Important Instruction to Examiners:-

1) The answers should be examined by key words & not as word to word as given in the model answers scheme.

2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance.

4) While assessing figures, examiners, may give credit for principle components indicated in the figure.

5) The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Page No- 02/17

Q.NO	SOLUTION					
1 a)	Attempt any six of the following					
i)						
		is the science that deals with the study	-		1 M	
	includes e	essence of scientific studies dealing wi	ith the origin, age a	and structure of the		
	earth.					
		is used to study different properties of			Any One	
		or any heavy construction project study			1 M	
ii)					2 M	
	rock iii) Metamorphic rock					
iii)		aults and state any two types of it.				
		ault : The fractures along which there	has been relative	movements of the	1 M	
	-	st each other are termed as faults.				
	• •	Fault: - a) Normal Fault b) Reverse F	Fault.		1M	
iv)	-	portance of structural geology.			2 M	
		y provides a systematic knowledge of	construction mater	rials, their structure	(any two)	
	and prope					
		owledge of erosion, transportation and	-	face water helps in		
		rvation, river control, coastal and harb				
		nowledge about the nature of the rocks		0,		
		ng roads and in determining the stabil				
	iv) The foundation problems of dams, bridges and buildings are directly related with					
	geology of the area where they are to be built.					
v)		Void Ratio b) Porosity.	4 1 0	1.1 (\$7)	1.14	
		o : The ratio of volume of voids (Vv) t	to the volume of so	lids (VS) in soil	1 M	
		alled as void ratio.	the total values of	f soil (V) is called as	1 M	
	-	The ratio of volume of voids (Vv) to	the total volume c	of som (v) is called as	1 M	
	Porosity.	d application of Costachnical Engin	aaning		2 M	
vi)		d application of Geotechnical Engin	leering		For any Two	
	In foundation design					
	ii) In pavement designiii) In earth retaining structures					
		ign of earthen dams				
		gn of embankments				
	· · ·	gn of underground structures				
vii)		nt features for any one dam in Mah	arashtra state			
(11)	State Sile	Features	Panset	Chaskaman	2	
	1	Length of dam	1039 m	1045 m	Marks	
	2	Volume content of Dam (10^3 m^3)	4190	2903		
	3	Gross Storage capacity (10^3 m^3)	303000	318.17		
	4	Reservoir area (10^3 m^3)	15645	18218		
	5	Effective storage capacity (10^3 m^3)	294000	210.99		
			Irrigation and	Irrigation and		
	6	PHILDOSE				
	6	Purpose	water supply	power generation		

(Note: Student may Wright any appropriate explanation so credit may be given accordingly.)

Q.NO		SOL	UTION			MARKS
Q.1) viii)	State any four Metho1.Oven Drying M2.Alcohol Metho3.Calcium Carbid4.Pychnometer M5.Sand bath Method	lethod d. le Method lethod	itent of soil sa	mple.		1/ 2 M each for any four
Q.1) b)	Attempt any two of th	e following				08
i)	State any four types of aggregation.	f Minerals with pr	operties depe	nding on th	e light and state	
	Miner	als Gypsum	Kyanite	Talc	Quartz	4 Marks
	State of Colour	~ 1	White, Pale, Blue, Grey	Brown, White, Green	Red, Green Blue, Colourless	(1M each)
	Aggregation Luster	Silky	Vitreous	Greasy, Pearly	Vitreous	
	Fractu	re Conchoidal	Uneven	Uneven	Conchoidal	
	Light Streak	White	White	White	White	
	 Strike: - The lestrike. Folds: - Folds prock of the Earth to which these profit the Earth. 	called outcrops an angle between endicular to the direc- norizontal distance may be defined as u th's crust, as a resul cock have been subj	the horizontal ction of strike. perpendicular ndulations or b t of stresses (c ected to, from	plane and to the fault pends that an ommonly la time to time	the inclined plane plane is called as re developed in the teral compression) in the past history	1 M 1M 1M 1M
iii)	 construction. 2. Soil is also suit compaction struction struction. 3. Soil provides the structure of the structure	table in embankmen	nt fills and reta but require cor for all types of failure of struc s a construction or sub grades. e used in earth	ining pond l npactions as f foundation ture. n material. en dams.	beds after their s without s.	Any four points (1M each)

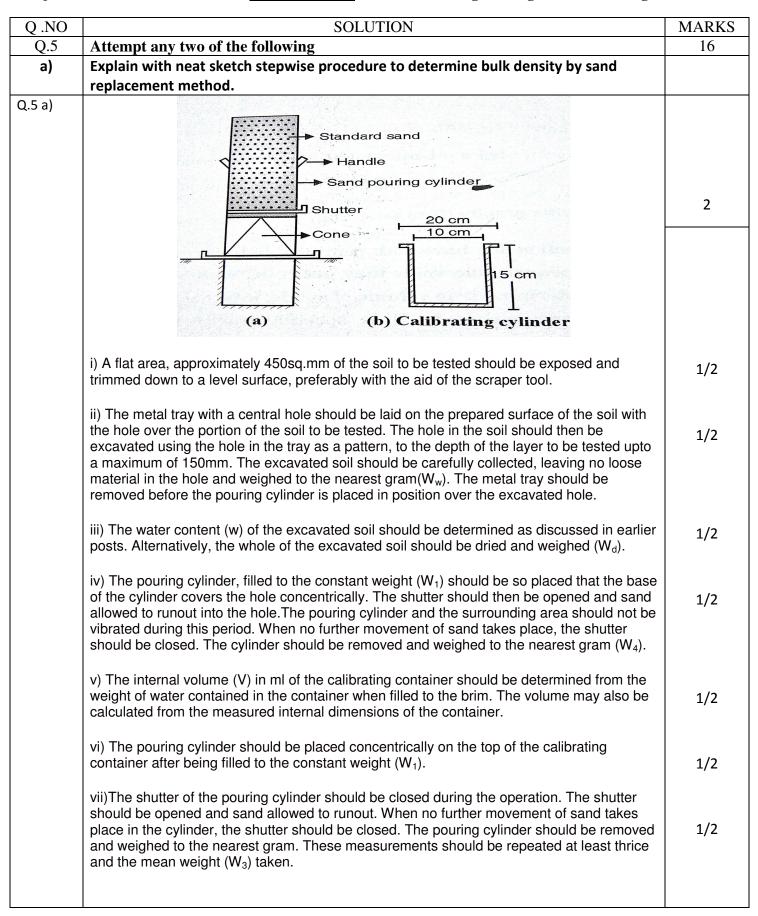
Q.NO		SOLUTION		MARKS
Q. 2	Attempt any four of the f	ollowing		16 Marks
a)	boulder pried loose from the came along with the water	rous process of weathe the side of mountain by ay has result of abrasive	ring both physical and chemical. A rapidly flowing water of river and e impact forces converted into sandy sess and environmental conditions.	2M
	Classification of Soil			
	Soil			
	Coarse Grained Soil:	Gravels	Clean Gravel Gravel with fines	
	Coarse Grameu Son:	Sand	Clean Sand Sand with fines	
		Silts	Low Compressibility Medium Compressibility High Compressibility	2M
	Fine Grained Soil	Clay	Low Compressibility Medium Compressibility High Compressibility	
	Highly Grained Soil			
b)	4. Injection and extrac	cus distributed in three ginate within about 60 ki s have foci between 60 t es originate at depths bel- cigin distributed as follo onic plates gas from subsurface dep etion of fluids from earth	general depth ranges: lometers of the surfaces o 300 kilometers down ow 300 kilometers. ows:-	2M for any two points 2 marks fo any two points.
c)	 The building should Minimum 16mm structural members Ductile material sho The beam column j Short RCC and Stee 	f Earthquake Resisting S uld be provided over the l be symmetrical and rec diameter reinforcemen of RCC building. buld be used to construct	Structure: - hard rock with no sign of faults. etangular in plan. t bar should be provided in all t the structure. resist earthquake effect.	1 M each (for any four points

Q.NO	SOLUTION	MARKS		
Q.2 d)	 Explain four causes and two effects of earthquake Causes of earthquake: i) Movement of tectonic plates ii) Volcanic eruptions iii) Anthropogenic sources iv) Dams v) Use of explosives vi) Injection and Extraction of fluids. 			
	Effects of earthquake : i) Shaking and ground rupture ii) Landslides and avalances iii) Fires iv) soil liquefaction v) Tsunamis vi) Human impact vii) River water	(Explain any two 1M each)		
e)	 Explain any two types of weathering: - Mechanical Weathering Chemical Weathering Biological Weathering. Spheroidal Weathering. Mechanical Weathering: - a) In mechanical weathering the rock surface is broken into smaller pieces without any chemical change. In mechanical weathering the smaller broken smaller rock pieces are deposited and over that parent rock is accumulated. It is the slow process due to atmosphere temperature and accumulation of organic matter. Mechanical weathering is generally seen where significant change in temperature is observed. Chemical Weathering: - a) In chemical weathering the rocks are broken into smaller pieces by chemical decay of minerals. By chemical decay new rocks are formed and whose chemical composition if different than the original rock. The main factor that affects chemical weathering are hydration, carbonizations, oxidation. 	2 M Any two points 2 M Any two points		
f)	Define – Atterberg's limit of consistency Atterbergs limits : The water content at which the soil changes from one state to another are known as Consistency limits or Atterbergs limits. Liquid Limit : The water content at which the soil changes from the liquid state to plastic state is known as liquid limit (LL, w _L). In other wards the liquid limit is the water content at which the soil ceases to be liquid. Plastic Limit : The water content at which the soil becomes semisolid is known as the plastic limit. (PL, wp). The plastic limit is the water content at which the soil just fails to behave plastically. Soil begins to crumble when rolled into a thread of 3 mm diameter. The numerical difference between the liquid limit and the plastic limit is known as plasticity index. (PI, Ip), PI = LL – PL. Shrinkage limit : The water content at which the soil changes from a semisolid state to the solid state is known as the shrinkage limit (SL, w _S). Shrinkage limit is the smallest water content at which a reduction in water content will not cause a decrease in the volume of the soil mass. At this water content the shrinkage ceases.	2M each for any two definition		

Page No- 06/17

Q.NO	SOLUTION	MARKS
Q. 3	Attempt any four of the following	16
3.a)	Find coefficient of Uniformity & coefficient of curvature for soil particle.	
	(D_{60}) Coefficient of Uniformity = C_u =	
	(D_{10})	
	(1.30) Coefficient of Uniformity = C _u = = 3.023	2 M
	(0.430)	
	Coefficient of curvature = $C_c = \frac{(D_{30})^2}{(D_{10}) \times (D_{60})}$	
	Coefficient of curvature = C_c =	
	$\begin{array}{c} (D_{10}) \ x \ (D_{60}) \\ (0.790)^2 \\ \end{array} 0.6241 \\ \text{Coefficient of curvature} = C_c = = 1.11 \end{array}$	
	(0.790) 0.0241	ЭМ
	Coefficient of curvature = C_c = = = 1.11 (0.430) x (1.30) 0.559	2 M
3.b	 Factors affecting Permeability of Soil:- 1. Grain Size: - Permeability varies approximately as the square of the grain size. The permeability of coarse grain soil is more than fine grained soil. The permeability can 	
	 be expressed as k=CD₁₀². Where 'k' is coefficient of permeability in (cm/sec)& D₁₀ is the effective grain size of soil. 2. Effect of properties of Pore Fluids:- The permeability is directly proportional to unit weight of water and inversely proportional to its viscosity. The unit weight of water does not change much with change in temperature but viscosity changes with change in temperature. 3. Effect of void ratio:- Increase in void ratio increases the area available for flow hence permeability increases for critical condition 4. Effect of structural arrangement of particles and stratification: - The structural arrangement of particle may vary at the same void ratio depending upon the method of compacting of soil mass. The structure may be entirely different for a disturbed sample as compared to undisturbed sample. 5. Effect of Degree of Saturation: - The permeability is reduced if air is entrapped in the voids thus reducing its degree of saturation. Organic foreign matter has a tendency to move towards critical flow channel and choke them up thus decreasing the permeability. 6. Effect of absorbed water:-The absorbed water surrounding the fine soil particles is not free to move and reduces the effective pore spaces available for the passage of water. 	4M (1 M each for any four points.)
3.c		

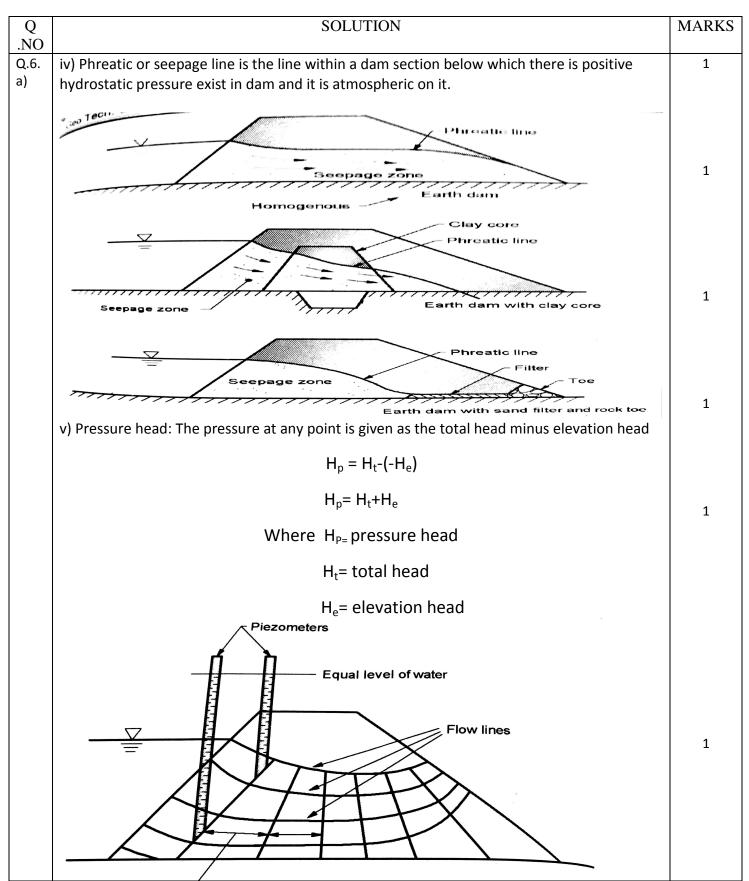
SUMMER – 15 EXAMINATIONS Model Answer- Geotechnical Engineering


Page No- 07/17

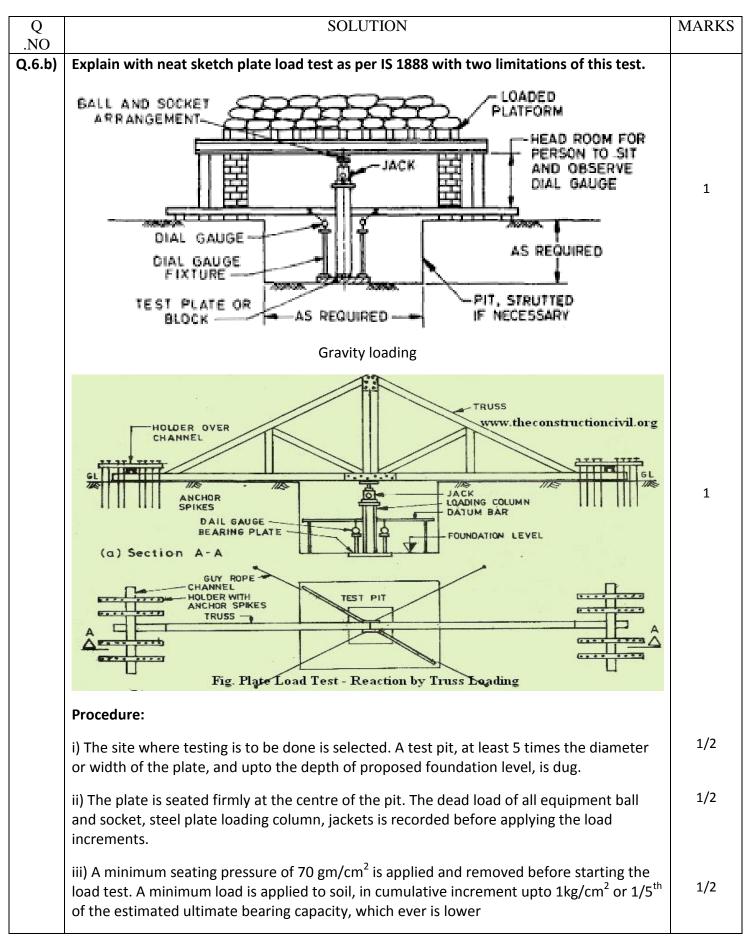
Q.NO	SOLUTION	MARKS			
3.c	K = (Q/t) x (1/A) x (L/h)	1 M			
	$K = [75/600] \times [1/12.56] \times [15/20]$	1 M			
	$K = 0.125 \times 0.0796 \times 0.75$				
	$K = 7.46 \times 10^{-3} \text{ cm/sec}$	1 M			
3.d	Advantages of Direct Shear Test:-	2) (
	1. The direct shear test is a simple test.	2M (1M each for			
	 The relatively thin thickness of sample permits quick drainage. The relatively thin thickness of sample permits quick discipation of percentraseuro. 	any Two			
	3. The relatively thin thickness of sample permits quick dissipation of pore pressure developed during the test.	Points)			
	Disadvantage of Direct Shear Test:-				
	1. As the test progress the area under shear gradually decreases, the corrected area at				
	the failure should be used in determining the value of ' σ ' & ' τ '.	2M			
	2. The stress condition across the soil sample is very complex, the distribution of	(1M each for			
	normal stress and shearing stress over the potential surface of sliding in not very	any Two			
	uniform.	Points)			
	3. The stress is more at the edges and less in the center, due to this there is progressive				
	failure of the specimen.				
	4. There is effect of lateral restraint by the side walls of the shear box.				
3.e	Characteristic of flow net				
	i) In a flow net, flow lines and equipotential lines intersect each other at right angles.	4M			
	ii) The quantity of water flowing through each flow channel is the same.	A my foun			
	iii) The drop of head, or the potential drop between any two successive equipotential lines is the same.	Any four points			
		(1M-each)			
	iv) The fields are approximately squares.v) The flow net is representative of the flow pattern and dissipation of the hydraulic				
	head.				
3. f	Active Earth Pressure: - It is pressure exerted on retaining wall resulting from slight	1 M			
	movement of wall away from filling.				
	Passive Earth Pressure: - when the movement of the retaining wall is such that the	1M			
	soil tends to compress horizontally.				
	Passive Active e				
	Pressure Pressure				
		2 M			
		(fig)			
	Movement towards left				

Q No					SOLUTION	MARKS
Q.4	Attemp	ot any fou	r of the f	ollowing		16
Q.4 4.a 4.b	Factors 1. Type 2. Amo 3. Posit 4. Phys a) Ty Assump 1. The s 3. The s	s affecting of soil an unt of allo ion of wat ical featur ype of four ptions of l soil is sem soil element	bearing d its physocal wable to er table. es of the ndation b Rankine' i infinite, nt is in the face is pl	capacity sical propertian and different foundation) Size and s Theory: homogen e state of p ane which	rties such as density, shear strength etc. Ferent settlement a such as shape of foundation c) Rigidity of structures - ous, dry and cohesion less. blastic equilibrium. may be horizontal.	16 4M (1mark each) 4M (1mark each)
	5. The	wall yield	about the	base thus	satisfies deformation condition for plastic equilibrium.	
4.c	 a) Mec chemica i) Basic ii) Econ iii) Sim iv) Rap v) Caus vi) Effe vii) Not viii) Re b) Cem 	als or adm properties nomical ple to carr id construc- es conside ctive only suitable f quires spe tent soil S	y out ction can crable imp up to cer crall typ cial equip tabilizati	ization: M involves ned be immed provement tain exten e of soils pments on: - The	Aechanical stabilization means stabilization without adding any addition or removal of soil components iately started in soil properties	2 M
4.d	 Ceme Ceme Ceme Permi Not u Costi 	ent stabiliz ent stabiliz anent solu aseful for o	zation is u zation is r ution clays , org	used for lo not useful	ose soil and non-cohesive soil. for clay, organic soil and expansive soil. and expansive soils	2M
4.u	By usin	ig graph I	Determin	e MDD &	OMC	
	Sr. No. 1 2 3 4	Bulk Density (gm/cc) 1.6 1.95 2.15 1.8	Water Content (%) 20 24 26 31	Dry Density 1.33 1.57 1.71 1.37	Grapgh of MDD & OMC MDD = 1.71 gm/cc & OMC =26 % 1.8 1.7 1.6 1.5 1.4 1.2 Dry 1.1 DSensity 0.9 0.8 0.7	4 M (2:MDD 2 :OMC)
	5	1.7	34	1.27	0.6 0.5 0.4 0.2 0.2 0.1 0 20 22 20 24 26 31 34 Watrer Content %	

Q .NO	SOLUTION	MARKS
4.e	CBR Definition : CBR is define as the ratio of test load to the standard load,	
	Express in percentage, for a given penetration of the plunger.	2 M
	Test Load	
	CBR = x 100	
	Standard Load	
	Application of CBR Test :	
	- CBR test is considered to be one of the most commonly used and widely accepted test	
	- This test is use for the analysis of existing pavements, layers by layer in respect of their	2 M
	strength and load carrying capacity.It also helps in identifying the courses of failure of road pavements.	2 M (1/2 mark
	- The CBR values are usually calculated for penetration of 2.5mm and 5mm. Generally	each)
	the CBR value at 2.5mm penetration will be greater than5mm penetration and in such a	
	case former value is taken as the CBR value for Design purpose.	
	- If the CBR value corresponding to a penetration of 5 mm exceeds that for 2.5mm the	
	test is repeated.	
4.f	Field Identification test on soil:-	
	1) Dry Strength Test	
	2) Dilatancy Test	2M
	3) Toughness Test	
	4) Organic content and colour test	
	5) Visual examination.	
	6) Other identification test.	
	a) Dry Strength Test: -	
	1. The sample is prepared by completely drying in sun or by air drying. It strength is	
	tested by breaking lumps between the fingers.2. If the dry samples can easily powered it is said to have low dry strength.	
	3. If considerable finger pressure is required to break the lump the sample has medium	
	strength.	2M
	4. If the lump cannot be powered by fingers it has high dry strength.	(Explanation
	5. Inorganic silts have very less dry strength.	
	6. Fine sand and silts possess low dry strength	
	7. Dry strength test is also known as crushing resistance test.	1


Page No- 10/17

Q.NO	SOLUTION	MARKS
Q.5 a)	CALCULATIONS	
	i) The weight of sand (W) in gram, required to fill the calibrating container should be calculated from the formula:	1/2
	$W_a = W_1 - W_3 - W_2$	
	ii) The bulk density of the sand $\left(\gamma_{s}\right)$ in kg/m³ should be calculated from the formula:	1/2
	$\gamma_s = \frac{Wa}{V} \times 1000$	
	iii) The weight of sand (W _b) in gram, required to fill the excavated hole should be calculated from the formula:	1/2
	$W_{b} = W_{1} - W_{4} - W_{2}$	
	iv) The bulk density (γ_b) , that is, the weight of the wet soil per cubic meter should be calculated from the formula:	1/2
	$\gamma_{\rm b} = \frac{W_{\rm w}}{W_{\rm b}} \times \gamma_{\rm s} \ kg/m^3$	
	v) The dry density (γ_d) , that is, the weight of dry soil per cubic meter should be calculated from the formula:	1/2
	$\gamma_{\rm d} = \frac{100\gamma_{\rm b}}{100 + \rm w} \ \rm kg/m^3$	
	$\gamma_{\rm d} = \frac{W_{\rm d}}{W_{\rm b}} \times \gamma_{\rm s} \ \rm kg/m^3$	
Q.5 b)	Explain in steps laboratory method to determine plastic limit of soil sample as per IS 2720.	
	Crumbled thread	2M
	Glass plate	(1 mark for each diag.)
	Soil Sample (3 mm diameter) Crumbled thread 3 mm diameter thread	


Q.NO	SOLUTION	MARKS
Q.5 b)	i) The plastic limit of fine-grained soil is the water content of the soil below which it ceases to be plastic. It begins to crumble when rolled into threads of 3mm dia.	1
	ii) Apparatus: Porcelain evaporating dish about 120mm dia., Spatula, Container to determine moisture content, Oven,Ground glass plate – 20cm x 15cm,Rod – 3mm dia. and about 10cm long	1
	PREPARATION OF SAMPLE ii) Take out 30g of air-dried soil from a thoroughly mixed sample of the soil passing through 425µm IS Sieve. Mix the soil with distilled water in an evaporating dish and leave the soil mass for naturing. This period may be upto 24hrs.	1
	Procedure iii) Take about 8g of the soil and roll it with fingers on a glass plate. The rate of rolling should be between 80 to 90 strokes per minute to form a 3mm dia.	1
	iv) If the dia. of the threads can be reduced to less than 3mm, without any cracks appearing, it means that the water content is more than its plastic limit. Knead the soil to reduce the water content and roll it into a thread again. Repeat the process of alternate rolling and kneading until the thread crumbles.	1
	v) Collect and keep the pieces of crumbled soil thread in the container used to determine the moisture content. Repeat the process at least twice more with fresh samples of plastic soil each time.	1
Q.5 c)	Define	8
i)	Coefficient of curvature: It represents the shape of particle size distribution curve. It is given by $(D_{30})^2$	
	$C_c = \frac{(D_{30})^2}{D_{10} \times D_{60}}$	1
	where D_{60} is the grain diameter at 60% passing, D_{30} is the grain diameter at 30% passing, and D_{10} is the grain diameter at 10% passing	1
	$C_c = 1$ to 3 for well graded soil	
	$C_c = 4$ for well graded gravel	
::\	C _c = well graded sand	
ii)	Uniformity coefficient (Cu): Is define as the ratio of D_{60} size to D_{10} size for given soil.	
	$C_u = \frac{D_{00}}{D_{10}}$	1
	where D_{60} is the grain diameter at 60% passing and D_{10} is the grain diameter at 10% passing	1

NO	SOLUTION	MARKS
.NO Q.5 c) iii)	Effective size of soil: Since soil contains particles of many different diameters, it is necessary to choose some diameter as representative of the soil. This diameter is called as effective diameter or effective size.	1
	The diameter d_{10} which represents the size for which the given soil contains 10% particles finer than this size D_{10} does not mean 10mm size particle.	1
iv)	Well graded and Uniform graded soil with the help of particle size distribution curve:	1
	i)If a soil contains grains of all sizes in significant amount, then it is called as Well-graded soil. Such a soil will give a particle size distribution curve which is S-shaped.	1/2
	ii)A uniformly graded soil contains particles almost of only one size. Because of this, the compacted density that can be achieved is much lower for this type of soil. Uniformly graded soil is also called poorly graded soil.	1/2
Q.6	compacted density that can be achieved is much lower for this type of soil. Uniformly	1/2 16
Q.6 a	compacted density that can be achieved is much lower for this type of soil. Uniformly graded soil is also called poorly graded soil.	
-	compacted density that can be achieved is much lower for this type of soil. Uniformly graded soil is also called poorly graded soil. Attempt any <u>TWO</u> of the following. Explain with neat sketch phreatic line in earthen dam with pressure head at different	
-	 compacted density that can be achieved is much lower for this type of soil. Uniformly graded soil is also called poorly graded soil. Attempt any <u>TWO</u> of the following. Explain with neat sketch phreatic line in earthen dam with pressure head at different point and show construction points of this line. i) When flow of water occurs through soil, the top surface of the flow zone is called the 	16

SUMMER – 15 EXAMINATIONS Model Answer- Geotechnical Engineering

Page No- 15/17

SUMMER – 15 EXAMINATIONS Model Answer- Geotechnical Engineering

Page No- 16/17

Q.NO	SOLUTION	MARKS	
Q.6.b)	iv) The settlement is observed after each load increment at 1,2.25,4,6.25,9,16,30 minutes and thereafter at hourly intervals, and is is recorded.	1/2	
	 v) The recording is stopped when the increase in settlement is only 0.02mm. The procedure is repeated after every increment in load 	1/2	
	vi) The observation are plotted on a log –log scale. The settlement in mm is plotted on X- axis and in kg/m ² is plotted on Y-axis	1/2	
	Load in kg/m ² x 10 ³ Ultimate bearing capacity		
	C) Partially-cohesive soil		
	E (D) Dense cohesionless soil		
	(D) Dense cohesionless soil	1/2	
	(B) Cohesive (A) Loose to medium soil cohesionless soil		
	vii) From this plot, the ultimate bearing capacity is determined. The plate load tast setup is for gravity type of loading. The load increment can either be applied through gravity method or by reaction of truss method .	1/2	
	Limitations of plate load test:		
	i) size effect: The actual settlement may vary from the plate weather same pressure is applied.		
	ii) Time effect: As duration of test is small it does not give the ultimate settlement with respect long time.		
	iii) Layer effect: If foundation is large accurate result can not be obtained by test.		

SUMMER – 15 EXAMINATIONS Model Answer- Geotechnical Engineering

Page No- 17/17

Q .NO	SOLUTION		MARKS
Q.6.c)	Differentiate between compaction and consolidation and state any four factors affecting compaction.		
	Compaction	Consolidation	
	i) Instant compression of soil under dynamic load is called compaction.	i) Gradual compression under a steady load is called consolidation	1/2
	ii) Takes place before building of structure	ii) Takes place after building of structure.	1/2
	iii) Fast process.	iii) Very slow process.	1/2
	iv) Carry out for improving soil property.	iv) Occurs naturally due to load of structure. Does not improve soil property.	1/2
	v) Settlement is prevented due to compaction.	v) Settlement takes place due to consolidation.	1/2
	vi) Artificial process.	vi) Natural process.	1/2
	vii) Pore water pressure not very important.	vii) Pore water pressure very important.	1/2
	viii) Does not go on indefinitely.	viii) Goes on indefinitely.	1/2
	Factors affecting compaction:) Type of soil: For the same compactive effort, a well graded soil can be compacted to higher MDD than a uniformly graded soil. As the grain size decreases the OMC values goes on increasing and the MDD goes on decreasing. i) Amount of compaction : If the compactive effort is increased, MDD increases and OMC		1
	decreases. But the increase in MDD is not linear with increase in energy.		1
	ii) Water content : As is evident, if water content goes on increasing the maximum dens of compacted soil goes on increasing upto a certain water content. If water content is further increased, the density goes on decreasing.		1
			1
	iv) Admixtures : Various admixtures like lime proportion etc. are used to improve the comp the dry density by about 5to 10%		