pi}{4} d_{2}{ }^{2} V_{2} \\ & V_{1}=\frac{d_{2}{ }^{2}}{d_{1}^{2}} \times V_{2} \\ & V_{1}=\frac{0.225^{2}}{0.15^{2}} \times V_{2} \\ & V_{1}=2.25 V_{2} \end{aligned}$ Now, $h_{l}=\frac{0.5 V_{1}^{2}}{2 g}+\frac{f L_{1} V_{1}^{2}}{2 g d_{1}}+\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}+\frac{f L_{2} V_{2}^{2}}{2 g d_{2}}+\frac{V_{2}^{2}}{2 g}$ Assume friction factor $\mathrm{f}=0.01$ $\begin{aligned} & 6=\frac{0.5 V_{1}^{2}}{2 \times 9.81}+\frac{0.01 \times 6 \times V_{1}^{2}}{2 \times 9.81 \times 0.15}+\frac{\left(2.75 V_{2}-V_{2}\right)^{2}}{2 \times 9.81}+\frac{0.01 \times 16 \times V_{2}^{2}}{2 \times 9.81 \times 0.225}+\frac{V_{2}^{2}}{2 \times 9.81} \\ & 6=0.025 V_{1}^{2}+0.020 V_{1}^{2}+0.0796 V_{2}^{2}+0.0362 V_{2}^{2}+0.0509 V_{2}^{2} \\ & 6=0.045 V_{1}^{2}+0.1667 V_{2}^{2} \\ & 6=0.045\left(2.25 V_{2}\right)^{2}+0.1667 V_{2}^{2} \\ & 6=0.2278 V_{2}^{2}+0.1667 V_{2}^{2} \\ & 6=0.3945 V_{2}^{2} \\ & V_{2}^{2}=15.209 \\ & V_{2}=3.90 \mathrm{~m} / \mathrm{sec} \\ & V_{1}=2.25 V_{2} \\ & V_{1}=2.25 \times 3.90 \\ & V_{1}=8.775 \mathrm{~m} / \mathrm{sec} \end{aligned}$ Discharge, $\begin{array}{ll} Q=A_{1} V_{1} & \text { Or } Q=A_{2} V_{2} \\ Q=\frac{\pi}{4} d_{1}^{2} \times V_{1} & \text { Or } Q=\frac{\pi}{4} d_{2}^{2} \times V_{2} \\ Q=\frac{\pi}{4} 0.15^{2} \times 8.775 & \text { Or } Q=\frac{\pi}{4} 0.225^{2} \times 3.90 \\ Q=0.155 \mathrm{~m}^{3} / \mathrm{sec} & \text { Or } Q=0.155 \mathrm{~m}^{3} / \mathrm{sec} \end{array}$ (Note: Answer may vary assuming other value of friction factor. ' f ')	01	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
4	f) Ans.	Water is flowing through a rectangular channel of width 8 m and bed slope 1 in 1000 . Depth of flowing channel is 5 m . Find the discharge through channel. Take $\mathrm{C}=50$. Given- Rectangular channel Width, $\mathrm{b}=8 \mathrm{~m}$ Depth d=5m C $=50$ Bed Slope $\mathrm{S}=\frac{1}{1000}$ By Chezy's formula $=C \sqrt{R S}$ $Q=A C \sqrt{R S}$ Cross-section area of channel, $A=b \times d$ $A=8 \times 5=40 \mathrm{~m}^{2}$ Hydraulic mean depth $\mathrm{R}=\frac{A}{P}$ Perimeter $P=b+2 d$ $\begin{aligned} & R=\frac{A}{b+2 d}=\frac{40}{8+2 \times 5}=\frac{40}{18} \\ & R=2.22 m \\ & Q=A C \sqrt{R S} \\ & Q=40 \times 50 \sqrt{2.22 \times \frac{1}{1000}} \\ & Q=94.276 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ Discharge through channel, $\mathrm{Q}=94.276 \mathrm{~m}^{3} / \mathrm{sec}$	01 01 01 01	04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
5	c)	Water discharge at the rate of $0.0982 \mathrm{~m}^{3} / \mathrm{sec}$. through 12 cm diameter vertical sharp edged orifice placed under a constant head of 10 m . A point on the jet measured from vena contract of the jet has co-ordinates 4.5 m horizontal and 0.54 m vertical. Find the coefficients C_{e}, C_{d} and C_{v} of orifice. Given $\begin{aligned} \mathrm{Q}_{\mathrm{a}} & =0.0982 \mathrm{~m}^{3} / \mathrm{s} \\ \mathrm{~d} & =12 \mathrm{~cm}=0.12 \mathrm{~m} \\ \mathrm{~h} & =10 \mathrm{~m} \\ \mathrm{x} & =4.5 \mathrm{~m} \\ \mathrm{y} & =0.54 \mathrm{~m} \end{aligned}$ Solution:- $\begin{aligned} \mathrm{A} & =\frac{\pi}{4} \times d^{2} \\ & =\frac{\pi}{4} \times(0.12)^{2} \\ \mathrm{~A} & =11.30 \times 10^{-3} \mathrm{~m}^{2} \\ \mathrm{C}_{\mathrm{d}} & =\frac{\mathrm{Q}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{t}}} \\ & =\frac{0.0982}{\mathrm{~A} \times \sqrt{(2 g h)}} \\ & =\frac{0.0982}{\left(11.3 \times 10^{-3} \times \sqrt{(2 \times 9.81 \times 10)}\right)} \\ \mathrm{C}_{\mathrm{d}} & =0.62 \\ \mathrm{C}_{\mathrm{v}} & =\frac{\mathrm{x}}{\sqrt{(4 \mathrm{hy})}} \\ & =\frac{4.5}{\sqrt{(4 \times 10 \times 0.54)}} \\ \hline \mathrm{C}_{\mathrm{v}} & =0.968 \\ \mathrm{C}_{\mathrm{d}} & =\mathrm{C}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{v}} \\ \mathrm{C}_{\mathrm{c}} & =\frac{\mathrm{C}_{\mathrm{d}}}{\mathrm{C}_{\mathrm{v}}}=\frac{0.62}{0.968} \\ \mathrm{C}_{\mathrm{c}} & =0.640 \end{aligned}$	01	04

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
5	f)	Find the discharge over the triangular notch of an angle of 60^{0} when the head over the notch is 20 cm . Take $\mathrm{C}_{\mathrm{d}}=\mathbf{0 . 6 2 5}$.		
	Ans.	Type of notch triangular		
		Angle of notch,		
		$\theta=60^{\circ}$		
		Head over notch,		
		$\mathrm{H}=20 \mathrm{~cm}=0.20 \mathrm{~m}$		
		Coefficient of discharge $=\mathrm{C}_{\mathrm{d}}=0.625$		
		Discharge, $\mathrm{Q}=$?		
		For triangular notch discharge can be calculated by using formula, $\mathrm{Q}=\frac{8}{15} \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \mathrm{~g}} \tan \frac{\theta}{2} \times \mathrm{H}^{5 / 2}$	02	
		$\mathrm{Q}=\frac{8}{15} \times 0.625 \times \sqrt{2 \times 9.81} \times \tan \left(\frac{60}{2}\right) \times(0.20)^{5 / 2}$		04
		$\mathrm{Q}=0.01525 \mathrm{~m}^{3} / \mathrm{sec}$	02	
		Discharge over triangular notch $=0.01525 \mathrm{~m}^{3} / \mathrm{sec}$		
6	a)	Attempt any TWO:		16
		A trapezoidal channel of most economical section has side slope 1.5 horizontal to 1.0 vertical. It is required to discharge $16 \mathrm{~m}^{3} / \mathrm{sec}$. with bed slope 0.5 meter in 3.2 km . Design the section using Manning's formula. Take $\mathbf{N}=\mathbf{0 . 0 1 5}$.		
	Ans.	Given:-		
		$\mathrm{Q}=16 \mathrm{~m}^{3} / \mathrm{sec}$		
		Bed slope $(S)=\frac{0.5}{3200}=\frac{1}{6400}$		
		$\mathrm{n}=\frac{1.5}{1}=1.5$	01	
		Manning's constant $(\mathrm{N})=0.015$		
		Most economical condition for trapezoidal section having following condition		
		i) $\mathrm{R}=\frac{\mathrm{d}}{2}$ ii) $\frac{(\mathrm{b}+2 \mathrm{nd})}{2}=d \sqrt{\left(1+n^{2}\right)}$	01	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
6	b) Ans.	$\begin{aligned} \frac{(\mathrm{b}+2 \mathrm{nd})}{2} & =d \times \sqrt{\left(1+n^{2}\right)} \\ \mathrm{b}+(2 \times 1.5 \times \mathrm{d}) & =2 \times \mathrm{d} \sqrt{\left(1+1.5^{2}\right)} \\ \mathrm{b}+3 \mathrm{~d} & =3.606 \mathrm{~d} \\ \mathrm{~b} & =0.606 \mathrm{~d} \end{aligned}$ Manning formula $\begin{aligned} \mathrm{Q} & =\frac{\mathrm{A}}{\mathrm{~N}} \times(R)^{\frac{2}{3}} \times(S)^{\frac{1}{2}} \\ \mathrm{~A} & =\mathrm{bd}+\mathrm{nd}^{2} \\ & =(0.606 \mathrm{~d}) \times d+1.5 d^{2} \\ \mathrm{~A} & =2.106 \mathrm{~d}^{2} \\ 16 & =\frac{\left(2.106 d^{2}\right)}{0.015} \times\left(\frac{d}{2}\right)^{\frac{2}{3}} \times\left(\frac{1}{6400}\right)^{\frac{1}{2}} \\ 16 & =140.4 \times \mathrm{d}^{2} \times 0.6299 \times d^{\frac{2}{3}} \times 0.0125 \end{aligned}$ $\begin{aligned} & (\mathrm{d})^{\frac{8}{3}}=14.47 \\ & \mathrm{~d}=2.72 \mathrm{~m} \\ & \mathrm{~b}=0.606 \times 2.72 \\ & \mathrm{~b}=1.648 \mathrm{~m} \end{aligned}$ Draw a neat sketch of Reciprocating pump showing its various component parts. Mention function of each component. (Note: - Two marks for Sketch and Two marks for labeling.)	01 01 01 01 01 01 04	08

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline \multirow[t]{24}{*}{6} \& \multirow{24}{*}{c)

Ans.} \& \& \multirow{14}{*}{| 01 |
| :--- |
| mark |
| each |
| (any |
| four) |} \& \multirow{24}{*}{08}

\hline \& \& should be considered.) \& \&

\hline \& \& Component part and its function:- \& \&

\hline \& \& 1) Cylinder 2) Connecting rod 3) Delivery pipe \& \&

\hline \& \& 4) Delivery valve 5) Suction pipe 6) Rotating Crank \& \&

\hline \& \& 1) Cylinder: -To guide movement of piston and create negative \& \&

\hline \& \& and positive pressure. \& \&

\hline \& \& 2) Section pipe: -To connect source of water and the cylinder. \& \&

\hline \& \& 3) Delivery pipe: -To receive water from cylinder and discharge it at outlet. \& \&

\hline \& \& 4) Delivery Valve: -To admits flow from the suction pipe into \& \&

\hline \& \& the cylinder and from cylinder into delivery pipe. \& \&

\hline \& \& 5) Rotating crank: -To give linear displacement to connecting rod. \& \&

\hline \& \& 6) Connecting rod: -To connects the piston and the rotating crank. \& \&

\hline \& \& A venturimeter $150 \times 75 \mathrm{~mm}$ placed vertically with the throat 22.5 mm above the inlet conveys oil of sp. Gr. 0.78 at $29 \mathrm{lit} / \mathrm{sec}$. Calculate the difference of pressure between inlet and throat. Take $\mathrm{C}_{\mathrm{d}}=\mathbf{0 . 9 6}$. \& \&

\hline \& \& Given: \& \&

\hline \& \& $$
\begin{aligned}
& \mathrm{d}_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m} \\
& \mathrm{~d}_{2}=75 \mathrm{~mm}=0.075 \mathrm{~m}
\end{aligned}
$$ \& \&

\hline \& \& $$
\begin{aligned}
& \mathrm{d}_{2}=75 \mathrm{~mm}=0.075 \mathrm{~m} \\
& \mathrm{Z}_{1}=0
\end{aligned}
$$ \& \&

\hline \& \& $$
\mathrm{Z}_{2}=22.5 \mathrm{~mm}=0.0225 \mathrm{~m}
$$ \& 01 \&

\hline \& \& Specific gravity (S) $=0.78$ \& \&

\hline \& \& $\mathrm{Q}=29 \mathrm{lit} / \mathrm{s}=0.029 \mathrm{~m}^{3} / \mathrm{s}$ \& \&

\hline \& \& $$
\mathrm{a}_{1}=\frac{\pi}{4} \times d_{1}^{2}=\frac{\pi}{4} \times(0.15)^{2}=0.01767 \mathrm{~m}^{2}
$$ \& 01 \&

\hline \& \& $$
\mathrm{a}_{2}=\frac{\pi}{4} \times(0.075)^{2}=4.418 \times 10^{-3} \mathrm{~m}^{2}
$$ \& 01 \&

\hline \& \& $$
\left(a_{1} \times a_{2} \times \sqrt{2 g h}\right)
$$ \& 01 \&

\hline \& \& $$
\mathrm{Q}=\mathrm{Cd} \times \frac{1}{\sqrt{\left(a_{1}^{2}-a_{2}^{2}\right)}}
$$ \& \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
6	c) Ans.	$\begin{aligned} & 0.029=0.96 \times \frac{\left(0.01767 \times\left(4.418 \times 10^{-3}\right) \times \sqrt{(2 \times 9.81 \times h)}\right)}{\sqrt{\left((0.01767)^{2}-\left(4.418 \times 10^{-3}\right)^{2}\right)}} \\ & 0.029=\frac{\left(7.494 \times 10^{-5} \times \sqrt{(2 \times 9.81 \times h)}\right)}{\sqrt{\left(2.93 \times 10^{-4}\right)}} \\ & 0.029 \times 0.0171=7.494 \times 10^{-5} \sqrt{(2 \times 9.81 \times h)} \\ & 6.6172=\sqrt{2 \times 9.81 \times \mathrm{h}} \\ & \mathrm{~h}=2.2318 \mathrm{~m} \end{aligned}$ Applying Bernouli's theorem at inlet and throat section, $\begin{aligned} \mathrm{h} & =\left(\frac{\mathrm{P}_{1}}{\gamma_{\mathrm{L}}}+Z_{1}\right)-\left(\frac{\mathrm{P}_{2}}{\gamma_{\mathrm{L}}}+Z_{2}\right) \\ 2.23 & =\left(\frac{\left(\mathrm{P}_{1}-P_{2}\right)}{(0.78 \times 9810)}-0.0225\right) \\ 2.23+0.0225 & =\frac{\left(\mathrm{P}_{1}-P_{2}\right)}{0.78 \times 9810} \\ \mathrm{P}_{1}-P_{2} & =17.25 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$ OR Given data: Diameter at inlet, $\mathrm{d}_{1}=150 \mathrm{~mm}=0.150 \mathrm{~m}$ Diameter at throat, $\mathrm{d}_{2}=75 \mathrm{~mm}=0.075 \mathrm{~m}$ Coefficient of meter, $\mathrm{C}_{\mathrm{d}}=0.96$ Discharge, $\mathrm{Q}=29 \mathrm{lit} / \mathrm{sec}=29 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$ $\mathrm{a}_{1}=$ area at inlet of venturimeter, $\begin{aligned} & \mathrm{a}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}=\frac{\pi}{4} \times(0.15)^{2} \\ & \mathrm{a}_{1}=1.76 \times 10^{-2} \mathrm{~m}^{2} \end{aligned}$	01 01 01 01 OR 01 01	OR

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
6		$\mathrm{a}_{2}=$ area at throat of venturimeter, $\begin{aligned} & \mathrm{a}_{2}=\frac{\pi}{4} \mathrm{~d}_{2}{ }^{2}=\frac{\pi}{4} \times(0.075)^{2} \\ & \mathrm{a}_{2}=4.418 \times 10^{-3} \mathrm{~m}^{2} \end{aligned}$ Sp gr of oil $=0.78$ Difference of elevations of the throat section and entrance section $=22.5 \mathrm{~mm}=0.0225 \mathrm{~m}$ We have continuity eqn. $\mathrm{Q}=\mathrm{AV}$ Velocity of oil at entrance, $\begin{aligned} & \mathrm{Q}=\mathrm{A}_{1} \times \mathrm{V}_{1} \\ & 29 \times 10^{-3}=1.76 \times 10^{-2} \times \mathrm{V}_{1} \\ & \mathrm{~V}_{1}=1.65 \mathrm{~m} / \mathrm{sec} . \end{aligned}$ Similarly $\begin{aligned} & \mathrm{Q}=\mathrm{A}_{2} \times \mathrm{V}_{2} \\ & 29 \times 10^{-3}=4.418 \times 10^{-3} \times \mathrm{V}_{2} \\ & \mathrm{~V}_{2}=6.564 \mathrm{~m} / \mathrm{sec} . \end{aligned}$ Applying Bernoulli's theorem for entrance and the throat section, $\begin{aligned} & \frac{\mathrm{P}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+Z_{1}=\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+Z_{2} \\ & \frac{\mathrm{P}_{1}}{\gamma}+\frac{1.65^{2}}{2 \times 9.81}+0=\frac{\mathrm{P}_{2}}{\gamma}+\frac{6.564^{2}}{2 \times 9.81}+0.0225 \\ & \frac{\mathrm{P}_{1}}{\gamma}-\frac{\mathrm{P}_{2}}{\gamma}=2.2225-0.139 \\ & \frac{\mathrm{P}_{1}}{\gamma}-\frac{\mathrm{P}_{2}}{\gamma}=2.084 \mathrm{~m} \text { of oil } \\ & \frac{\mathrm{P}_{1}}{\gamma}-\frac{\mathrm{P}_{2}}{\gamma}=20.84 \mathrm{~cm} \text { of oil } \\ & \mathrm{P}_{1}-\mathrm{P}_{2}=15946.3512 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{1}-\mathrm{P}_{2}=15.946 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$	01 01 01 01 01 01	08

