

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/23

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	a) (i)	Attempt any SIX of the following: In a contour map, if contours are crossing each other, what will be nature of topography? Draw the sketch to support your answer. Ans. If contours are crossing or intersecting each other, then there is overhanging cliff as shown in figure 1 below.	1	12
		A OVERHANGING CLIFF B A OVERHANGING CLIFF A OVERHANGING CLIFF OVERHANGING CLIFF OVERHANGING CLIFF A OVERHANGING CLIFF A OVERHANGING CLIFF O	1	2
	(ii)	What is a contour map? Write any two objects of preparing contour map. Ans: Contour map: It the map showing nature of topography of any particular field with the help of contour lines indicating reduced levels of ground.	1	

Model Answer: Summer 2016

Page No: 2/23

Subject & Code: Advanced Surveying (17419)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	a) (ii)	 Objects of preparing contour map: Contour map is prepared for the following To know the nature of ground (i.e. elevation, depression, slope etc.) of the field under consideration. To decide the feasible site of dam construction by knowing maximum probable reservoir storage capacity. To finalise the best suitable alignment of roadway or railway by knowing earthwork calculations. To excavate the canal and contour cut trenches along hillside under watershed management works. 	1/2 mark each	2
	(iii)	Give the simplest method of finding the area of zero of a zero circle from manufacturers table. Ans. The area of zero circle can be find out simply by using following	1	
		formula. A = M x C Where, A = Area of zero circle M = Multiplier or multiplying constant provided in manufacturers table C = Constant of planimeter provide in	1	
		manufacturers table		2
	(iv)	Write the use of Gale's table. Ans. Gale's traverse table is useful to find out independent coordinates of theodolite traverse by applying necessary corrections to consecutive co-ordinates of the same traverse. Further these independent co-ordinates are useful to draw the accurate traverse without linear and angular errors.	2	2
	(v)	 State any four uses of transit theodolite. Ans. Transit theodolite is useful for the following. 1. To measure the horizontal and vertical angles between survey stations. 2. To measure deflection angles between survey lines. 3. To measure horizontal distances when used as tacheometer. 4. To measure vertical distances, heights of ground points. 5. To measure magnetic bearing of survey lines by attaching tubular compass to it. 6. To prolong or extend the survey line up to required destination. 	mark each (Any four)	2

Page No: 3/23

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	(vi)	 State any two situations under which tacheometry is preferred. Ans. Tacheometry is preferred in following situations. 1. When horizontal distances can't be measured by chaining on highly uneven ground. 2. When vertical distances or reduced levels can't be measured due to more elevated or depressed ground using ordinary level. 3. When it is necessary to fill the details in topographic map and contour map with low degree of precision. 	1 mark each (Any two)	2
	(vii)	List any four modern survey instruments. Ans. Following are the modern survey instruments. 1. Digital Level 2. Electronic Distance Meter (EDM) 3. Micro-optic Theodolite 4. Total Station 5. Global Positioning System (GPS) Device 6. Aerial Camera 7. Remote Sensors	mark each (Any four)	2
	(viii)	Define degree of curve. Ans. Degree of curve: The angle subtended at the centre by a standard chord of 30 m length, is known as degree of curve.	2	2

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419) Page No: 4/23

Que. No.	Sub. Que.		Model Answe	ers	Marks	Total Marks
Q.1	(b) (i)		ot any <u>TWO</u> of the following: ntiate between active system and	nd passive system of remote		8
		Si	: Active system	Passive system		
		N	•	2 4552 (6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
				The system in which		
			manmade resources of	natural sources of energy		
			energy are used is known as	are used is known as		
			active system of remote	passive system of remote		
			sensing.	sensing.		
		2	The electromagnetic waves are transmitted and reflected back from ground to record the data.	The natural sunrays are allowed to impact on ground objects and received back from earth surface to collect data.	1	
			The active remote sensors like satellite or airborne sensors, microwave sensors, RADAR etc. Are useful.	The passive remote sensors like film photography, infrared and radiometers are useful.	mark each (any four)	
		4	It gives more accurate	This system may give less		
			details of ground objects	accurate outputs because		
			even from higher elevation.	of variation in sunlight.		
		5	It is widely applicable in flood, earthquake disaster management and subsoil	This system is limitedly useful in land use and land cover analysis and small		
			exploration and subson	scale mapping.		4
	(ii)	What a	are the checks applied in case of			
		1. (Checks applied in closed travers			
			_	d included angles should be nere N=Number of sides of	1	
			b. The sum of all calculate	ed exterior angles should be =Number of sides of closed	mark each (any two)	
				n angles should be equal to		
			_	ine of closed traverse should + or – 180°; measured at first		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419) Page No: 5/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	b) (ii)	 2. Checks applied in open traverse: a. For long and precise open traverse, an angular error is determined by astronomical observations at suitable intervals. b. The suitable cut-off lines are taken on accessible stations to make temporary closed traverse. Then the difference of fore and back bearings of these cut-off lines should be 180°. c. The lines joining from any specific station are plotted on sheet. Then the bearings of these lines are checked ensuring that all are passing through that specific station. 	1 mark each (any two)	4
	(iii)	Draw neat sketch of contour for the following. Assume suitable contour values and show the same. 1.Pond 2. Ridge 3. Saddle 4. Hill Ans. Fig. 4(a) Pond Fig. 4(b) Ridge Fig. 4(d) Hill Fig. 4(c). Saddle	1 mark each	4

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419) Page No: 6/23

Que. No.	Sub. Que.		Model Answ	ers	Marks	Total Marks
Q.2	a)	Attempt any <u>FOUR</u> of the following: Differentiate between contour interval and horizontal equivalent. (Minimum two points) Draw plan and section view to support your answer.				16
		Ans. Sr. No. 1	Contour Interval It is the vertical distance between two successive contours. It remains constant irrespective of nature of ground	1	1 mark each	
		(Fig. 2 Contour Thorizont	GO T CI = 10 For the city of	1 mark for plan 1 mark for section	4
	b)	on contour Ans. Grade Cogradient ale	r map with suitable sketch. ntour - It is the contour esta ong the hill side. OR	dure to locate grade contour blished on a specific grade or the points of equal grade or	1	

Model Answer: Summer 2016

Page No: 7/23

Subject & Code: Advanced Surveying (17419)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	b)	 Procedure for establishing grade contour on ground: The grade contour along hill side can be established by following procedure. Suppose a grade contour of 1 in 30 is to be established on ground. The points of grade contour can be marked approximately using Abney level. By setting the instrument of tripod do all temporary adjustments. Take the reading on bench mark of R.L. say 100 m as B.S. reading 0.400 m; so that H.I. will be 100.400 m. Therefore R.L. of first point (40 m away in straight line) will be 100.000 - (40/30) = 98.67 m. And therefore to get this R.L. on ground, the staff reading should be 100.400 - 98.67 = 1.73 m Now, the staff is held 40 m away from bench mark and up and down movement is done to get 1.73 m reading and then point is marked on ground with peg. The above procedure is continued in the same straight line and corresponding points are marked on ground. Finally the line joining all the marked points will give us the required grade contour of 1 in 30 accurately. 	2	
		100 B 98 94	1	4

Model Answer: Summer 2016

Page No: 8/23

Subject & Code: Advanced Surveying (17419)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	c)	Calculate the area of figure in hectares, drawn to scale of 1 cm =		141a1K
		120 m, from the following data – I.R. = 2.695, F.R. = 9.148. Zero of		
		dial passed the fixed index mark twice in clockwise direction.		
		Area corresponding to one revolution of the roller is 100 sq.cm.		
		Anchor point was outside the figure.		
		Ans.		
		Given : I.R. = 2.695, F.R. = 9.148, N = $+2$, M = 100 sq.cm., C = 0		
		(anchor outside)		
		Scale of Map 1cm=120m.		
		Find : Area of figure in Ha = ?	1	
		Solution : By formula, $A = M (F.R I.R. \pm 10N + C)$	1	
		$A = 100 (9.148 - 2.695 + 10 \times 2 + 0)$		
		A = 100 (26.453)	1	
		A = 2645.3 sq.cm.		
		1 cm = 120 m		
		$A = 2645.3 \times 120 \times 120 \text{ sq.m.}$	1	
		A = 38092320 sq.m. To colculate area in the west 1 Hz = 10000 sq.m.	_	
		To calculate area in Ha, use 1 Ha = 10000 sq.m. A = $38092320/10000$		
		A = 3809.232H 10000 A = 3809.232Hectares.	1	_
		A = 3007.23211ectates.		4
	d)	Define tacheometry. State the principle of tacheometry with sketch.		
		Ans.		
		Tacheometry: It is the branch of angular surveying in which	1	
		horizontal and vertical distances are determined from instrumental	1	
		observations only, is known as tacheometry.		
		Principle of tacheometry: As the distance between instrument		
		station and staff station increases, the staff intercept also increases; so	2	
		that the ratio of horizontal distance to corresponding staff intercept		
		remains constant as shown below in figure 3		
		, 不 5-		
		Ts1 \\ \frac{1}{52}		
		X X		
		K 01 → X		
		k	1	
		Di De caraturt		
		$\frac{D_1}{S_1} = \frac{D_2}{S_2} = Constant$		
		31 32		
		The second of the second		4
		Fig.3. Principle of Tacheometry		•
	1		1	i

Model Answer: Summer 2016

Page No: 9/23

Subject & Code: Advanced Surveying (17419)	Subject &	Code:	Advanced	Surveying	(17419)
--	-----------	-------	-----------------	------------------	---------

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	e)	State any four uses of digital theodolite.		
		Ans.		
		The uses of digital theodolite are as follows.		
		1. To measure horizontal angle vey precisely up to one second.	1,	
		2. To measure vertical angle accurately up to one second.	mark each	
		3. To set out control points of the particular field.	(Any	
		4. To take reduced levels of ridge and valley lines accurately.	four)	4
		5. To determine horizontal distance more precisely		
	f)	Find the length and bearing of line AB, if the co-ordinates of A		
		and B are as follows.		
		Station Northing Easting		
		A 1282.5 939.8		
		B 900.2 766.4		
		Ans.		
		Given – $L_A = 1282.5$, $D_A = 939.8$		
		$L_B = 900.2, D_B = 766.4$		
		$\mathbf{Find} - 1 (\mathbf{AB}) = ?$		
		$\Theta(AB) = ?$		
		Solution –		
		Latitude of line AB i.e. $L_{AB} = L_{B-}L_{A}$		
		= 900.2 - 1282.5 = -382.3	1/2	
		Departure of line AB i.e. $D_{AB} = D_{B-} D_{A}$ = 766.4 - 939.8 = - 173.4	, 2	
			1/2	
		Length of line AB i.e. $1 \text{ (AB)} = \sqrt{((L_{AB})^2 + (D_{AB})^2)}$		
		$1 \text{ (AB)} = \sqrt{(382.3)^2 + (173.4)^2}$		
		l(AB) = 419.786 m	1	
		Reduced Bearing of line AB i.e.		
		$\Theta (AB) = \tan^{-1} (D_{AB} / L_{AB})$		
		$\theta (AB) = \tan^{-1} (173.4/382.3)$		
		$\Theta(AB) = 24.39^{0} \text{ (S-W quadrant)}$	_	
		Whole Circle Bearing of line AB i.e.	1	
		WCB (AB) = $180^{\circ} + 24.39^{\circ}$		4
		WCB $(AB) = 204.39^{\circ}$		_
			1	
	1			I

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419) Page No: 10/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	a)	Attempt any FOUR of the following: What are the different methods of contouring? Describe any one method along with sketch. Also write the situation where it is suitable Ans. There are two methods of contouring:- 1. Direct Method 2. Indirect Method – a. By squares b. By cross section	1	16
		c. By tacheometric Direct method of contouring – In this method of contouring, the contours of required reduced level are plotted on ground itself. The procedure of direct method of contouring is as follows-		
		Figure No. 1: Direct Method of Contouring Figure No. 1: Direct Method of Contouring	2 mark for explan ation	
		 Set the level instrument at the center O as shown in figure 1 and do all temporary adjustments like levelling and focusing. Take the first reading on bench mark (Reduced Level i.e. R.L. 100 m) as back sight reading (Say 1.200 m), so that R.L. of instrument axis will become 101.200 m. If the contour of 100 m is required to plot, then reading on staff should be 101.200 – 100 = 1.200 m. 		
		4. This reading of 1.200 m is searched in radial directions (say 300 around instrument station O) by looking through telescope of level instrument. Once these points are found out, then they are marked with red coloured pegs. 5. Similarly, to set 99, 98, and 97 m contour, the reading on staff should be 2.2, 3.2 and 4.2 m respectively. These all contours can be searched in same radial directions and then marked with blue, green and yellow coloured pegs respectively.	1 mark for situati on	
		6. By joining these identical coloured pegs, we get the required contours on ground by this direct method of contouring. (Note:- any other method from above should be considered)		4

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 11/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	b)	State the component parts of micro optic theodolite. How it is superior to a transit theodolite. Also write the situation where it is suitable. Ans. Component parts of micro optic theodolite 1) Telescope 2) Magnification with standard eyepiece. 3) Level tube 4) Foot screws. 5) Tribatch & Trivet 6) Optical micrometer 7) Changing nob 8) Horizontal circle	mark each (Any four)	
		 9) Verticle circle. Superior to Transit theodolite: It is a recent development in surveying instrument which gives the 1" accuracy in measuring the angle. This instrument is most suitable This instrument is durable for harsh environments. It is simple in use. 	1 mark each (Any two)	4
	c)	Give the classification of curve and Define 1.Transition curve 2. Reverse curve Ans. Classification of curve is as follows-		
		1) Horizontal curve a) Simple curve b) Compound curve c) Reverse curve d) Transition curve	1	
		e) Lemniscate curve 2) Vertical curve a) Summit curve b) vally curve	1	
		Transition curve:- A curve of variable radius is known as a transition curve. In railways, such a curve is provided on both sides of a circular curve to minimize super elevation	1	
		TRANSITION CURVE T1 O CIRCULAR CURVE TRANSITION CURVE CURVE C C		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)	Page No. 12/23
Subject & Code. Advanced Surveying (17419)	1 age No. 14/45

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIGINS	Marks
Q.3	c)	Reverse curve:- A reverse curve consist of two arc bending in opposite directions, their centers lie on opposites sides of the curve. They have one common tangent.	1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4
	d)	State any four applications of remote sensing in civil engineering.		
		Ans. Applications of remote sensing –		
		Remote sensing is widely applicable in the following areas.		
		1. Resource exploration – The underground resources like		
		fossil fuels, mineral and oil deposits can be explored using		
		remote sensing. The geological features like faults, fractures,		
		dykes etc can be determined using this.		
		2. Environmental prediction – The prediction of probable	1 mark	
		precipitation and related environmental changes can be made	each	
		base of remote sensing techniques.	(Any four)	
		3. Land use and land cover analysis – By using remote sensing		
		principles, one can analyse land use and land cover of any		
		locality.		
		4. Flood or feminine relief - Remote sensing is very effective in		
		case of flood and drought prone areas.		
		5. Navigation routes – The navigational routes of road, railway		
		and airways can be controlled using remote sensing.		
		6. Determination of Topography – The various ground features		4
		like hill, valley, trees, houses etc. can be determined in highly		
		steep slopes.		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)	Page No. 13/23
Bubject & Code. Havaneed But veying (17412)	1 uge 110. 15/25

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.3	e)	What is meant by zero circle? State the advantages of digital		
		planimeter over polar planimeter.		
		Ans.		
		Zero circle:- When the tracing point is moved along a circle without		
		rotation of the wheel i.e. when the wheel slides without any change in	1	
		reading ,the circle is known as the zero circle or circle of correction.		
		T ROOM WARREN	1	
		Advantages of digital planimeter - 1) It does not required to take the reading. 2) No calculations are required for area. 3) It gives more accurate reading 4) Less time required for measurement	1½ mark each	4
	f)	Enlist the advantages and disadvantages of total station Ans:-		
		Advantages of Total station -	1/2	
		1) Great speed of the work	mark	
		2) Better accuracy in the measurements 3) Low power consumptions	each	
		3) Low power consumptions4) Less time required for work.	(any four)	
		5) Less man power required		
		Disadvantages of Total station -	1	
		1) Its high initial cost	mark each	4
		2) There are no effective checks over its measurements.	Cacii	_
Q.4		Attempt any <u>FOUR</u> of the following:		16
	a)	Calculate the ordinates at 7.5 m intervals for a circular curve, given that the length of long chord is 80m and radius of curve is 130m. use exact formula.		
		Ans:-		
		Given data :- Length of long chord L=80m		
		Radius=130m,		
		Ordinates=7.5m,		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 14/23

No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	Zuc.	Take half length of long chord=80/2=40m	1	TITUENS
		Mid ordinate		
		Oo = $R - \sqrt{(R)^2 - (L/2)^2}$	1/2	
		$= 130 - \sqrt{(130)^2 - (80/2)^2}$	/2	
		= 6.31 m		
		$O_x = \sqrt{(R)^2 - (X)^2} - (R-Oo)$ $O_{7.5} = 6.10m$	1/2	
		$O_{7.5} = 0.10$ M $O_{15} = 5.44$ m	1/2	
		$O_{15} = 3.44$ M $O_{22.5} = 4.35$ m	1/2	
		$O_{30} = 2.80 \text{m}$	1/2	
		$O_{37.5} = 0.78$ m	1/2	4
		$O_{40} = 0m$		
	b)	Define following terms and give any two components of each: 1. GIS 2. GPS		
		Ans. GIS:- A geographic information system is a computer based tool that	1	
		allows you to create, manipulate, analyze ,store & display information	1	
		based on its location.		
		Components:- 1) hardware 2) Software	1	
		GPS:- A global positioning system is a satellite navigation system	1	
		used to determine ground position &location speed and direction.		4
		Components:- 1) Antenna 2) Radio frequency	1	
	c)	Explain temporary adjustments of digital level.		
		Ans. Temporary adjustment of digital level:-		
		1) Setup stability:- Set tripod legs wide apart to increase the		
		stability of the setup.		
		2) Centering:- Setup the tripod roughly above the station point The tripod band plate should be approximately herizontal	1	
		.The tripod head plate should be approximately horizontal. Hook the plumb line into the retaining screw and set up the	mark	
		tripod roughly centered above the ground mark.	for	
		3) Levelling and fine centering:-a)Align the control unit parallel	each	
		the imaginary connecting line between two tribracth screws. 4) Level the instrument in the telescope axis and rectangularly to	step	
		it by means of the tribratch screws.		
		5) Shift the tribrach on the tripod head plate until the plumb line		
		is hanging centrally above the ground mark repeat the leveling		4
		various time if required. 6) Telescope focusing the cross hairs		•
		o, relescope rocusing the cross nams		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)	Page No. 15/23
--	-----------------------

Que.	Sub.			Model A	answers			Marks	Total
No. Q.4	Que. d)	The area	s enclosed b			as follows			Marks
∀. ₹	u)	Contour	,						
		(m)	250	255	260	265	270		
		Area (m ²)	2080	8500	16500	25200	33700		
			the volume	of water bet	ween the c	contours 25	0m and 270		
		m by							
		Ans.	apezoidal fo	rmula 2. P	'rismoidal	formula			
		Given data	ì :-						
		D=5m,		•	•			1	
			M^2 , A2=8500	$0M^2$, A3=16	$500M^2$, A	$4=25200M^2$	2,	1	
		A5=33700	$0M^2$.						
		Volume b	y Trapezoid	al formula=	D/2(A1+A	5+2(A2+A	3+A4))	1/	
				= 5/2(2080+	22700 + 279	2500 - 16500		1/2	
				= 3/2(2080+	-33/00+2(8	300+16300	+23200))	1/2	
				$=340450M^3$				1/2	
		Volume by Prismoidal formula = D/3(A1+A5+4(A2+A4)+2(A3))						1/2	
		= 5/3(2080+33700+4(8500+25200)+ 2 x 16500)						1/2	
		$=339300M^3$						1/2	4
	e)	Give any Ans.	the difference two characte	eristics of ta					
		Sr.No		odolite		Tacheome	eter		
				st accurate ent used for		neometer is	-		
		1		nt of horizon	raii	it theodolite	_		
				ical angle.		stadia diaph		1	
		2		heodolite , th measured or		case of tache ance is calcu		mark	
				chain or tap		direct form	•	each	
		_	Suitable for	-		le in case of		(any two)	
		3	hilly areas wobstacles.	with less		ction like sto ground.	eep and	(100)	
		4		ns are require		tations are re	equired to		
		4	to take readi	_		ading on fie			
			istics of tach					1	
			e value of co			moorifi4'	mahauldt.	mark	
			e telescope sl to 30 times th	-	veriul, the r	nagmmeatio	on should be	each	
			e telescope sl		ed with ana	llatic lens to	have the	(any	_
			the of $f + c = 0$		a wini ana	114110 10115 10	nave the	two)	4
			e vision throu		cope should	l give a clea	r and bright		
			age at a long	•	•	_	C		

Model Answer: Summer 2016

Que. Sub. Model Answers No. Que. O.4 f) Give the main features of total station		Page No. 16/23		
	Marks	Total Marks		
2 In the main reactives of total station				
Ans.	1 6 1 4			
1. Easy access to any desired programme and mo	de of selection			
2. Automatic atmospheric correction3. Guide message arrangement	mark			
4. Higher distance resolution	each			
5. Two speed tangent resolution	(any four)			
6. Tri axis compensation	iour)			
7. East to read arrangement		4		
8. Detachable tribranch facility				
Q.5		16		
Attempt any <u>TWO</u> of the following:		10		
a) Calculate the corrected consecutive co-ordinates f observations of traverse.	or the following			
Consecutive Co.	ordinates			
Latitude De	parture			
	260.29			
	943.99 145.54			
	830.80			
Ans.				
Line Length (m) Point Consecutive coo	ordinates			
Latitude D	eparture			
	260.20			
AB 705 A + 655.19	260.29			
AB 705 A + 655.19 BC 952.5 B +127.07	- 943.99			
AB 705 A + 655.19 - 605.19 BC 952.5 B +127.07 CD 645 C - 628.47	- 943.99 - 145.54			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C -628.47 DA 844.5 D -151.48	- 943.99 - 145.54 - 830.80			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C - 628.47 DA 844.5 D - 151.48	- 943.99 - 145.54			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C -628.47 DA 844.5 D -151.48 $\sum L = +2.31 \sum$	- 943.99 - 145.54 - 830.80 D = -1.56			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C -628.47 DA 844.5 D -151.48	- 943.99 - 145.54 - 830.80 D = -1.56			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C - 628.47 DA 844.5 D - 151.48 $\sum L = +2.31 \sum$ There are error in latitude & Departure Hence apply T Correction In Latitudes- Correction In latitudes = Total error in latitude x (1)	- 943.99 - 145.54 830.80 D = -1.56			
AB 705 A + 655.19 BC 952.5 B +127.07 + CD 645 C - 628.47 + DA 844.5 D - 151.48 - $\sum L = +2.31 \sum$ There are error in latitude & Departure Hence apply T Correction In Latitudes-	- 943.99 - 145.54 830.80 D = -1.56			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C - 628.47 DA 844.5 D - 151.48 $\sum L = +2.31 \sum$ There are error in latitude & Departure Hence apply T Correction In Latitudes- Correction In latitudes = Total error in latitude x (1)	- 943.99 - 145.54 830.80 D = -1.56 Fransit Rule			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C -628.47 DA 844.5 D -151.48 $\sum L = +2.31 \sum$ There are error in latitude & Departure Hence apply T Correction In Latitudes- Correction In latitudes = Total error in latitude x (1 that line/ Arithmetical sum of all latitudes)	- 943.99 - 145.54 830.80 D = -1.56 Transit Rule atitude of = 0.517			
AB 705 A + 655.19 BC 952.5 B +127.07 CD 645 C -628.47 DA 844.5 D -151.48 $\sum L = +2.31 \sum$ There are error in latitude & Departure Hence apply T Correction In Latitudes Correction In latitudes = Total error in latitude x (1 that line/ Arithmetical sum of all latitudes) Correction in latitude in line AB = 2.31 x (705/3147)	$\begin{array}{c} -943.99 \\ -145.54 \\ \hline 830.80 \\ \hline D = -1.56 \\ \end{array}$ Transit Rule atitude of $= 0.517 \qquad 1/2 \\ 7) = 0.699 \qquad 1/2 \end{array}$			

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 17/23

No.	Sub. Que.			M	odel Ans	wers			Marks	Total Marks		
Q.5	a)	Corrected 1	Latitude	es- Correc	ted Latiti	des = Ot	served La	ntitude +		TVICTIO		
2.5		correction in latitude										
		Corrected Latitude of Line AB = 655.19 - 0.3495= 654.673						1/2				
		Corrected Latitude of Line AB = 655.19 - 0.3495 = 654.673 Corrected Latitude of Line BC = 127.07 - 0.699 = 126.371										
									1/2			
		Corrected Latitude of Line $CD = 628.47 + 0.47 = 628.94$ Corrected Latitude of Line $DA = 151.48 + 0.62 = 152.1$							1/2			
		Corrected L	antude c	of Line Di	A = 131.4	18 + 0.62	= 132.1					
		Correction	In Depa	rtures-								
		Correction I	n Depar	ture = To	tal error	in Depart	ure x (D	eparture o	f			
		that line/ Ar	ithmetic	al sum of	all Depar	rture)						
		Correction i)5/3147) =	0.3495	1/			
		Correction i	n Depart	ture in lin	e BC = 1	.56 x(95	(2.5/3147)	= 0.4721	1/2 1/2			
		Correction i	-			,			1/2			
		Correction i	_									
		Concensi	пъсран		<i>C D11</i> – 1	.50 A (0	11.575117)	- 0.1100	/2			
		Corrected 1	Departu	res-								
		Corrected D	eparture	s = Obse	rved Dep	arture ±	correction	in				
		Departure	•		•				1/2			
		*	enarture	of Line A	AB = -26	1						
		Corrected Departure of Line AB = $-260.29+0.3495 = -259.94$ Corrected Departure of Line BC = $+943.99+0.4721=+944.462$				1/2						
									1/2			
			•	of Line I	3C = +94	13.99+ 0.	4721= +94	44.462	1/2			
		Corrected D	eparture	of Line I	BC = +94 $CD = +14$	43.99+ 0. 5.54 + 0.	4721= +94 3197 = +	44.462 145.8597				
			eparture	of Line I	BC = +94 $CD = +14$	43.99+ 0. 5.54 + 0.	4721= +94 3197 = +	44.462 145.8597	1/2			
		Corrected D	eparture eparture	of Line I	BC = + 94 CD = +14 DA = - 83	13.99+ 0. 5.54 + 0. 30.80 + 0.	4721= +94 3197 = + 4186= -83	44.462 145.8597 30.3814	1/2			
		Corrected D	Departure Departure	of Line I of Line O	BC = + 94 CD = +14 DA = - 83	13.99+ 0. 5.54 + 0. 30.80 + 0.	4721= +94 3197 = +	44.462 145.8597 30.3814	1/2			
		Corrected D	Departure Departure	of Line I of Line I of Line I	BC = + 94 CD = +14 DA = - 83	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W	4721= +94 3197 = + 4186= -83	44.462 145.8597 30.3814	1/2			
		Corrected D	eparture eparture C Latt	of Line I of Line I of Line I	3C = + 94 CD = +14 DA = - 83 Co-ordina	43.99+ 0. 5.54 + 0. 60.80 + 0. ate	4721= +94 3197 = + 4186= -83	44.462 145.8597 30.3814 ection	1/2			
		Corrected D Corrected D Line	eparture eparture C Latt	of Line I of Line I of Line I	3C = + 94 CD = +14 DA = - 83 Co-ordina	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W	4721= +94 3197 = + 4186= -83 Corre	44.462 145.8597 30.3814 ection D	1/2			
		Corrected D Corrected D Line AB BC CD	eparture eparture C Latt N 655.19	of Line I of Line I of Line I	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29	4721= +94 3197 = + 4186= -83 Corre L -0.517	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC	eparture eparture C Latt N 655.19	of Line I of Line I of Line I onsecutive itudes S	3C = + 94 CD = +14 DA = - 83 Co-ordina Depa E	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W	4721= +94 3197 = + 4186= -83 Correl L -0.517 -0.699	44.462 145.8597 80.3814 ection D +0.3495 +0.4721	1/2			
		Corrected D Corrected D Line AB BC CD	eparture eparture C Latt N 655.19	of Line I sonsecutive itudes S 628.47	3C = + 94 CD = +14 DA = - 83 Co-ordina Depa E	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29	4721= +94 3197 = + 4186= -83 Correct L -0.517 -0.699 +0.47	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	eparture eparture C Latt N 655.19 127.07	of Line I of Lin	3C = + 94 CD = +14 DA = - 83 Co-ordina Depa E	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29 830.80	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	eparture eparture C Latt N 655.19	of Line I of Lin	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E 943.99 145.54	13.99+ 0. 15.54 + 0. 10.80 +	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62 ordinate rtures	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	C Latt N 655.19 127.07	of Line I of Lin	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E 943.99 145.54	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29 830.80	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62 ordinate rtures W	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	C Latte N 655.19 127.07	of Line I of Lin	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E 943.99 145.54	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29 830.80 cutive Co-c Depa	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62 ordinate rtures	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	C Latt N 655.19 127.07	of Line I of Lin	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E 943.99 145.54	13.99+ 0. 15.54 + 0. 10.80 +	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62 ordinate rtures W	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2			
		Corrected D Corrected D Line AB BC CD	Line AB BC	of Line I of Lin	BC = + 94 CD = +14 DA = - 83 Co-ordina Depa E 943.99 145.54 ted Consectudes S	13.99+ 0. 5.54 + 0. 60.80 + 0. ate rtures W 260.29 830.80 cutive Co-c Depa E	4721= +94 3197 = + 4186= -83 Corre L -0.517 -0.699 +0.47 +0.62 ordinate rtures W	44.462 145.8597 30.3814 ection D +0.3495 +0.4721 +0.3197	1/2	8		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 18/23

Que. No.	Sub. Que.			Model Answers		Marks	Total Marks	
Q.5	b)			set up at station A taff held vertically.	and following readings		1,10,1115	
		Station	Staff Station	Vertical Angle	Hair Reading			
		A	B.M.	+7030'	0.900,1.175,1.530			
		1.125,1.330,1.445						
		horizonta Ans. Given: Anallatic		AB and R.L. of B , if R .	00 and 0.10.Find the L. of B.M. is 500.00m.			
		Part (I) RL of instrument station $\theta = +7^{\circ} \ 30' \ (\text{Elevation}),$ $S_{1} = \text{staff intercept} = 1.53 - 0.9 = 0.63$ $V_{1} = \text{Vertical distance between horizontal collimation and axial reading at BM}$						
		$V_1 = h_1 = \theta = V_1 = 0$	sin7° 30′	1				
	V_1 = 8.166 m RL of instrument station = RL of BM + h_1 – V_1 = 500+1.175-8.166 = 493.00m				V_1	1		
	$V_2 = \text{Vertical distance between horizontal correading at B}$ $V_2 = f/i (S_2) \sin 2\theta / 2 + (f+c) \sin \theta,$ $h_2 = \text{axial reading at B}$ $\theta = -2 ° 20 ′ (\text{depression}),$ $S_2 = 1.445 - 1.125 = 0.32$			al collimation and axial	1			
		V ₂ = 100 (= 1.303		2 x2 °20′) / 2 + 0.1sin2°	20′	1		
		RL of stat	= 493	$L \text{ of } A - h_2 - V_2$ R - 1.3058 - 1.33		1		
		Horizonta	l distance A	A.364 m A.364 m A.36	,	2	8	

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419) Page No. 19/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	c)	Enlist any eight components of transit theodolite and write their functions. Ans. A transit theodolite consists of the following essential parts:		
		 Levelling head: It supports the main working parts of the instrument and screws on to a tripod. Head comprises two parts: A leveling base and trivet fitted with leveling foot screws –for leveling the instrument it is used. A movable head – It is used for centering the vertical axis accurately over the station point 		
		2) A lower circular horizontal metal plate – It carries a graduated circular arc which is used for taking readings	1 mark	
		 3) The upper plate – a) It carries an index and vernier to read fine reading on graduated horizontal circle. b) Standards – The upper plate also carries standards used for supporting the telescope c) A spirit level – It is used for leveling the instrument. 	for each compo nent and functi on	
		4) Telescope – It is used for observation and bisection of the object.	(any eight)	
		5) A vertical circle – It is provided with circular graduated arc which is generally divided into four quadrants and is used for measurement of vertical angle.	8 /	
		6) A lower clamp and lower tangent screw – A lower clamp clamps the lower plate and its outer axis to the leveling head The lower tangent screw enables finely controlled circular motion of it.		
		7) An upper clamp and upper tangent screw - An upper clamp clamps the upper to lower one, and the upper tangent screw finely controlled circular motion about vertical axis.		
		8) A diaphragm – It is provided with cross hairs in telescope to give a definite line of sight.		8
		9) A vertical circle clamp and tangent screw - A vertical circle clamps the vertical circle and tangent screw enables finely controlled circular motion of it.		

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 20/23

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		MAINS	Marks
Q.6	a)	Attempt ant \underline{TWO} of the following Two tangents intersect at a chainage of 1250m. The angle of intersection is 145° . Calculate all the necessary data for setting out a curve of radius 250m by deflection angle method. Take peg interval as 20m and prepare setting out table. Ans. Given: Angle of intersection $I = 145^{\circ}$ Chainage of intersection point = 1250 m		16
		Radius of curve = 250 m Peg interval = 20 m Solution- 1. Deflection angle = $\phi = 180^{\circ}$ - Angle I		
		$= 180^{0} - 145^{0}$ $= 35^{0}$ 2. Tangent length = BT ₁ = BT ₂ = R. tan $\cancel{O}/2$	1/2	
		= 250. tan(35/2) = 78.82 m 3. Chainage of first tangent point T ₁ = Chainage of intersection	1/2	
		point – Tangent length = $1250-78.82 = 1171.18$ m 4. Length of curve = $(\pi R \ \acute{\Theta})/180$	1/2	
		$= (\pi \times 250 \times 35)/180$ $= 152.72 \text{ m}$ 5. Chainage of tangent point T_2 = Chainage of Tangent point	1/2	
		T_1 + length of curve = 1171.18 + 152.72 = 1323.9 m	1/2	
		 6. Chainage of peg P₁ on the curve = 1190 m (Next to T₁) 7. Length of first sub chord = 1190-1171.18 = 18.82 m 8. Since the peg interval is 20 m, next pegs will have chainage as 	1/2	
		follows: $P_2 = 1210 \text{ m}$ $P_3 = 1230 \text{ m}$ $P_4 = 1250 \text{ m}$ $P_5 = 1270 \text{ m}$ $P_6 = 1290 \text{ m}$ $P_7 = 1310 \text{ m}$ $T_2 = 1323.9 \text{ m}$	1	

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 21/23

Que. No.	Sub. Que.	Model Answers						Marks	Total Marks
Q.6	a)	9. The of last sub chord= $1323.9 - 1310 = 13.9 \text{ m}$ 10. Calculation of deflection angle $\delta_1 = 1718.9 \text{ x } (l_1/\text{R})$ $\delta_1 = 1718.9 \text{ x } (18.82/250)$ $\delta_1 = 129' = 2^0 9'$ $\delta_2 \text{ to } \delta_7 = 1718.9 \text{ x } (20/250)$ $= 137' = 2^0 17'$						1 ½	
	$\delta_8 = 1718.9 \text{ x } (l_1/R)$ $\delta_8 = 1718.9 \text{ x } (13.9/250)$ $\delta_8 = 96' = 1^0 36'$ 11. Calculation of total deflection angles = a. $\Delta_1 = \delta_1 = 2^0 9'$ b. $\Delta_2 = \Delta_{1+} \delta_2 = 2^0 9' + 2^0 17' = 4^0 26'$ c. $\Delta_3 = \Delta_{2+} \delta_3 = 4^0 26' + 2^0 17' = 6^0 43'$ d. $\Delta_4 = \Delta_{3+} \delta_4 = 6^0 43' + 2^0 17' = 9^0 00'$ e. $\Delta_5 = \Delta_{4+} \delta_5 = 9^0 00' + 2^0 17' = 11^0 17'$ f. $\Delta_6 = \Delta_{5+} \delta_6 = 11^0 17' + 2^0 17' = 13^0 34'$ g. $\Delta_7 = \Delta_{6+} \delta_7 = 13^0 34' + 2^0 17' = 15^0 51'$ h. $\Delta_8 = \Delta_{7+} \delta_8 = 15^0 51' + 2^0 17' = 17^0 27'$								
	$Check = \cancel{O} / 2 = 35^{0} / 2 = 17^{0}30^{\circ}$ Above results are tabulated as below- $\begin{array}{ c c c c c c c c c c c c c c c c c c c$						Remark	1	
		T ₁	1171.18	-	-	-	First tange t point		
		P ₁	1190	18.82	209'	209'	-		
		P ₂	1210	20	2017'	40 26'	-		
		P ₃	1230	20	2017	6043	-		
		P_4	1250	20	2017'	9000'	-		
		P_5	1270	20	2 ⁰ 17' 2 ⁰ 17'	11 ⁰ 17'	-		
		P_6	1290 1310	20	2°17' 2°17'	13 ⁰ 34' 15 ⁰ 51'	-		
		T_2	1323.9	13.9	1036'	17 ⁰ 27'	Second tangent point		
									8

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 22/23

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		1.101110	Marks
Q.6	b)	Describe layout of a small building by using total station. Ans. Layout of a small building by using total station:		
		 On the plan supplied by an architect, number the column serially from left to right and top to bottom starting from top left corner. Work out coordinates of column centre with respect to one plot corner or well defined point, assuming line parallel to any one face of building as meridian. Create an excel document with 4 independent columns one for column number and rest three for N, E & H coordinates. Upload this file to total station by using transfer software provided with instrument. Set the total station at site at a point with respect which the coordinates of column centre are work out. Initiate the total station by proving with the coordinates of station and by orienting the telescope along the reference meridian. Now, activate the setting out programme of the total station. Open the uploaded file & bring in the coordinates of any column to be set out. Hold prism pole at tentative position of that column on ground, bisect it & get measured its coordinates. In next reading machine will display the discrepancies in the coordinates of the point & point to be set out. Direct the reflector man accordingly to occupy the new position, bisect him again & get measured its coordinates to know the discrepancy. Repeat the process till you get no discrepancy in the coordinates of point occupied & point to be set out. In this way Get marked centres of rest of the columns. Check the accuracy of the process of setting out by comparing the diagonal distance between the extreme column centres to their calculated values. 	1 mark for Each point	8

Model Answer: Summer 2016

Subject & Code: Advanced Surveying (17419)

Page No. 23/23

Que.	Sub.	Model Answers						Total
No.	Que.	Following are the lengths and bearings of a closed traverse						Marks
Q.6	c)	ABCDA.						
		Line	AB	BC	CD	DA		
		Length	260	240	250	?		
		(m)						
		Bearing	341 ⁰ 295		147 ⁰	?		
		Determine length and bearing of line DA						
	Ans. Reduced							
		Line Length (m) Bearing bearing						
		AB		260	341 ⁰	N 19 ⁰ W	_	
		BC		240	295^{0}	N 65 ⁰ W	1	
		CD		250	147 ⁰	S 33 ⁰ E		
		DA		?	?	?		
		Consequeive	Latituda	Conseque	tiva Danartura			
			Consecutive Latitude Consecutive Departure $(L \cos \Theta)$ $(L \sin \Theta)$					
			+ 245.835 - 84.647					
		+ 101.4				3		
		- 209.6						
		$\sum L = 13^{\circ}$	$\sum L = 137.596$ $\sum D = -166.00$					
		Γ_{total} and Γ_{total} Γ_{total} Γ_{total} Γ_{total} Γ_{total}						
		For a closed traverse $\sum L = 0$, $\sum D = 0$					1	
		Length of line DA = $\sqrt{(L^2) + (D^2)}$ = $\sqrt{(137.596^2) + (166.00^2)}$ = 215.61m Tan Θ = D/L = 166.00/137.596					1	
							1	
							1	
							1	
		$\Theta = 50.34^{\circ}$ Require of line DA = N 50°20'41'' W						
	Bearing of line DA = N $50^{\circ}20'41''$ W							
								8