Page No: $1 / 23$

WINTER - 2015 EXAMINATION

Subject: Hydraulics

Subject Code: 17421

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	a) i)	Attempt any SIX of the following:		12
		Define ideal fluid and real fluid.		
	Ans.	Ideal fluid- A fluid which is incompressible and having no viscosity is known as ideal fluid	1	
		Real fluid- a fluid which possess viscosity is known as real fluid	1	2
	ii)	State Newton's law of viscosity and state unit of dynamic viscosity.		
	Ans:	Newton's law of viscosity- it states that, shear stress on a fluid layer is directly proportional to the rate of shear strain.	1	
		$\rho=\mu \frac{d u}{d y}$		
		Unit of dynamic $\operatorname{viscosity}(\mu)=\mathrm{Ns} / \mathrm{m}^{2}$	1	2
	iii) Ans.	State two limitations of piezometer		
		1. Piezometer cannot be measure high pressure. 2. It cannot measure negative pressure.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
				2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	b) Ans: c) Ans:	A masonry dam 8 m high and 3.5 m wide has water level 1 m below its top. Calculate 1) total pressure on one meter length of dam 2) Depth of Centre of pressure. Given, $w=9810 \mathrm{~N} / \mathrm{m}^{2}$ Height of water $=\mathrm{H}=7 \mathrm{~m}$ Total pressure $\mathrm{P}=\frac{1}{2} w H^{2} \times$ length $\begin{aligned} & \mathrm{P}=\frac{1}{2} \times 9810 \times 7^{2} \times 1 \\ & \mathrm{P}=240345 \mathrm{~N} \end{aligned}$ Depth of centre of pressure from water surface $=\frac{2}{3} H$ $=\frac{2}{3} \times 7=4.66 \mathrm{~m}$ A circular plate $2.5 \mathbf{m}$ diameter is immersed in oil of specific gravity 0.9 such that its greatest and least depth the below the free surface oil 3.0 m and 1 m calculate-1) total pressure on one surface of plate 2) Depth Centre of pressure Given, Total pressure $\mathrm{P}=v_{0} A y$ $\begin{aligned} \mathrm{P} & =\mathrm{S}_{0} v_{w} \frac{\Pi}{4} d^{2} \times 2 \\ \mathrm{P} & =0.9 \times 9810 \times \frac{\Pi}{4} \times 2.5^{2} \times 2 \\ \mathrm{P} & =86634.56 \mathrm{~N} \text { or } 86678.50 \mathrm{~N} \end{aligned}$	1 1 1 1 1 1 1	4

Subject \& Code: HYD (17421)
Page No. 9/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	c) d) Ans:	$1=$ length of both pipes $\mathrm{d}_{1}, \mathrm{~d}_{2}=$ Diameter of the pipes In above arrangement loss of head in both the pipes is same Loss of head in pipe $1=$ loss of head in pipes $\begin{aligned} & \frac{f_{1} l v_{1}^{2}}{2 g d_{1}}=\frac{f_{2} l v_{2}^{2}}{2 g d_{2}} \\ & \frac{f_{1} v_{1}^{2}}{d_{1}}=\frac{f_{2} v_{2}^{2}}{d_{2}} \end{aligned}$ ii. Equivalent pipe- if the two tanks are connected by pipes of different lengths and diameters. It is called as compound pipe. If this compound pipe is replaced by a single pipe of same diameter it is called as equivalent pipe. It's diameter is calculated by equation, $\frac{l}{d^{5}}=\frac{l_{1}}{d_{1}^{5}}+\frac{l_{2}}{d_{2}^{5}}+\frac{l_{3}}{d_{3}^{5}}$ Three pipes having same length and same friction factor having different diameter $\mathbf{2 5 0} \mathrm{mm}, 100 \mathrm{~mm} 75 \mathrm{~mm}$ respectively. When three pipes are connected in parallel gives total discharge $0.75 \mathrm{~m}^{3} / \mathrm{s}$. Find out discharge in each pipe. given, $\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{f}_{3}$ and $\mathrm{l}_{1}=l_{2}=l_{3}$ $\begin{aligned} & d_{1}=250 \mathrm{~mm}, d_{2}=100 \mathrm{~mm}, d_{3}=75 \mathrm{~mm} \\ & d_{1}=0.25 \mathrm{~m}, d_{2}=0.100 \mathrm{~m}, d_{3}=0.075 \mathrm{~m} \end{aligned}$ Total $Q=0.75 \mathrm{~m}^{3} / \mathrm{s}, Q_{1}=?, Q_{2}=?, Q_{3}=$? for pipes connected parallel, head loss is equal	1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	d) e) Ans:	$\begin{aligned} & \frac{f_{1} l_{1} v_{1}^{2}}{2 g D_{1}}=\frac{f_{2} l_{2} v_{2}^{2}}{2 g D_{2}}=\frac{f_{3} l_{3} v_{3}^{2}}{2 g D_{3}} \\ & \text { But } f_{1}=f_{2}=f_{3} \text { and } \mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{3} \\ & \mathrm{~V}_{1}, \mathrm{~V}_{2} \& \mathrm{~V}_{3} \text { are the velocities through pipe 1,2,3. } \\ & \frac{v_{1}^{2}}{d_{1}}=\frac{v_{2}{ }^{2}}{d_{2}}=\frac{v_{3}^{2}}{d_{3}} \\ & v_{1}^{2}=\frac{d_{1}}{d_{2}} \times v_{2}^{2} \\ & v_{1}^{2}=\frac{0.25}{0.1} \times v_{2}^{2} \\ & v_{1}=1.58 v_{2} \\ & v_{2}=0.63 v_{1} \\ & \text { also, } \frac{v_{1}^{2}}{d_{1}}=\frac{v_{3}^{2}}{d_{3}} \\ & v_{3}^{2}=\frac{d_{3}}{d_{1}} \times v_{1}^{2} \\ & v_{3}^{2}=\frac{0.075}{0.25} \times v_{1}^{2} \\ & v_{3}=0.54 v_{1} \\ & Q_{1}=a_{1} v_{1}=\frac{\Pi}{4} \times 0.25^{2} \times v_{1}=0.049 v_{1} \\ & Q_{2}=a_{2} v_{2}=\frac{\Pi}{4} \times 0.1^{2} \times 0.63 v_{1}=0.0049 v_{1} \\ & Q_{3}=a_{3} v_{3}=\frac{\Pi}{4} \times 0.075^{2} \times 0.54 v_{1}=0.0023 v_{1} \\ & Q=Q_{1}+Q_{2}+Q_{3} \\ & 0.75=0.049 v_{1}+0.0049 v_{1}+0.0023 v_{1} \\ & 0.75=0.0562 v_{1} \\ & v_{1}=13.34 m / \mathrm{sec} \\ & v_{2}=8.40 \mathrm{~m} / \mathrm{sec} \\ & v_{3}=7.2 m / \mathrm{sec} \\ & Q_{1}=0.65 m^{3} / \mathrm{sec}, Q_{2}=0.065 m^{3} / \mathrm{sec}, Q_{3}=0.0318 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ Explain Syphon pipe with sketch. Syphon is long bent pipe which is used to transfer the liquid from reservoir at a higher level to another reservoir at a lower level to another reservoir at a lower level. When two reservoirs are separated by a hill or high level ground as shown in figure.	$1{ }^{1}$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	e)	The point C which is at the highest of the syphon is called as summit. The point C is above the free water surface point A , the pressure at point C is less than atmospheric pressure. Maximum up to 2.7 m water absolute. Syphon is used to carry water from one reservoir to another reservoir. Explain with neat sketch different types of open channel. 1. Rectangular channel- This is used in case of hard rock strata. $b=$ bed width of channel d = depth of flow of channel $b=$ width of the channel $d=$ depth of the flow $\mathrm{m}=$ hydraulic mean depth Area= bx d Perimeter $=\mathrm{b}+2 \mathrm{~d}$ The condition of most economical section is that for a given area the perimeter should be minimum $\mathrm{b}=2 \mathrm{~d} \quad \mathrm{~m}=\mathrm{d} / 2$ 2. Trapezoidal channel- this is most commonly used shape because of stability. $b=$ width of the channel at bottom $d=$ depth of the flow the side slope is given as 1 vertical to n horizontal most economical conditions arehalf of top width $=$ sloping side $\mathrm{m}=\mathrm{d} / 2$	 1 1 1 1 1	4

Subject \& Code: HYD (17421)
Page No. 15/23

Subject \& Code: HYD (17421)
Page No. 17 /23

Subject \& Code: HYD (17421)
Page No. 19/23

Subject \& Code: HYD (17421)
Page No. 20 /23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	b) Ans:	Two reservoirs having difference in elevation of 12 m are connected by 200 mm diameter syphon is 400 m and summit is 3 m above water level in upper reservoir. The length of pipe from the reservoir (upper) to summit is 120 m . determine discharge through syphon and pressure of summit(neglect minor losses) Given, Diameter of syphon $=d=200 \mathrm{~mm}=0.2 \mathrm{~m}$ Difference of level in reservoir $=\mathrm{H}=12 \mathrm{~m}$ Length of syphon $=400 \mathrm{~m}$ Height of summit from upper reservoir $=3 \mathrm{~m}$ Length of syphon up to summit $=120 \mathrm{~m}$ Head loss due to friction $=h_{f}$ applying Bernoulli's equation to point $\mathrm{A} \& \mathrm{~B}$ $\begin{aligned} & \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{w}}+\frac{\mathrm{v}_{\mathrm{A}}^{2}}{2 \mathrm{~g}}+z_{A}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{w}}+\frac{\mathrm{v}_{\mathrm{B}}^{2}}{2 \mathrm{~g}}+z_{B}+h_{f} \\ & \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}(\text { atmospheric pressure }) \\ & v_{\mathrm{A}}=v_{\mathrm{B}}(\text { same diameter }) \\ & 0+0+z_{A}=0+0+z_{B}+h_{f} \\ & z_{A}-z_{B}=h_{f} \\ & 20=h_{f}\left(z_{A}-z_{B}=20 \mathrm{~m}\right) \\ & -12=\frac{f l v^{2}}{2 g d} \\ & 12=\frac{0.02 \times 400 \times v^{2}}{2 \times 9.81 \times 0.20} \\ & v=2.42 \mathrm{~m} / \mathrm{sec} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	b) c) Ans:	Discharge $=$ Area \times velocity Discharge $=\frac{\Pi}{4} \times 0.2^{2} \times 2.42$ Discharge $=0.0759 \mathrm{~m}^{3} / \mathrm{sec}$ pressure at summit- applying bernoulli's equation to point A and C $\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{w}}+\frac{\mathrm{v}_{\mathrm{A}}{ }^{2}}{2 \mathrm{~g}}+z_{A}=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{w}}+\frac{\mathrm{v}_{\mathrm{C}}{ }^{2}}{2 \mathrm{~g}}+z_{B}+h_{f}$ Assuming datum passing through A $\begin{aligned} & 0+0+0=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{w}}+\frac{2.8^{2}}{2 \times 9.81}+3+h_{f} \\ & 0=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{~W}}+0.39+3+\frac{f l v^{2}}{2 g d} \\ & 0=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{~W}}+3.39+\frac{0.02 \times 120 \times 2.8^{2}}{2 \times 9.81 \times 0.2} \\ & 0=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{~W}}+3.39+4.79 \\ & 0=8.18+\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{~W}} \\ & \frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{~W}}=-8.18 \text { of water } \end{aligned}$ Design most economical trapezoidal section having side slopes 1.5:1 (H:V). for discharge $10 \mathrm{~m}^{3} / \mathrm{s}$ and bed slope 0.6 m in 3 km . take $\mathbf{N}=0.015$ (manning's formula). Given, side slope $=\mathrm{n}=$ horizontal $/$ vertical $=1.5 / 1=1.5$ Slope of bed $=S=0.6 / 3.0=0.5$ Discharge $=\mathrm{Q}=10 \mathrm{~m}^{3} / \mathrm{sec}$ Manning's constant $=\mathrm{N}=0.015$	2 1 1 1 1	8

