

### **SUMMER- 18 EXAMINATION**

Subject Name: ADVANCED SURVEYING Model Answer

Subject Code:

17419

### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.  | Sub     | Answers                                                                                               | Marking   |  |  |  |  |  |  |
|-----|---------|-------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| No. | Q. N.   |                                                                                                       | Scheme    |  |  |  |  |  |  |
| Q.1 | a)      | Attempt any SIX of the following:                                                                     |           |  |  |  |  |  |  |
|     | (i)     | Define contour interval and Horizontal equivalent.                                                    |           |  |  |  |  |  |  |
|     | Ans     | <b><u>Contour Interval</u></b> : The difference in elevations or R.L's between successive contours is |           |  |  |  |  |  |  |
|     |         | called the contour interval. In general, the same contour interval is used throughout                 | 01 M      |  |  |  |  |  |  |
|     |         | e survey.                                                                                             |           |  |  |  |  |  |  |
|     |         | Horizontal equivalent: The horizontal distance between any two consecutive contours                   | 01 M      |  |  |  |  |  |  |
|     |         | is known as horizontal equivalent. It is not constant. It varies according to the steepness           |           |  |  |  |  |  |  |
|     |         | of the ground. For steep slopes, the contour lines run close together, and for flatter                |           |  |  |  |  |  |  |
|     |         | slopes they are widely spaced.                                                                        |           |  |  |  |  |  |  |
| Q.1 | a)(ii)  | Write the use of Gale's table.                                                                        |           |  |  |  |  |  |  |
|     | Ans     | The traverse table in which all information related to the theodolite traverse including              |           |  |  |  |  |  |  |
|     |         | the relevant independent coordinates, is tabulated, is known as Gale's Table.                         |           |  |  |  |  |  |  |
|     |         | The Gale's table is used for the computations which are concerned with various                        |           |  |  |  |  |  |  |
|     |         | observations taken during the theodolite traverse survey.                                             |           |  |  |  |  |  |  |
| Q.1 | a)(iii) | State any two situations under which tachometry is preferred.                                         |           |  |  |  |  |  |  |
|     | Ans     | • In broken and uneven country, hilly areas covered with stretches of water,                          | . –       |  |  |  |  |  |  |
|     |         | swamps etc. where chaining operation is very difficult, slow and inaccurate,                          | Any Two   |  |  |  |  |  |  |
|     |         | tachometry is best suited.                                                                            | 01 M each |  |  |  |  |  |  |
|     |         | • In rough country both horizontal and vertical measurements can often be made                        |           |  |  |  |  |  |  |
|     |         | easily where it would be difficult to obtain them by other methods.                                   |           |  |  |  |  |  |  |
|     |         | • When there are many measurements to be made with relatively low degree of                           |           |  |  |  |  |  |  |
|     |         | precision as for example, in locating contours and filling in detail in a                             |           |  |  |  |  |  |  |
|     |         | topographic survey, this method is usually the quickest and the best.                                 |           |  |  |  |  |  |  |
| Q.1 | a)(iv)  | List any four modem survey instruments.                                                               |           |  |  |  |  |  |  |
|     | Ans     | 1) One Second Micro Optic Theodolite.                                                                 | Any four  |  |  |  |  |  |  |
|     |         | 2) Electronic Digital Theodolite                                                                      | 1/2 M for |  |  |  |  |  |  |
|     |         | 3) Electromagnetic Distance Measuring Instrument (E.D.M.)                                             | each      |  |  |  |  |  |  |



|      |                                                                             | (A) Electronic Total Station                                                                    |          |  |  |  |  |  |
|------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
|      |                                                                             | <ul><li>4) Electronic Total Station</li><li>5) Digital level</li></ul>                          |          |  |  |  |  |  |
|      |                                                                             | 6) Digital tape.                                                                                |          |  |  |  |  |  |
|      |                                                                             | 7) G.P.S. instrument.                                                                           |          |  |  |  |  |  |
| Q.1  | a)(v)                                                                       | State any two advantages of total station over dumpy level and theodolite.                      |          |  |  |  |  |  |
| Q.1  | Ans                                                                         | 1) It has got high accuracy.                                                                    |          |  |  |  |  |  |
|      |                                                                             | 2) It is possible to carry out on board data collection.                                        | Any Two  |  |  |  |  |  |
|      |                                                                             | 3) It can be used under bad weather conditions.                                                 | 01 M for |  |  |  |  |  |
|      |                                                                             | 4) It has large internal memory which can be used to analyze the data                           | each     |  |  |  |  |  |
|      |                                                                             | 5) It has long measuring range.                                                                 | cuch     |  |  |  |  |  |
|      |                                                                             | 6) Its data storing capacity is more.                                                           |          |  |  |  |  |  |
|      |                                                                             | 7) Data can be transferred into PCs                                                             |          |  |  |  |  |  |
| Q.1  | a)(vi)                                                                      | State the two methods of setting out curves.                                                    |          |  |  |  |  |  |
| Q. 1 | Ans                                                                         | 1) Chain and tape method (Linear method)                                                        |          |  |  |  |  |  |
|      | 7 11 10                                                                     | a) By offsets from long chord.                                                                  |          |  |  |  |  |  |
|      |                                                                             | b) Versine method of successive bisection of arcs                                               |          |  |  |  |  |  |
|      |                                                                             | c) Offsets from tangents                                                                        | 01 M for |  |  |  |  |  |
|      |                                                                             | d) Offsets from chord produced                                                                  | each     |  |  |  |  |  |
|      |                                                                             | 2) Instrumental Methods                                                                         |          |  |  |  |  |  |
|      |                                                                             | a) By Rankine's method of tangential angle (or deflection angle)                                |          |  |  |  |  |  |
|      |                                                                             | b) Two theodolite method                                                                        |          |  |  |  |  |  |
|      |                                                                             | c) Tachometric method                                                                           |          |  |  |  |  |  |
| Q.1  | a)(vii)                                                                     | State Bowditch rule.                                                                            |          |  |  |  |  |  |
|      | Ans                                                                         | <b>Bowditch Rule</b> : This rule is also termed as the compass rule. It is used to balance the  |          |  |  |  |  |  |
|      |                                                                             | traverse when the angular and linear measurements are equally precise. By this rule the         |          |  |  |  |  |  |
|      |                                                                             | total error in latitude and departure is distributed in proportion to the length of sides. It 0 |          |  |  |  |  |  |
|      |                                                                             | is the rule most commonly used in traverse adjustment.                                          |          |  |  |  |  |  |
|      |                                                                             | a) Correction to latitude of any side = (Length of that side/ perimeter of traverse) x          |          |  |  |  |  |  |
|      | Total error in latitude                                                     |                                                                                                 |          |  |  |  |  |  |
|      | b) Correction to departure of any side = (Length of that side/ perimeter of |                                                                                                 |          |  |  |  |  |  |
|      |                                                                             | traverse) x Total error in departure                                                            |          |  |  |  |  |  |
| Q.1  | a)(viii)                                                                    | State the constant of tachometer.                                                               |          |  |  |  |  |  |
|      | Ans                                                                         | According to the theory of stadia tachometry                                                    |          |  |  |  |  |  |
|      |                                                                             | Horizontal Distance , $D = (f/i) \times S + (f+c)$                                              |          |  |  |  |  |  |
|      |                                                                             | The quantity f/I is known as the multiplying constant and has a value of 100, and the           | 02 M     |  |  |  |  |  |
|      |                                                                             | quantity (f+d) is known as additive constant.                                                   |          |  |  |  |  |  |
| Q.1  | b)                                                                          | Attempt any TWO of the following:                                                               |          |  |  |  |  |  |
|      | (i)                                                                         | State the application of remote sensing in various fields.                                      |          |  |  |  |  |  |
|      | Ans                                                                         | Remote sensing has practical applications in the various fields such as civil engineering,      |          |  |  |  |  |  |
|      |                                                                             | geological investigations, archeology, mineralogy, agriculture, forestry, climatology, oil      |          |  |  |  |  |  |
|      |                                                                             | exploration, ground water hydrology and military intelligence etc.                              |          |  |  |  |  |  |
|      |                                                                             | Some of the applications of remote is as below:                                                 |          |  |  |  |  |  |
|      |                                                                             | 1) Silting of storage reservoirs harbors etc. – Remote sensing technique that                   |          |  |  |  |  |  |
|      |                                                                             | makes use of satellite imagery (in the infrared region) gives idea about the silting            |          |  |  |  |  |  |
|      |                                                                             | of reservoir qualitatively and to some extent quantitatively.                                   |          |  |  |  |  |  |
|      |                                                                             | 2) Location of Percolation Tanks – The exact location of percolation tanks can be               |          |  |  |  |  |  |
|      |                                                                             | carried out with the help of remote sensing technique, keeping in view that the                 |          |  |  |  |  |  |
|      |                                                                             | site required for location of percolation tanks should be on permeable                          |          |  |  |  |  |  |



Q.1

| _ |        | foundations                                                                             |          |
|---|--------|-----------------------------------------------------------------------------------------|----------|
|   |        | foundations.                                                                            |          |
|   |        | 3) <b>Revision of existing toposheets</b> - The rapid revision and updating of existing | Any Four |
|   |        | topo (graphical) sheets can be carried out speedily with the help of aerial             | 01 M for |
|   |        | photography (which is also a branch of remote sensing) and satellite imagery.           | each     |
|   |        | 4) Alignment of new highways and rail routes – The location of most economical          |          |
|   |        | alternative sites for such works can very well be carried out speedily by making        |          |
|   |        | use of aerial photographs and satellite imagery.                                        |          |
|   |        | 5) Location of Bridge site: The existing foundation condition along the proposed        |          |
|   |        | bridge construction site can be ascertained with the help of aerial photographs         |          |
|   |        | and or satellite imagery.                                                               |          |
|   |        | 6) Location of Dam sites: For gravity, geological investigations of the existing rock   |          |
|   |        | in and around the proposed dam site can be carried out by aerial photographs            |          |
|   |        | and or satellite imagery. Geological features such folds, faults, dykes, fractures      |          |
|   |        | etc. can be determined by the remote sensing technique.                                 |          |
|   |        | 7) <b>Tunneling:</b> Remote sensing i.e. aerial photography and or satellite imagery of |          |
|   |        | the area helps in furnishing all such information and thus ensures the safety of        |          |
|   |        | tunnel during its construction stages.                                                  |          |
|   |        | 8) Seepage losses in canals: Monitoring of soil moisture in and around the canal        |          |
|   |        |                                                                                         |          |
|   |        | system can be possible by remote sensing technique i.e. by careful study of             |          |
|   |        | aerial photographs and satellite imagery of such areas.                                 |          |
|   |        | 9) <b>Environmental Applications:</b> Remote sensing is useful in weather forecasting.  |          |
|   |        | May aspects of ocean becoming better known through remote sensing                       |          |
|   |        | techniques. Pollution in the form of oil spills and thermal plumes can easily be        |          |
|   |        | monitored. Study about Ozone layer depletion and global warming can be                  |          |
|   |        | possible by using remote sensors.                                                       |          |
|   |        | 10) Mineral Exploration: Remote sensing techniques have great scope regarding           |          |
|   |        | reconnaissance and detailed exploration of nonrenewable resources like                  |          |
|   |        | minerals and fossil fuels.                                                              |          |
|   |        | 11) Land use or Land cover analysis: Remote sensing techniques are useful for           |          |
|   |        | taking images of large area quickly, and it is cheaper than ground surveying.           |          |
|   |        | 12) Natural Hazards: In case of earthquakes, landslides, volcanic eruptions and         |          |
|   |        | floods and natural hazards, remote sensing can prevent and minimize the                 |          |
|   |        | damage by analyzing the geological formation of the area, thereby identifying           |          |
|   |        | the risk prone areas. It is possible to give specific warning of certain natural        |          |
|   |        | hazards and assess the damage caused and thereby help in the rescue and aid             |          |
|   |        | operations.                                                                             |          |
|   |        | 13) Archaeology: Archaeological patterns of prehistoric land use may be recognized      |          |
|   |        | in remote sensing images. Remote sensors are able to recognize the buried               |          |
|   |        | Archaeological important sites.                                                         |          |
|   | b)(ii) | Describe the temporary adjustment of theodolite.                                        |          |
|   | Ans    | Temporary Adjustments :                                                                 |          |
|   | -      | The temporary adjustments have to be carried out at every setup of the instrument       |          |
|   |        | before taking observations with the theodolite.                                         |          |
|   |        | The following are the temporary adjustments:                                            |          |
|   |        | i) Setting up the theodolite over a station.                                            |          |
|   |        | ii) Leveling up of theodolite                                                           | 01 M for |
|   |        | iii) Focusing of eyepiece and                                                           | each     |
|   |        | iv) Focusing of object glass to remove the parallax.                                    |          |
|   |        |                                                                                         |          |



# i) Setting up: Setting up of theodolite includes-

a) Centering it over a station point, and

b) Leveling it approximately by the tripod legs only.

### Procedure :

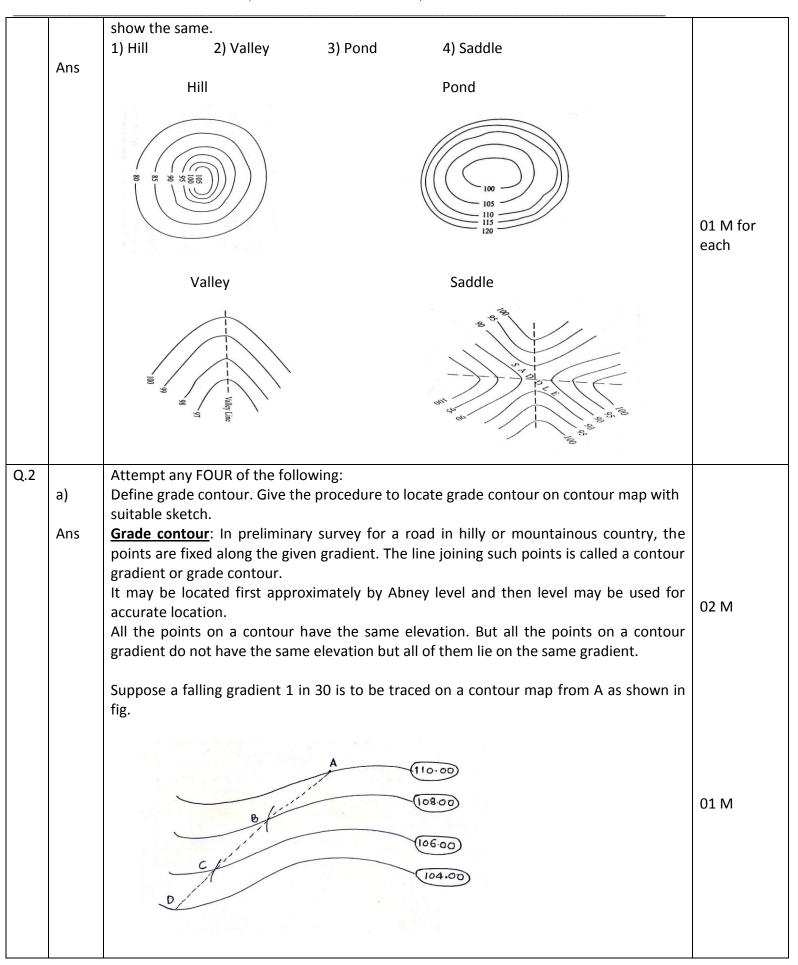
- 1) Place the instrument over the station by spreading the tripod legs well apart at a convenient height.
- 2) Suspend a plumb bob from the hook approximately over the station point such as a tack or nail point in a station peg, so that the plumb bob hangs about 2 cm above the within 1 cm. or less, horizontally to the station point.
- 3) Bring the plumb bob exactly over the station point by moving each leg radially as well as circumferentially, and then press the legs firmly into the ground. By doing this the instrument is approximately leveled also.
- 4) If shifting head is provided in the instrument, centering can be done rapidly. On hill side to ensure greater stability, place two legs of tripod down hll and the third leg uphill.
- **ii)** Leveling up of theodolite: Accurate leveling is done with reference to the plate level (s) by means of foot screws. The object of leveling is to make the vertical axis truly vertical.

## Procedure :

The procedure is given for the most common instrument having one plate level and three foot screws

- 1) Turn the theodolite about its vertical axis until the plate level is parallel to any pair of leveling screws.
- 2) Bring the bubble to the centre of its run by turning both foot screws uniformly. By using thumb and forefingers move the foot screws either towards each other or away from other.
- 3) Turn the instrument through 90<sup>0</sup> so that the bubble line will be at right angle to its previous position. Now, move only the third foot screw either in or out till the bubble is brought to the centre of its run.
- 4) Repeat the process until finally the plate bubble is exactly centered in both the positions.
- 5) Now rotate the theodolite about the vertical axis through 360<sup>0</sup>. The bubble will remain central provided it is in correct adjustement. The vertical axis is thus made truly vertical

(Note : The bubble moves in the direction of movement of left thumb)


## iii) Focusing the eye piece :

The object of focusing the eye piece is to make the cross hairs on diaphragm distinct and clear. To do this, direct the telescope towards the sky or hold a sheet of white paper in from of the object glass, and move the eye piece circumferentially or in or out until the cross hairs are seen sharp and black.

## iv) Focusing of object glass :

The object of focusing the glass is to bring the image of the object formed by the object glass exactly in the plane of cross hairs. If not done accurately, there will be an apparent movement of the image relatively to the cross hairs when the observer moves his eye up and down. This effect is known as parallax. The parallax can be removed by the sharp focusing until the image appears sharp and clear.







|     |     |                                                                                                                                                                              | 1             |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |     | Contour interval is 2 m as shown in fig.                                                                                                                                     |               |
|     |     | So to obtained falling gradient 1 V in 30 H                                                                                                                                  |               |
|     |     | Horizontal distance between A and next point on contour of RL =108.00                                                                                                        |               |
|     |     | $= 30 \times 2/1$                                                                                                                                                            | 01 M          |
|     |     | =60 m.                                                                                                                                                                       | 01111         |
|     |     | So from A draw a arc of 60 m (convert it into scale) bisecting contour of RL. 108.00 and                                                                                     |               |
|     |     | obtained point B. Now the line joining A and B is having a gradient 1 in 30. Similarly                                                                                       |               |
|     |     | others points i.e. C ,D etc may be obtained.                                                                                                                                 |               |
| Q.2 | b)  | The following readings were recorded by a planimeter with the anchor point inside the                                                                                        |               |
|     |     | figure IR = 9.377, F.K. = $3.336$ M = $100$ cm <sup>2</sup> and C = $23.521$ . Calculate the area of the                                                                     |               |
|     |     | figure when it is observed that the zero marks of the dia. passed the index mark once in                                                                                     |               |
|     |     | the anti-clockwise direction.                                                                                                                                                |               |
|     | Ans | Initial reading , I.R. = 9.377,                                                                                                                                              |               |
|     |     | Final reading, F.R. = 3.336                                                                                                                                                  | 02 M          |
|     |     | $M=100 \text{ cm}^2$ and                                                                                                                                                     |               |
|     |     | C = 23.521 (Anchor point inside the figure)                                                                                                                                  |               |
|     |     | N = -1                                                                                                                                                                       |               |
|     |     | Area = M (F.R. – I.R. ± 10 N +C)                                                                                                                                             |               |
|     |     | = 100 (3.336 – 9.377 -10 X 1 + 23.521 )                                                                                                                                      | 02 M          |
|     |     | $= 748 \text{ cm}^2$                                                                                                                                                         |               |
| Q.2 | c)  | Mention different sources of errors in theodolite surveying.                                                                                                                 |               |
|     | Ans | Basically there are three sources of errors in theodolite survey:                                                                                                            |               |
|     |     | I) Instrumental error                                                                                                                                                        |               |
|     |     | II) Natural error                                                                                                                                                            |               |
|     |     | III) Personal error                                                                                                                                                          |               |
|     |     | Instrumental error:                                                                                                                                                          |               |
|     |     | This error is mainly due to $-i$ ) Imperfect adjustment of the instrument                                                                                                    |               |
|     |     | ii) Structural defects in the instrument                                                                                                                                     | 02 M          |
|     |     | i) Error due to imperfect adjustment of plate level : If the upper and lower plate                                                                                           | 02 101        |
|     |     | are not horizontal, when the bubble or bubbles in two plate levels are both                                                                                                  |               |
|     |     | centered, the vertical axis will no be truly vertical. This will also cause an                                                                                               |               |
|     |     | error in prolonging line by plunging the telescope.                                                                                                                          |               |
|     |     |                                                                                                                                                                              |               |
|     |     | ii) Error due to line of collimation not being perpendicular to the horizontal axis:<br>If the line of sight is not perpendicular to the horizontal axis, it will no revolve |               |
|     |     | in a plane when the telescope is revolved on the horizontal axis.                                                                                                            |               |
|     |     | iii) Error due to horizontal axis not being perpendicular to vertical axis: If the                                                                                           |               |
|     |     | horizontal axis not being perpendicular to the vertical axis, the line of sight                                                                                              |               |
|     |     |                                                                                                                                                                              |               |
|     |     | will move in an inclined plane when the telescope is raised or lowered.<br>iv) Error due to the axis of telescope level and the line of collimation are not                  |               |
|     |     | <b>parallel:</b> If the line of collimation is not parallel to the axis of telescope                                                                                         |               |
|     |     | bubble, measured vertical angle will be incorrect since the zero line of                                                                                                     |               |
|     |     | vertical vernier is not a true line of reference.                                                                                                                            |               |
|     |     | v) Error due to eccentricity of inner and outer axes : If the centre of the vernier                                                                                          |               |
|     |     |                                                                                                                                                                              |               |
|     |     | plate does not coincide with the centre of graduated circle, the angle read will be incorrect.                                                                               |               |
|     |     |                                                                                                                                                                              |               |
|     |     | vi) Error due to eccentricity of verniers : The error is introduced when the zeros of the verniers are not at the ends of the same diameter                                  |               |
|     |     | נווב עבווובו אוב ווטג מג נווב בווטא טו נווב אמווב טומווופנפו                                                                                                                 | Page No. 6/19 |



|     |     |                                                                                                                                                                        | I        |  |  |  |  |  |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
|     |     | vii) Error of graduation: The graduations on good transit are not so nearly correct                                                                                    |          |  |  |  |  |  |
|     |     | that errors from imperfect graduations are negligible except in work of high                                                                                           |          |  |  |  |  |  |
|     |     | precision.                                                                                                                                                             |          |  |  |  |  |  |
|     |     | Personal Error:                                                                                                                                                        |          |  |  |  |  |  |
|     |     | The personal errors includes (i) errors in manipulation and                                                                                                            |          |  |  |  |  |  |
|     |     | (ii) Error in sighting and reading.                                                                                                                                    | 01 M     |  |  |  |  |  |
|     |     | (i) Errors in manipulation :                                                                                                                                           |          |  |  |  |  |  |
|     |     | a) <b>Inaccurate centering:</b> If the instrument is not accurately centered over the station, the observed angles will be incorrectly measured. The angular error due |          |  |  |  |  |  |
|     |     | station, the observed angles will be incorrectly measured. The angular error due to incorrect centering varies inversely as the length of sights                       |          |  |  |  |  |  |
|     |     | to incorrect centering varies inversely as the length of sights.                                                                                                       |          |  |  |  |  |  |
|     |     | b) Error in leveling: This error is similar to the error due to non-adjustment of plate                                                                                |          |  |  |  |  |  |
|     |     | levels.                                                                                                                                                                |          |  |  |  |  |  |
|     |     | c) Slip: This error occurs because of poor clamping or loose shifting head or                                                                                          |          |  |  |  |  |  |
|     |     | instrument is not firmly fixed on tripod.                                                                                                                              |          |  |  |  |  |  |
|     |     | d) Operating wrong tangent or slow motion screws: This mistake is generally                                                                                            |          |  |  |  |  |  |
|     |     | made due to confusion or lack of knowledge.                                                                                                                            |          |  |  |  |  |  |
|     |     | (ii)Errors in sighting and reading: Failure to sight exactly on a point may be due to                                                                                  |          |  |  |  |  |  |
|     |     | parallax, unfavorable atmospheric conditions, poor quality of telescope, inaccurate                                                                                    |          |  |  |  |  |  |
|     |     | work either in manipulating the transit or in holding the sight pole.                                                                                                  |          |  |  |  |  |  |
|     |     | Natural Error : Sources of natural error are                                                                                                                           |          |  |  |  |  |  |
|     |     | 1)Settlement of tripod                                                                                                                                                 |          |  |  |  |  |  |
|     |     | 2) Unequal atmospheric refraction.                                                                                                                                     | 01 M     |  |  |  |  |  |
|     |     | 3) Unequal expansion of parts of the telescope due to temperature changes.                                                                                             |          |  |  |  |  |  |
|     |     | 4)Wind producing vibrations of the transit or making it difficult to plumb correctly.                                                                                  |          |  |  |  |  |  |
| Q.2 | d)  | Write four applications of GIS.                                                                                                                                        |          |  |  |  |  |  |
|     | Ans | GIS technology is helpful in various for the use of geographic data. It is useful for the                                                                              |          |  |  |  |  |  |
|     |     | following purposes.                                                                                                                                                    |          |  |  |  |  |  |
|     |     | 1) Map making: Custom maps, showing selected data layers, can be displayed on                                                                                          |          |  |  |  |  |  |
|     |     | the computer or generated as a hard copy product. The user can define the scale                                                                                        |          |  |  |  |  |  |
|     |     | and the area to be mapped. Data layers can be added or deleted to fit the user's                                                                                       |          |  |  |  |  |  |
|     |     | requirements.                                                                                                                                                          |          |  |  |  |  |  |
|     |     | 2) <b>Site selection:</b> Where is the best location for a county landfill, a new restaurant,                                                                          |          |  |  |  |  |  |
|     |     | or a highway by pass?. The GIS user first defines the site selection criteria. For                                                                                     |          |  |  |  |  |  |
|     |     | finalizing a landfill site, the criteria may include the geology, soil type, current                                                                                   | 04.04.0  |  |  |  |  |  |
|     |     | land use, location of protected lands or environmentally sensitive areas,                                                                                              | 01 M for |  |  |  |  |  |
|     |     | <ul><li>proximity to roads, the cost to purchase the land etc.</li><li>3) Network Analysis: How does a school system determine school bus routes and</li></ul>         | each     |  |  |  |  |  |
|     |     | schedules?. The administrators can use GIS for analyzing factors such as                                                                                               |          |  |  |  |  |  |
|     |     | travelling distance, speed limits, student's addresses, school locations, and class                                                                                    |          |  |  |  |  |  |
|     |     | schedules to select routes that minimize the number of buses and fuel costs.                                                                                           |          |  |  |  |  |  |
|     |     | <ul> <li>4) Environmental Applications: What is the potential impact of a proposed new</li> </ul>                                                                      |          |  |  |  |  |  |
|     |     | housing or industrial development on a community's drinking water supply?                                                                                              |          |  |  |  |  |  |
|     |     | Which forest areas need to be preserved to prevent damage to economically                                                                                              |          |  |  |  |  |  |
|     |     | important, recreational fishing streams?. Is a proposed new drinking water                                                                                             |          |  |  |  |  |  |
|     |     | supply located too close to an abandoned waste site? In each of these examples,                                                                                        |          |  |  |  |  |  |
|     |     | GIS can be used to integrate and evaluate multiple data layers and attributes                                                                                          |          |  |  |  |  |  |
|     |     | and then generate information that enables public officials and resource                                                                                               |          |  |  |  |  |  |
|     |     | managers to make more informed decisions.                                                                                                                              |          |  |  |  |  |  |
|     |     |                                                                                                                                                                        | 1        |  |  |  |  |  |



| Q.2 | e)   | State four component parts of a micro-optic theodolite and state their purpose.                                                                                       |            |  |  |  |  |  |  |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Q.2 | Ans  | Components parts of Micro Optic Theodolite                                                                                                                            |            |  |  |  |  |  |  |
|     | Alls | i) Telescope                                                                                                                                                          |            |  |  |  |  |  |  |
|     |      | ii) Magnification with standard eyepiece                                                                                                                              |            |  |  |  |  |  |  |
|     |      | iii) Level Tube                                                                                                                                                       | 02 M for   |  |  |  |  |  |  |
|     |      | iv) Automatic vertical and horizontal reading circles.                                                                                                                | components |  |  |  |  |  |  |
|     |      | v) Foot screws. Tribrach and Trivet                                                                                                                                   |            |  |  |  |  |  |  |
|     |      | v) Foot screws. Inbrach and Trivet<br>vi) Tripod top                                                                                                                  |            |  |  |  |  |  |  |
|     |      |                                                                                                                                                                       |            |  |  |  |  |  |  |
|     |      | • Telescope is used for the bisecting the object and getting the proper image of it.<br>CCD sensors have been added to the focal plane of the telescope allowing both |            |  |  |  |  |  |  |
|     |      |                                                                                                                                                                       | 02 M for   |  |  |  |  |  |  |
|     |      | <ul> <li>auto-targeting and the automated measurement of residual target offset.</li> <li>Eyepiece is used for focusing towards the object</li> </ul>                 |            |  |  |  |  |  |  |
|     |      | <ul> <li>Automatic vertical and horizontal reading circles are graduated to finest degree</li> </ul>                                                                  |            |  |  |  |  |  |  |
|     |      | of accuracy of 1 <sup>°</sup> interval and micrometer interval is 6"                                                                                                  |            |  |  |  |  |  |  |
|     |      | <ul> <li>With the help of automatic index the vertical angle measurement is not only</li> </ul>                                                                       |            |  |  |  |  |  |  |
|     |      | quick but also accurate.                                                                                                                                              |            |  |  |  |  |  |  |
| Q.2 | f)   | Write any four features of total station.                                                                                                                             |            |  |  |  |  |  |  |
|     | Áns  | Following are the features of total station                                                                                                                           |            |  |  |  |  |  |  |
|     |      | 1. It has got high accuracy of the range of ± 2mm                                                                                                                     |            |  |  |  |  |  |  |
|     |      | 2. It has long measuring range                                                                                                                                        |            |  |  |  |  |  |  |
|     |      | i) With mini prism – 0.9 km ii) With single prism – 2 km                                                                                                              |            |  |  |  |  |  |  |
|     |      | ii) With three prism – 2.7 km                                                                                                                                         |            |  |  |  |  |  |  |
|     |      | 3. On board data collection                                                                                                                                           |            |  |  |  |  |  |  |
|     |      | 4. Enhanced absolute encoder                                                                                                                                          |            |  |  |  |  |  |  |
|     |      | 5. Can be used under bad weather conditions                                                                                                                           | 01 M for   |  |  |  |  |  |  |
|     |      | 6. Large internal memory.                                                                                                                                             | each       |  |  |  |  |  |  |
|     |      | 7. It is possible to get access to any desired programme and mode of selection                                                                                        |            |  |  |  |  |  |  |
|     |      | 8. The surveyor can achieve accurate measurements even without the face left and                                                                                      |            |  |  |  |  |  |  |
|     |      | face right (i.e. telescope in normal and reversed position) observations.                                                                                             |            |  |  |  |  |  |  |
|     |      | 9. The desired information is displayed on the screen , hence it has easy to read                                                                                     |            |  |  |  |  |  |  |
|     |      | arrangement.                                                                                                                                                          |            |  |  |  |  |  |  |
|     |      | 10. The instrument is provided with a built in sensor for the surrounding                                                                                             |            |  |  |  |  |  |  |
|     |      | atmospheric parameters due to which automatic atmospheric correction is possible.                                                                                     |            |  |  |  |  |  |  |
|     |      | 11. If guidance is required during the course of operation of the instrument, by                                                                                      |            |  |  |  |  |  |  |
|     |      | pressing 'HELP' key, guiding message displays for the subsequent operation.                                                                                           |            |  |  |  |  |  |  |
|     |      | 12. Higher distance resolution can be possible within fraction of second.                                                                                             |            |  |  |  |  |  |  |
|     |      | 13. The tangent screws which are provided with two speed mechanism which makes                                                                                        |            |  |  |  |  |  |  |
|     |      | accurate target acquisition at faster rate.                                                                                                                           |            |  |  |  |  |  |  |
| L   | 1    |                                                                                                                                                                       | 1          |  |  |  |  |  |  |



| 0.2         | <u> </u> | Attempt any FOUR of the following:                                                      |        |  |  |  |  |
|-------------|----------|-----------------------------------------------------------------------------------------|--------|--|--|--|--|
| Q.3         | -        | Attempt any FOUR of the following:                                                      |        |  |  |  |  |
|             | a)       | State the classification of electronic distance meter.                                  |        |  |  |  |  |
|             | Ans      | Following are the classifications of electronic distance meter.                         |        |  |  |  |  |
|             |          | A) Based on the type of carrier wave used.                                              |        |  |  |  |  |
|             |          | i) EDM having visible light waves.                                                      | 01 M   |  |  |  |  |
|             |          | ii) EDM having invisible infra-red waves.                                               |        |  |  |  |  |
|             |          | iii) EDM having micro waves                                                             |        |  |  |  |  |
|             |          | iv) EDM having long radio waves.                                                        |        |  |  |  |  |
|             |          | B) Based on the range of the EDM                                                        | 01 M   |  |  |  |  |
|             |          | i) Short range instrument (Upto 10 Km)                                                  |        |  |  |  |  |
|             |          | ii) Medium range instrument (Upto 60 Km)                                                |        |  |  |  |  |
|             |          | iii) Long range instrument (Upto 150 Km)                                                |        |  |  |  |  |
|             |          | C) Based on the appearance of EDM                                                       |        |  |  |  |  |
|             |          | i) Mount type EDM.                                                                      | 01 M   |  |  |  |  |
|             |          | ii) Built in type EDM                                                                   |        |  |  |  |  |
|             |          | D) Based on the reflected and transmitted wave                                          |        |  |  |  |  |
|             |          | i) Reflected type EDM e.g Geodimeters                                                   | 01 M   |  |  |  |  |
|             |          | ii) Transmitting type EDM e.g. Tellurometer                                             | 01 111 |  |  |  |  |
| Q.3         | b)       | Draw a neat sketch of simple circular curve showing all elements.                       |        |  |  |  |  |
| <b>Q</b> .5 | Ans      |                                                                                         |        |  |  |  |  |
|             | Alls     | е - В'                                                                                  |        |  |  |  |  |
|             |          | A B LA                                                                                  |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | 1 PX                                                                                    |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | T1 90° IE 90°                                                                           |        |  |  |  |  |
|             |          | 90°  E 90° C                                                                            | 02 M   |  |  |  |  |
|             |          | $^{\prime}$                                                                             |        |  |  |  |  |
|             |          | Back Forward                                                                            |        |  |  |  |  |
|             |          | tangent $\Delta/2 \Delta/2$ tangent                                                     |        |  |  |  |  |
|             |          | A/2 LAR                                                                                 |        |  |  |  |  |
|             |          | \$17                                                                                    |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | 0                                                                                       |        |  |  |  |  |
|             |          | AB = Back tangent or rear tangent                                                       |        |  |  |  |  |
|             |          | BC = Forward tangent                                                                    |        |  |  |  |  |
|             |          | T1 and T2 = Tangent points                                                              |        |  |  |  |  |
|             |          | B= Vertex or point of intersection.                                                     | 02 M   |  |  |  |  |
|             |          | $\Delta$ = Deflection angle                                                             | 02.00  |  |  |  |  |
|             |          | BD = External distance                                                                  |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | T1T2 = Long chord                                                                       |        |  |  |  |  |
|             |          | T1DT2 = Length of curve                                                                 | 4      |  |  |  |  |
| Q.3         | c)       | Explain principle of stadia method.                                                     |        |  |  |  |  |
|             | Ans      | The principle of stadia method is that in two similar triangles corresponding sides and |        |  |  |  |  |
|             |          | altitudes are proportional.                                                             |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | allow to the total the                                                                  |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          | F                                                                                       | 01 M   |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
|             |          |                                                                                         |        |  |  |  |  |
| Í           |          | Let, 0                                                                                  |        |  |  |  |  |



|     | 1   |                                                                                                                       | T           |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------|-------------|
|     |     | O = Optical centre of object glass.                                                                                   |             |
|     |     | A'C' and B' = Top, axial and bottom hair lines.                                                                       |             |
|     |     | B'A' = i = Interval between stadia lines.                                                                             |             |
|     |     | BA = S= Staff intercept.                                                                                              |             |
|     |     | f = Focal length of object glass.                                                                                     |             |
|     |     | f1= Horizontal distance from the optical centre to the staff.                                                         |             |
|     |     | f2 = Horizontal distance from the optical centre to the image of the staff.                                           |             |
|     |     | d = Horizontal distance from the optical centre to the vertical axis of the tacheometer.                              |             |
|     |     | D= Horizontal distance from the vertical axis of the instrument to staff.                                             |             |
|     |     | In $\Delta$ AOB and $\Delta$ A'OB'                                                                                    |             |
|     |     | AB/A'B' = OC/OC' = f1/f2                                                                                              |             |
|     |     | Or<br>c/:fa/fa                                                                                                        | 03 M        |
|     |     | S/i = f1/f2                                                                                                           | 05 101      |
|     |     | By the formula of lenses                                                                                              |             |
|     |     | 1/f = (1/f1) + (1/f2)                                                                                                 |             |
|     |     | i.e $(f_1)(f_2) = f_1(f_2) = f_2(f_3)$                                                                                |             |
|     |     | (f1/f) - 1 = f1/f2 = S/i<br>Or                                                                                        |             |
|     |     | f1 = (f/i) S + f                                                                                                      |             |
|     |     | The distance from the vertical axis of instrument to staff = f1 +d                                                    |             |
|     |     | Therefore                                                                                                             |             |
|     |     | D = f1 + d = (f/i)S + (f+d)                                                                                           |             |
| Q.3 | d)  | Enlist any six uses of contour.                                                                                       |             |
|     | Ans | Following are the uses of contours                                                                                    |             |
|     |     | i) Contours are helpful to know the nature of ground.                                                                 |             |
|     |     | ii) For determination of most economical site for the dams and reservoirs.                                            | 04 M        |
|     |     | iii) For estimating volume of water impounded in a reservoir.                                                         |             |
|     |     | iv) For determining indivisibility of two given points.                                                               |             |
|     |     | v) Useful for the location of highways, railways, canals, pipelines etc.                                              |             |
|     |     | vi) For the location of structures such as buildings, bridges etc.                                                    |             |
| Q.3 | e)  | Write down the procedure for determination of tachometric constant.                                                   |             |
|     | Ans | 1) In this method value of (f+d) is obtained by direct measurement and value of                                       |             |
|     |     | (f/i) is computed.                                                                                                    |             |
|     |     | Steps:                                                                                                                |             |
|     |     | i) Sight any distant object and focus it carefully.                                                                   |             |
|     |     | ii) Measure the distance between object glass and the plane of cross hair with scale, let                             |             |
|     |     | it be (f)                                                                                                             |             |
|     |     | iii) Measure (d) from the object glass to the vertical axis of the instrument.                                        |             |
|     |     | iv) Measure the distance D1, D2, D3 etc, from the instrument and let S1,S2,S3 etc is                                  |             |
|     |     | corresponding staff intercept.<br>v) In formula D = (f/i) S + (f+d), knowing the value of (f+d) and measured distance | 04.14       |
|     |     | D1,D2,D3 etc several values of $(f/i)$ calculated and mean of it is the value of constant                             | 04 M        |
|     |     | (f/i)                                                                                                                 | For any one |
|     |     | <u>OR</u>                                                                                                             | method      |
|     |     | <u>un</u>                                                                                                             |             |
|     |     | 2) Alternative method to determine constants of (f/i) and (f+d) is to measure two                                     |             |
|     |     | definite distances D1 and D2 and find the corresponding staff intercepts S1 and                                       |             |
|     |     | S2 on the staff held at these positions.                                                                              |             |
|     | ı   |                                                                                                                       |             |



|     |     | By suing equation                                                                                                                                                                         |                |  |  |  |  |  |  |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
|     |     | D1 = (f/i) S1 + (f+d) 1                                                                                                                                                                   |                |  |  |  |  |  |  |
|     |     | D2 = (f/i) S2 + (f+d) 2 By solving these equations values of constant (f/i) and (f+d) can be determined                                                                                   |                |  |  |  |  |  |  |
|     | 0   | By solving these equations values of constant (f/i) and (f+d) can be determined.                                                                                                          |                |  |  |  |  |  |  |
| Q.3 | f)  | Show the following readings on windows of micro-optic Theodolite in measurement of                                                                                                        |                |  |  |  |  |  |  |
|     |     | horizontal and vertical angle.                                                                                                                                                            |                |  |  |  |  |  |  |
|     |     | (i) Horizontal angle = 110°30 '15 " (ii) Vertical angle = 75°25'10"                                                                                                                       |                |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                           |                |  |  |  |  |  |  |
|     | Ans | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                    |                |  |  |  |  |  |  |
|     |     | $\begin{array}{c c} \hline \\ 9 \\ 10 \\ 11 \end{array}$                                                                                                                                  |                |  |  |  |  |  |  |
|     |     | Horizontal angle = 110°30′15″ Vertical angle = 75°25′10″                                                                                                                                  |                |  |  |  |  |  |  |
|     |     | Note: It may change as per make of instrument.                                                                                                                                            |                |  |  |  |  |  |  |
| Q.4 |     | Attempt any FOUR of the following:                                                                                                                                                        |                |  |  |  |  |  |  |
|     | a)  | What is meant by zero circle? State the advantages of digital planimeter over polar                                                                                                       |                |  |  |  |  |  |  |
|     |     | planimeter.                                                                                                                                                                               |                |  |  |  |  |  |  |
|     | Ans | <b>Zero Circle</b> : Zero circle is defined as the circle round the circumference of which if the tracing point is moved, no rotation of the wheel cause but the wheel is simply slide on |                |  |  |  |  |  |  |
|     |     | the paper without any change in reading .                                                                                                                                                 | 02 M           |  |  |  |  |  |  |
|     |     | This condition occurs when the line joining the anchor point to the wheel is at right                                                                                                     |                |  |  |  |  |  |  |
|     |     | angles to the line joining the tracing point to the wheel.                                                                                                                                |                |  |  |  |  |  |  |
|     |     | Advantages of Digital planimeter over Polar planimeter                                                                                                                                    |                |  |  |  |  |  |  |
|     |     | Following are the advantages of Digital planimeter over Polar planimeter                                                                                                                  |                |  |  |  |  |  |  |
|     |     | i) No calculations are required for area.                                                                                                                                                 |                |  |  |  |  |  |  |
|     |     | ii) Less time required.                                                                                                                                                                   |                |  |  |  |  |  |  |
| Q.4 | b)  | Enlist the advantages and disadvantages of total station.                                                                                                                                 |                |  |  |  |  |  |  |
|     | Ans | Advantages of total station.                                                                                                                                                              |                |  |  |  |  |  |  |
|     |     | i) Quick setting of the instrument on the tripod using laser plummet.                                                                                                                     | Any Four       |  |  |  |  |  |  |
|     |     | <ul><li>ii) On- board area computation programme to compute the area of the field.</li><li>iii) Greater accuracy in area computation.</li></ul>                                           | 02 M           |  |  |  |  |  |  |
|     |     | iv) The field jobs are finished, the map of the area with dimensions is ready after data                                                                                                  |                |  |  |  |  |  |  |
|     |     | transfer                                                                                                                                                                                  |                |  |  |  |  |  |  |
|     |     | v) Its reduce the time & also it's measure up to 3 to 5 Km distance.                                                                                                                      |                |  |  |  |  |  |  |
|     |     | vi) Full GIS creation                                                                                                                                                                     |                |  |  |  |  |  |  |
|     |     | Disadvantages of total station.                                                                                                                                                           |                |  |  |  |  |  |  |
|     |     | i) Instrument is costly.                                                                                                                                                                  |                |  |  |  |  |  |  |
|     |     | ii) It might be troublesome for the surveyor to investigate and check the work when                                                                                                       | Any Four       |  |  |  |  |  |  |
|     |     | surveying.                                                                                                                                                                                | 02 M           |  |  |  |  |  |  |
|     |     |                                                                                                                                                                                           | Page No. 11/19 |  |  |  |  |  |  |



|     |           | iii) Conducting surveys using total station, skilled personnel are required.                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     |           | iv) For an overall check of the survey, it will be necessary to return to the office and                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |           | prepare the drawings using appropriate software                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 0.4 | 0         | Explain the setting of curve by Pankine's deflection angle method                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Q.4 | c)<br>Ans | Explain the setting of curve by Rankine's deflection angle method.                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 M |
|     |           | <ul> <li>4) Unclamp the vernier plate and set the vernier A to the first tangential angle @1, the telescope being thus directed along T1D.</li> <li>5) Measure along the line T1D, the length equal to first sub-chord (C1) thus fixing first point D on the curve.</li> </ul>                                                                                                                                                                                                            |      |
|     |           | <ul> <li>6) Unclamp the vernier plate now and set the vernier A to the second total tangential angle @2, the line of sight is now directed along T1E.</li> <li>7) With the zero end of chain or tape at D1 and with a arrow held at distances of D1E=C2 (second chord or say normal chord), swing the chain about D1 until the line of sight bisects the arrow, thus fixing the second point Eon the curve.</li> <li>8) Repeat the process until the last point T2 is reached.</li> </ul> | 03 M |
|     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |



| Q.4 | Ans.                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        |                                                 |          |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|--|--|--|--|
|     |                                                                                                                                                    | Active System                                                                                                                                                                                                                                                                                                                                          | Passive System                                  |          |  |  |  |  |
|     |                                                                                                                                                    | Artificial energy is used as a source                                                                                                                                                                                                                                                                                                                  | Naturally emitted energy is used as a<br>source |          |  |  |  |  |
|     |                                                                                                                                                    | In active system sensors are able to                                                                                                                                                                                                                                                                                                                   | In passive system sensors can obtain            | 01 M for |  |  |  |  |
|     | obtain measurement anytime (day &<br>night)measurement in day time onlyActive system used their own source forIn passive system sensors can detect |                                                                                                                                                                                                                                                                                                                                                        |                                                 |          |  |  |  |  |
|     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        |                                                 |          |  |  |  |  |
|     |                                                                                                                                                    | illumination.                                                                                                                                                                                                                                                                                                                                          | energy when the naturally occurring             |          |  |  |  |  |
|     |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        | energy is available                             |          |  |  |  |  |
|     |                                                                                                                                                    | It is costlier                                                                                                                                                                                                                                                                                                                                         | It is economical                                |          |  |  |  |  |
| Q.4 | e)<br>Ans.                                                                                                                                         | Derive the relation between radius and degree of curve.<br>The degree of a curve is defined as the angle subtended at the centre of the curve by a chord of 30 m length.                                                                                                                                                                               |                                                 |          |  |  |  |  |
|     |                                                                                                                                                    | Let D be the degree of a curve i.e., it is the a<br>C1C2 of 30 m length as shown in fig.<br>Thus,<br>Sin $(D^0/2) = 15/R$<br>R = 15 / Sin $(D^0/2)$<br>When D is small , Sin $(D/2) = (D/2)$ radians<br>Therefore,<br>R = 15 / [ $(D/2)^* (\Pi/180)$ ]<br>R = 1718.89/D<br>Therefore,<br>R = 1719/D degrees<br>If chord is 20 m then R = 1146/D degree | ingle subtended at its centre O by a chord      | 03 M     |  |  |  |  |



|     | 0      |                                                                                                                         |                          |                           |                                     | <u> </u>           |                              |                        | <u> </u>                                |      |
|-----|--------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------------------|--------------------|------------------------------|------------------------|-----------------------------------------|------|
| Q.4 | f)     | 45.50 a                                                                                                                 |                          |                           |                                     |                    |                              |                        | ir reduced levels<br>47 m between P and |      |
|     | Ans.   | Q.                                                                                                                      |                          |                           |                                     |                    |                              |                        |                                         |      |
|     | 7 1101 |                                                                                                                         |                          |                           |                                     |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         |                          | 45.                       | 46.00<br>50 m <sup>P</sup><br>- x1- | m<br>0.5 n<br>x2 – | 47.00 m<br>1.5 m             | Q<br>47.50 m<br>2.00 m |                                         | 02 M |
|     |        |                                                                                                                         |                          |                           |                                     | ×2 —               |                              |                        |                                         |      |
|     |        |                                                                                                                         | Let,                     |                           |                                     | 10 n               | n                            |                        |                                         |      |
|     |        | X <sub>1</sub> be the distance of contour of RL 46.00 from P                                                            |                          |                           |                                     |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | From fig.                | 1 NE 40.00                | nomn                                |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         |                          | ity of trian              | gle                                 |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | (2/10) = ((<br>Therefore |                           |                                     |                    |                              |                        |                                         | 02 M |
|     |        |                                                                                                                         | $X_1 = 2.5 \text{ m}$    |                           |                                     |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | Similarly                |                           |                                     |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         |                          | distance o                | f contour of I                      | RL 47.             | .00 from P                   |                        |                                         |      |
|     |        |                                                                                                                         | From fig.<br>By similar  | ity of trian              | مام                                 |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | (2/10) = (1              |                           | BIC                                 |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | Therefore                |                           |                                     |                    |                              |                        |                                         |      |
| 0.5 |        |                                                                                                                         | $X_2 = 7.5 \text{ m}$    |                           |                                     |                    |                              |                        |                                         |      |
| Q.5 | a)     | -                                                                                                                       | -                        | D of the fo<br>averse tab | llowing:<br>le is obtained          | t as fr            | allows                       |                        |                                         |      |
|     | ч,     |                                                                                                                         |                          | Line                      | Length (                            | 1                  | Bearing                      |                        |                                         |      |
|     |        |                                                                                                                         |                          | AB                        | 100.00                              |                    | ?                            |                        |                                         |      |
|     |        |                                                                                                                         |                          | BC                        | 80.50                               |                    | 140 <sup>0</sup> 30'         |                        |                                         |      |
|     |        |                                                                                                                         |                          | CD                        | 60.00                               | )                  | 220 <sup>0</sup> 30'         |                        |                                         |      |
|     |        | Calcula                                                                                                                 | te the len               | DA<br>oth of DA a         | nd bearing c                        | of AB              | 310 <sup>0</sup> 15'         |                        |                                         |      |
|     | Ans.   | Line                                                                                                                    | Length<br>(m)            | WCB                       | R.B.                                | 1                  | tude L=lcos θ                | De De                  | eparture D=lsin $\theta$                |      |
|     |        | AB                                                                                                                      | 100.00                   | ?                         | θ                                   |                    | cos θ                        |                        | 0 sin θ                                 |      |
|     |        | BC                                                                                                                      | 80.50                    | 140 <sup>0</sup> 30'      | S39 <sup>0</sup> 30'E               |                    | 5cos39 <sup>0</sup> 30'=     |                        | 0.5sin39 <sup>0</sup> 30'=              | 04 M |
|     |        |                                                                                                                         | 60.00                    | 220 <sup>0</sup> 30'      | S40 <sup>0</sup> 30'W               | -62.               | $\frac{12}{0\cos 40^{0}30'}$ |                        | 1.20<br>0.0sin40 <sup>0</sup> 30'=      |      |
|     |        | CD                                                                                                                      | 00.00                    | 220 30                    | 340 30 VV                           | -60.<br>-45.       |                              |                        | 8.97                                    |      |
|     |        | DA                                                                                                                      | ?                        | 310 <sup>0</sup> 15'      | N49 <sup>0</sup> 45'W               |                    | 49 <sup>0</sup> 45'=         |                        | in49 <sup>0</sup> 45'=                  |      |
|     |        | +0.6461 -0.7631                                                                                                         |                          |                           |                                     |                    |                              |                        |                                         |      |
|     |        | For closed traverse ΣL = 0 and ΣD = 0<br>100cosθ – 62.12 -45.62 + 0.646 l = 01<br>100sinθ + 51.2 – 38.97 – 0.763 l = 02 |                          |                           |                                     |                    |                              |                        |                                         |      |
|     |        |                                                                                                                         | 10                       |                           | 30.97 - (                           | 0.703              | i – U                        | 2                      |                                         |      |



|     | T    |                                                                                 |          |
|-----|------|---------------------------------------------------------------------------------|----------|
|     |      | $100\cos\theta = 107.74 - 0.6461$ A                                             | 02 M     |
|     |      | 100sinθ = -12.23 + 0.763  B                                                     |          |
|     |      | Squaring and adding eqn. A and B                                                |          |
|     |      | $(100\cos\theta)^2 = (107.74 - 0.646  )^2$                                      |          |
|     |      | $= 11607.9 - 139.2   + 0.417  ^{2}$                                             |          |
|     |      | $(100 \sin \theta)^2 = (-12.23 + 0.763 I)^2$                                    |          |
|     |      | $= 149.57 - 18.66   + 0.58  ^2$                                                 |          |
|     |      | $11607.9 + 149.57 - 139.2   - 18.66   + 0.417  ^{2} + 0.58  ^{2}$               |          |
|     |      | $= 11757.47 - 157.86   +  ^2$                                                   |          |
|     |      | $10000 =  ^2 - 157.86  + 11757.47$                                              |          |
|     |      | $L^2 - 157.86 I + 1757.47 = 0$                                                  |          |
|     |      | Solving quadratic equation                                                      |          |
|     |      | I = 145.8 and 12.05                                                             |          |
|     |      | Considering I = 145.8 and putting in eqn. A                                     |          |
|     |      | $100\cos\theta = 107.74 - 0.646 (145.8)$                                        |          |
|     |      | = 13.553                                                                        |          |
|     |      | $\cos \theta = 0.136$ C                                                         |          |
|     |      | Put I = 145.8 in eqn. B                                                         |          |
|     |      | ·                                                                               |          |
|     |      | 100sinθ = -12.23 + 0.763(145.8)<br>sin θ = 0.99                                 |          |
|     |      |                                                                                 |          |
|     |      | $\tan \theta = \sin \theta / \cos \theta = 0.99 / 0.136$                        |          |
|     |      | = 7.28                                                                          |          |
|     |      | $\theta = \tan^{-1} 7.28$                                                       |          |
|     |      | $= 82^{0}11'$                                                                   |          |
|     |      | $\cos \theta$ and $\sin \theta$ both are +ve                                    |          |
|     |      | AB lies in 1 <sup>st</sup> quadrant.                                            |          |
|     |      | Bearing of AB = N82 <sup>0</sup> 11'E                                           | 02 M     |
|     |      | OR                                                                              |          |
|     |      | Considering I = 12.05 and putting in eqn. A                                     |          |
|     |      | $100\cos\theta = 107.74 - 0.646$ (12.05)                                        |          |
|     |      | = 99.96                                                                         |          |
|     |      | $\cos \theta = 0.999$ C                                                         |          |
|     |      | Put l = 12.05 in eqn. B                                                         |          |
|     |      | $100\sin\theta = -12.23 + 0.763(12.05)$                                         | OR       |
|     |      | $\sin \theta = -0.02898$                                                        |          |
|     |      | $\tan \theta = \sin \theta / \cos \theta = 0.02898 / 0.999$                     |          |
|     |      | = 0.029                                                                         |          |
|     |      | $\theta = \tan^{-1} 0.029$                                                      |          |
|     |      | $= 1^{0}40'$                                                                    |          |
|     |      | $\cos \theta$ is + ve and $\sin \theta$ is -ve                                  |          |
|     |      | AB lies in IV quadrant.                                                         |          |
|     |      | Bearing of AB = N1 <sup>0</sup> 40'W                                            | 02 M     |
|     |      | Note: There may be variation in minutes.                                        | -        |
| Q.5 | b)   | Explain sources of error in Theodolite.                                         |          |
|     | Ans. | i. Non adjustment of plate bubble:                                              |          |
|     |      | When the plate levels are centered the vertical axis may not be truly vertical. | Any four |
|     |      | This would cause an error in angle measurement.                                 | 02 M for |
|     |      | ii. Line of collimation not being perpendicular to horizontal axis.             | each     |
| L   | 1    |                                                                                 |          |



|     | T    |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1    |
|-----|------|-------------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
|     |      |                                                             |                                                        | • • •                     | lar to vertical axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |
|     |      |                                                             |                                                        |                           | to axis of telescope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |
|     |      |                                                             |                                                        | and outer axes.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | vi. Gra                                                     | dation not being                                       | g uniform.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             | nier being ecce                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | viii. Th                                                    | e clamp screws                                         | may slip.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
| Q.5 | c)   | A tacheomete                                                | r was set up at s                                      | station A and foll        | owing readings were tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | en on a staff held |      |
|     |      | vertically.                                                 |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | Instrument                                                  | Staff Station                                          | Vertical angle            | Hair Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remark             |      |
|     |      | Station                                                     |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | A                                                           | B.M.                                                   | 8 <sup>0</sup>            | 1.050, 1.105, 1.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R.L. of            |      |
|     |      | A                                                           | В                                                      | -5 <sup>0</sup>           | 0.950, 1.055, 1.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B.M.=500 m         |      |
|     |      |                                                             | _                                                      | -                         | rument was fitted with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |
|     |      |                                                             |                                                        | stance AB and R.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     | Ans. | Data: B.M. =50                                              |                                                        | Statice AD and N.         | UI D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |
|     | Ans. |                                                             | JU.UU M                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | (f / i) = 100                                               |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | (f + d) = 0                                                 |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | si)                |      |
|     |      |                                                             |                                                        |                           | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |      |
|     |      |                                                             |                                                        |                           | and an and a state of the state | h1 = 1.105         | 01 M |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           | in the formation of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B. M. = 500.000    |      |
|     |      | 2 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -                      | 499.587                                                | A REALIZED IN             | 8° INSTRUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NT AXIS            |      |
|     |      | $v_2$                                                       | 52                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | h2                                                          |                                                        | A                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | B 496.                                                      | 709 ?                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | В 490.                                                      | (20.84)                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             | 400 4050                                               | $-110 - 0^{0}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             | 160 – 1.050) = (                                       | J.11, ⊎ <sub>1</sub> = 8° |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 01 M |
|     |      | $h_1 = 1.2$                                                 |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | $V_1 = (f / i)S_1 x (sin2\theta_1 / 2) + (f + d)sin \theta$ |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             | 0 x 0.11 x [(sin 1                                     | .6) / 2)] + 0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             | x 0.138                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 01 M |
|     |      | Elevati                                                     | vation of Instrument axis = R.L. of B.M. + $h_1 - V_1$ |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | = 500.000 + 1.105 - 1.518                                   |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | = 49                                                        | 99.587 m                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 01 M |
|     |      |                                                             |                                                        |                           | S <sub>2</sub> = (1.160 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |      |
|     |      |                                                             | 0 x 0.21 x [(sin                                       |                           | = 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                  | 02 M |
|     |      |                                                             | 823 m                                                  | -,, -,, •                 | $h_2 = 1.055$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |      |
|     |      |                                                             | B = Elevation of                                       | $ \Delta - V_a - h_a$     | $\theta_2 = 5^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |      |
|     |      |                                                             | 9.587 – 1.823 –                                        |                           | 02 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 01 M |
|     |      |                                                             |                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |
|     |      | l(AB) =                                                     | ŗ                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |



|     |      | $D = \frac{1}{1} $ |           |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |      | $D = (f / i) S_2 \cos^2 \theta_2 + (f + d) \cos \theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|     |      | $= 100 \times 0.21 \cos^2 5 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|     |      | = <u>20.84 m.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 M      |
| Q.6 |      | Attempt any TWO of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
|     | a)   | Two tangents AB and BC intercept at a point B at 150.5 m chainage. Calculate all the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|     |      | necessary data for setting out a circular curve of 100 m radius and deflection angle 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|     |      | by the method of offsets from the long chord.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|     | Ans. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
|     |      | $\Phi_{\overline{1}}^{1}30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | T1 025 015 010 05 00=3.44 T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|     |      | A $-\frac{x_2-x_1}{x_4-x_3-x_2-x_1}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
|     |      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | Φ/2=15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|     |      | \$\phi_2=15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|     |      | F /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | Length of Long chord = 2Rsin $\phi$ /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|     |      | = 2 x 100 sin 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|     |      | = 52 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 M      |
|     |      | Half-length of Long chord = 52/2 = 26 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|     |      | Length of Tangent = R tan $\phi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|     |      | = 100 x tan 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|     |      | = 26.80 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01 M      |
|     |      | Chainage at T <sub>1</sub> = 150.50 – 26.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|     |      | = 123.70 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2 M     |
|     |      | Length of curve = $\pi R \phi/180$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|     |      | $= \pi x \ 100 \ x \ 30/180$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|     |      | = 52.35 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01 M      |
|     |      | Chainage of $T_2 = 123.70 + 52.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|     |      | = 176.05 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2 M     |
|     |      | The ordinates are calculated at 5 m interval from the center towards T1 for the left half.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|     |      | $O_0 = R - SQRT[R^2 - (L/2)^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|     |      | $= 100 - SQRT[100^2 - 26^2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|     |      | = 3.44  m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|     |      | $O_5 = SQRT[R^2 - X_1^2] - (R - O_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|     |      | $= SQRT[100^2 - 5^2] - (100 - 3.44)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 . 4 5 |
|     |      | = 3.31  m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2 M for |
|     |      | $O_{10} = SQRT[100^2 - 10^2] - 96.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | each      |
|     |      | = 2.94  m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ordinate  |
|     |      | $O_{15} = SQRT[100^2 - 15^2] - 96.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|     |      | = 2.31  m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|     |      | $O_{20} = SQRT[100^2 - 20^2] - 96.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|     |      | = 1.42 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |



|                                                                                                                                                                                                              |      |                                                                                                                                    | 1       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
|                                                                                                                                                                                                              |      | $O_{25} = SQRT[100^2 - 25^2] - 96.56$                                                                                              |         |  |  |  |  |
|                                                                                                                                                                                                              |      | = <b>0.26 m.</b><br>$O_{26} = SQRT[100^2 - 26^2] - 96.56$                                                                          |         |  |  |  |  |
|                                                                                                                                                                                                              |      | = 0                                                                                                                                |         |  |  |  |  |
|                                                                                                                                                                                                              |      |                                                                                                                                    |         |  |  |  |  |
|                                                                                                                                                                                                              |      | T1 142 2.31 2.94 3.31 O0=3.44                                                                                                      | 1/2 M   |  |  |  |  |
|                                                                                                                                                                                                              |      | 0.26                                                                                                                               | 1/2 101 |  |  |  |  |
|                                                                                                                                                                                                              |      | $-10m^{-5m}$                                                                                                                       |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <u>20m 15m</u>                                                                                                                     |         |  |  |  |  |
|                                                                                                                                                                                                              |      | ~25m                                                                                                                               |         |  |  |  |  |
|                                                                                                                                                                                                              |      | 26m                                                                                                                                |         |  |  |  |  |
| Q.6b)Find the quantity of water from the contour map of a reservoir the following contour<br>areas were recorded by planimetered the top water level is 200 m and lowest plant in<br>the reservoir is 180 m. |      |                                                                                                                                    |         |  |  |  |  |
|                                                                                                                                                                                                              |      | Contour (m) 200 195 190 185 180 175                                                                                                |         |  |  |  |  |
|                                                                                                                                                                                                              |      | Area in m <sup>2</sup> 3850         3450         2600         800         450         200                                          |         |  |  |  |  |
|                                                                                                                                                                                                              | Ans. | $A_1 = 3850, A_2 = 3450, A_3 = 2600, A_4 = 800, A_5 = 450, A_6 = 200.$                                                             | 02 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | Contour interval = 5 m = h; Use trapezoidal formula                                                                                | 01 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | $V = h/2 [(A_1 + A_n) + 2(A_2 + A_3 + \dots + A_{n-1})] - \dots + A_{n-1}]$                                                        | 02 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | = 5/2 [3850 + 200) + 2(3450 + 2600 + 800 + 450)]<br>= 2.5[4050 + 2(7300)]                                                          | 03 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | $= 46625 \text{ m}^3$                                                                                                              | 03 101  |  |  |  |  |
|                                                                                                                                                                                                              |      | The quantity of water in the reservoir = $46625 \text{ m}^3$ .                                                                     |         |  |  |  |  |
| Q.6                                                                                                                                                                                                          | c)   | Describe the use of digital theodolite for measurement of horizontal and vertical angle.                                           |         |  |  |  |  |
|                                                                                                                                                                                                              | Ans. | Digital Theodolite for measurement of horizontal and vertical angle.                                                               |         |  |  |  |  |
|                                                                                                                                                                                                              |      | Measuring horizontal angle:                                                                                                        |         |  |  |  |  |
|                                                                                                                                                                                                              |      | 1. Setting up Tripod:                                                                                                              |         |  |  |  |  |
|                                                                                                                                                                                                              |      | • Open the tripod legs sufficiently enough for the instrument to be stable.                                                        |         |  |  |  |  |
|                                                                                                                                                                                                              |      | Assure that the station point is located directly beneath the center hole in                                                       | 01 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | the tripod below.                                                                                                                  |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <ul> <li>Firmly press tripod shoes into the ground.</li> <li>Level the top surface of tripod head.</li> </ul>                      |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <ul> <li>Level the top surface of tripod head.</li> <li>2. Centering:</li> </ul>                                                   |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <ul> <li>The centering can be performed either by pimb bob or optical plummet.</li> </ul>                                          |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <ul> <li>Suspend the plumb bob from the hook provided at tripod mounting screw.</li> </ul>                                         |         |  |  |  |  |
|                                                                                                                                                                                                              |      | <ul> <li>Slightly loose the screw and carefully slide the instrument about tripod head,</li> </ul>                                 |         |  |  |  |  |
|                                                                                                                                                                                                              |      | • Slightly loose the screw and carefully slide the instrument about throu head, such that plumb bob is exactly over station point. |         |  |  |  |  |
|                                                                                                                                                                                                              |      | 3. Leveling:                                                                                                                       |         |  |  |  |  |
|                                                                                                                                                                                                              |      | • Loosen the upper plate clamp, rotate the instrument and keep plate level                                                         |         |  |  |  |  |
|                                                                                                                                                                                                              |      | parallel with any two leveling screws.                                                                                             | 01 M    |  |  |  |  |
|                                                                                                                                                                                                              |      | Bring the plate bubble in the center by moving leveling screws.                                                                    |         |  |  |  |  |
|                                                                                                                                                                                                              |      | • Turn instrument through 90 <sup>0</sup> in horizontal plane and move the bubble to the                                           |         |  |  |  |  |
|                                                                                                                                                                                                              |      | center by third screw.                                                                                                             |         |  |  |  |  |



| <br> |                                                                                                        |       |
|------|--------------------------------------------------------------------------------------------------------|-------|
| 4    | Repeat the steps so that bubble remains in center for all positions.                                   |       |
| 4.   | Removing /eliminating parallax:                                                                        | 01 M  |
| -    | • Focusing eye piece and object glass eliminate the parallax.                                          | 01 M  |
| 5.   | Initial setting procedure:                                                                             |       |
|      | • Turn on the power switch                                                                             |       |
|      | • Set minimum angle unit (5" or 10"); vertical 0 <sup>0</sup> orientation with horizontal or           |       |
|      | zenith or compass angle unit.                                                                          | 01.14 |
|      | Automatic vertical compensation.                                                                       | 01 M  |
|      | Automatic power switch.                                                                                |       |
| 6.   | Operation:                                                                                             |       |
|      | i. Horizontal angle zero reset:                                                                        |       |
|      | <ul> <li>Depress the (RST) key to reset the horizontal angle to 0<sup>0</sup></li> </ul>               |       |
|      | <ul> <li>Depress the (R/L) key to measure angle counter clockwise/clockwise.</li> </ul>                |       |
|      | <ul> <li>Depress (Hold) key. Direct telescope towards object say A. HA – 0<sup>0</sup>0'0".</li> </ul> |       |
|      | Bisect the object precisely.                                                                           |       |
|      | <ul> <li>Release (Hold); Depress (Hold) key again rotate telescope in horizontal</li> </ul>            |       |
|      | plane clockwise.                                                                                       | 02.14 |
|      | <ul> <li>Bisect the object B precisely. HA – 30<sup>0</sup>20'5".</li> </ul>                           | 02 M  |
|      | <ul> <li>Fix clamping screw, read the displayed angle.</li> </ul>                                      |       |
|      | <ul> <li>By pressing hold key and releasing the upper clamping screw. The</li> </ul>                   |       |
|      | number of repetitions can be taken and average angle can be worked                                     |       |
|      | out.                                                                                                   |       |
|      | ii. Vertical angle zero reset:                                                                         |       |
|      | • The orientation of vertical 0 <sup>0</sup> reference angle can be set in the initial                 |       |
|      | setting mode for either zenith 0 <sup>°</sup> , horizontal 0 <sup>°</sup> or compass scale.            |       |
|      | • With reference to above setting VA is measured by moving the telescope                               | 02 M  |
|      | in the vertical plane.                                                                                 |       |
|      | • By depressing $(\%/VA)$ key the angle can be measured in $0^{\circ}$ or % indicating                 |       |
|      | grade measurement.                                                                                     |       |
|      |                                                                                                        |       |