Model Answer: Summer 2016

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	a) (i)	Model Answers Qttempt any SIX of the following: In a contour map, if contours are crossing each other, what will be nature of topography? Draw the sketch to support your answer. Ans. If contours are crossing or intersecting each other, then there is overhanging cliff as shown in figure 1 below.	Marks	$\mathbf{1 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 1 \& \begin{tabular}{l}
a) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Objects of preparing contour map : Contour map is prepared for the following \\
1. To know the nature of ground (i.e. elevation, depression, slope etc.) of the field under consideration. \\
2. To decide the feasible site of dam construction by knowing maximum probable reservoir storage capacity. \\
3. To finalise the best suitable alignment of roadway or railway by knowing earthwork calculations. \\
4. To excavate the canal and contour cut trenches along hillside under watershed management works. \\
Give the simplest method of finding the area of zero of a zero circle from manufacturers table. \\
Ans. \\
The area of zero circle can be find out simply by using following formula.
\[
\mathbf{A}=\mathbf{M} \times \mathbf{C}
\] \\
Where, \(\mathrm{A}=\) Area of zero circle \\
\(\mathrm{M}=\) Multiplier or multiplying constant \\
provided in manufacturers table
\[
\mathrm{C}=\text { Constant of planimeter provide in }
\] \\
manufacturers table
\end{tabular} \& \begin{tabular}{l}
1/2 \\
mark \\
each \\
1 \\
1
\end{tabular} \& 2 \\
\hline \& (iv)

(v) \& | Write the use of Gale's table. |
| :--- |
| Ans. |
| Gale's traverse table is useful to find out independent coordinates of theodolite traverse by applying necessary corrections to consecutive co-ordinates of the same traverse. |
| Further these independent co-ordinates are useful to draw the accurate traverse without linear and angular errors. |
| State any four uses of transit theodolite. |
| Ans. |
| Transit theodolite is useful for the following. |
| 1. To measure the horizontal and vertical angles between survey stations. |
| 2. To measure deflection angles between survey lines. |
| 3. To measure horizontal distances when used as tacheometer. |
| 4. To measure vertical distances, heights of ground points. |
| 5. To measure magnetic bearing of survey lines by attaching tubular compass to it. |
| 6. To prolong or extend the survey line up to required destination. | \& \& 2

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(vi)	State any two situations under which tacheometry is preferred. Ans. Tacheometry is preferred in following situations. 1. When horizontal distances can't be measured by chaining on highly uneven ground. 2. When vertical distances or reduced levels can't be measured due to more elevated or depressed ground using ordinary level. 3. When it is necessary to fill the details in topographic map and contour map with low degree of precision.	$\begin{gathered} 1 \\ \text { mark } \\ \text { each } \\ \text { (Any } \\ \text { two) } \end{gathered}$	2
	(vii)	List any four modern survey instruments. Ans. Following are the modern survey instruments. 1. Digital Level 2. Electronic Distance Meter (EDM) 3. Micro-optic Theodolite 4. Total Station 5. Global Positioning System (GPS) Device 6. Aerial Camera 7. Remote Sensors	1/2 mark each (Any four)	2
	(viii)	Define degree of curve. Ans. Degree of curve : The angle subtended at the centre by a standard chord of 30 m length, is known as degree of curve.	2	2

Model Answer: Summer 2016

Subject \& Code: Advanced Surveying (17419)
Page No: 5/23

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer 2016

Subject \& Code: Advanced Surveying (17419)
Page No: 6/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a)	Attempt any FOUR of the following: Differentiate between contour interval and horizontal equivalent. (Minimum two points) Draw plan and section view to support your answer. Ans. Define grade contour. Give the procedure to locate grade contour on contour map with suitable sketch. Ans. Grade Contour - It is the contour established on a specific grade or gradient along the hill side. OR The line joining the points of equal grade or gradient is termed as grade contour.	1 mark each 1 mark for plan 1 mark for section	16

Model Answer: Summer 2016

Subject \& Code: Advanced Surveying (17419)
Page No: 8/23

Model Answer: Summer 2016

Subject \& Code: Advanced Surveying (17419)
Page No: 10/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	b)	State the component parts of micro optic theodolite . How it is superior to a transit theodolite. Also write the situation where it is suitable. Ans. Component parts of micro optic theodolite 1) Telescope 2) Magnification with standard eyepiece. 3) Level tube 4) Foot screws. 5) Tribatch \& Trivet 6) Optical micrometer 7) Changing nob 8) Horizontal circle 9) Verticle circle. Superior to Transit theodolite : 1) It is a recent development in surveying instrument which gives the 1 " accuracy in measuring the angle. 2) This instrument is most suitable 3) This instrument is durable for harsh environments. 4) It is simple in use. Give the classification of curve and Define 1.Transition curve 2. Reverse curve Ans. Classification of curve is as follows- 1) Horizontal curve a) Simple curve b) Compound curve c) Reverse curve d) Transition curve e) Lemniscate curve 2) Vertical curve a) Summit curve b) vally curve Transition curve:- A curve of variable radius is known as a transition curve .In railways, such a curve is provided on both sides of a circular curve to minimize super elevation	$1 / 2$ mark each (Any four) 1 mark each (Any two) 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	c)	Reverse curve:- A reverse curve consist of two arc bending in opposite directions ,their centers lie on opposites sides of the curve . They have one common tangent. State any four applications of remote sensing in civil engineering. Ans. Applications of remote sensing - Remote sensing is widely applicable in the following areas. 1. Resource exploration - The underground resources like fossil fuels, mineral and oil deposits can be explored using remote sensing. The geological features like faults, fractures, dykes etc can be determined using this. 2. Environmental prediction - The prediction of probable precipitation and related environmental changes can be made base of remote sensing techniques. 3. Land use and land cover analysis - By using remote sensing principles, one can analyse land use and land cover of any locality. 4. Flood or feminine relief - Remote sensing is very effective in case of flood and drought prone areas. 5. Navigation routes - The navigational routes of road, railway and airways can be controlled using remote sensing. 6. Determination of Topography - The various ground features like hill, valley, trees, houses etc. can be determined in highly steep slopes.		$4{ }^{4}$

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b)	Take half length of long chord $=80 / 2=40 \mathrm{~m}$ Mid ordinate $\begin{aligned} \mathrm{Oo} & =\mathrm{R}-\sqrt{ }(\mathrm{R})^{2}-(\mathrm{L} / 2)^{2} \\ & =130-\sqrt{ }(130)^{2}-(80 / 2)^{2} \\ & =6.31 \mathrm{~m} \\ \mathrm{O}_{\mathrm{x}} & =\sqrt{ }(\mathrm{R})^{2}-(\mathrm{X})^{2}-(\mathrm{R}-\mathrm{Oo}) \\ \mathrm{O}_{7.5} & =6.10 \mathrm{~m} \\ \mathrm{O}_{15} & =5.44 \mathrm{~m} \\ \mathrm{O}_{22.5} & =4.35 \mathrm{~m} \\ \mathrm{O}_{30} & =2.80 \mathrm{~m} \\ \mathrm{O}_{37.5} & =0.78 \mathrm{~m} \\ \mathrm{O}_{40} & =0 \mathrm{~m} \end{aligned}$ Define following terms and give any two components of each : 1. GIS 2. GPS Ans. GIS:- A geographic information system is a computer based tool that allows you to create, manipulate, analyze ,store \& display information based on its location. Components:- 1) hardware 2) Software GPS:- A global positioning system is a satellite navigation system used to determine ground position \&location speed and direction. Components:- 1) Antenna 2) Radio frequency Explain temporary adjustments of digital level. Ans. Temporary adjustment of digital level:- 1) Setup stability:- Set tripod legs wide apart to increase the stability of the setup. 2) Centering:- Setup the tripod roughly above the station point .The tripod head plate should be approximately horizontal. Hook the plumb line into the retaining screw and set up the tripod roughly centered above the ground mark. 3) Levelling and fine centering:-a)Align the control unit parallel the imaginary connecting line between two tribracth screws. 4) Level the instrument in the telescope axis and rectangularly to it by means of the tribratch screws. 5) Shift the tribrach on the tripod head plate until the plumb line is hanging centrally above the ground mark repeat the leveling various time if required. 6) Telescope focusing the cross hairs		$4{ }^{4}$

Que. No.	Sub. Que.	Model Answers						Marks	Total Marks
Q. 4	d)	The areas enclosed by contours in lake are as follows :							4
		Contour (m)	250	255	260	265	270		
		[$\begin{gathered}\text { Area } \\ \left(\mathbf{m}^{2}\right)\end{gathered}$	2080	8500	6500	25200	33700		
		Calculate the volume of water between the contours 250 m and 270 m by 1. Trapezoidal formula 2. Prismoidal formula Ans. Given data :- $\begin{aligned} & \mathrm{D}=5 \mathrm{~m}, \\ & \mathrm{~A} 1=2080 \mathrm{M}^{2}, \mathrm{~A} 2=8500 \mathrm{M}^{2}, \mathrm{~A} 3=16500 \mathrm{M}^{2}, \quad \mathrm{~A} 4=25200 \mathrm{M}^{2}, \\ & \mathrm{~A} 5=33700 \mathrm{M}^{2} . \end{aligned}$ Volume by Trapezoidal formula= $\mathrm{D} / 2(\mathrm{~A} 1+\mathrm{A} 5+2(\mathrm{~A} 2+\mathrm{A} 3+\mathrm{A} 4))$						1	
								1/2	
		$\begin{aligned} & =5 / 2(2080+33700+2(8500+16500+25200)) \\ & =340450 \mathrm{M}^{3} \end{aligned}$						$1 / 2$ $1 / 2$	
		Volume by Prismoidal formula $=\mathrm{D} / 3(\mathrm{~A} 1+\mathrm{A} 5+4(\mathrm{~A} 2+\mathrm{A} 4)+2(\mathrm{~A} 3)$)						1/2	
		$\begin{aligned} & =5 / 3(2080+33700+4(8500+25200)+2 \times 1650 \\ = & 339300 \mathrm{M}^{3} \end{aligned}$						$1 / 2$	
								1/2	
	e)	What is the difference between a theodolite and a tacheometer. Give any two characteristics of tacheometer Ans.						1 mark each (any two) 1 mark each (any two)	
		Sr.No	Theodolite		Tacheometer				
		1	It is m instrum measurem and v	accurate used for of horizontal al angle.		meter heodol dia dia	ually a aving a m		
		2	In case distanc the field	odolite , the easured on hain or tape		e of ta e is ca rect fo	meter ted by a		
		3	Suitable hilly area obstacles.	ane and h less	Suita obstr brok	in case on like round.	and		
		4	More stat to take re	are required on field.	Less take	$\begin{aligned} & \text { ions are } \\ & \text { ling on } \end{aligned}$	uired to		
		characteristics of tacheometer - 1. The value of constant $\mathrm{f} / \mathrm{i}=100$ 2. The telescope should be powerful, the magnification should be 20 to 30 times the diameter 3. The telescope should be fitted with anallatic lens to have the value of $f+c=0$ 4. The vision through the telescope should give a clear and bright image at a long distance.							

Que. No.	Sub. Que.	Model Answers					Marks	Total Marks
$\text { Q. } 4$$\text { Q. } 5$	f)	Give the main features of total station Ans. 1. Easy access to any desired programme and mode of selection 2. Automatic atmospheric correction 3. Guide message arrangement 4. Higher distance resolution 5. Two speed tangent resolution 6. Tri axis compensation 7. East to read arrangement 8. Detachable tribranch facility					1 mark each (any four)	4
	a)	Attempt any TWO of the following: Calculate the corrected consecutive co-ordinates for the following observations of traverse.						16
		Line	Length (m)	Point	Consecutiv	Coordinates		
		AB	705	A	+ 655.19	-260.29		
		BC	952.5	B	+127.07	+943.99		
		CD	645	C	-628.47	+145.54		
		DA	844.5	D	-151.48	-830.80		
		Ans. There are error in latitude \& Departure Hence apply Transit Rule Correction In Latitudes- Correction In latitudes $=$ Total error in latitude $\mathrm{x}($ latitude of that line/ Arithmetical sum of all latitudes) Correction in latitude in line $\mathrm{AB}=2.31 \times(705 / 3147)=0.517$ Correction in latitude in line $\mathrm{BC}=2.31 \times(952.5 / 3147)=0.699$ Correction in latitude in line $\mathrm{CD}=2.31 \times(645 / 3147)=0.47$ Correction in latitude in line $\mathrm{DA}=2.31 \times(844.5 / 3147)=0.62$						
							1/2	
							$1 / 2$	
							$1 / 2$	
							1/2	

Model Answer: Summer 2016

Subject \& Code: Advanced Surveying (17419)
Page No. 17/23

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	c)	Enlist any eight components of transit theodolite and write their functions. Ans. A transit theodolite consists of the following essential parts: 1) Levelling head: It supports the main working parts of the instrument and screws on to a tripod. Head comprises two parts: a) A leveling base and trivet fitted with leveling foot screws -for leveling the instrument it is used. b) A movable head - It is used for centering the vertical axis accurately over the station point 2) A lower circular horizontal metal plate - It carries a graduated circular arc which is used for taking readings 3) The upper plate - a) It carries an index and vernier to read fine reading on graduated horizontal circle. b) Standards - The upper plate also carries standards used for supporting the telescope c) A spirit level - It is used for leveling the instrument. 4) Telescope - It is used for observation and bisection of the object. 5) A vertical circle - It is provided with circular graduated arc which is generally divided into four quadrants and is used for measurement of vertical angle. 6) A lower clamp and lower tangent screw - A lower clamp clamps the lower plate and its outer axis to the leveling head The lower tangent screw enables finely controlled circular motion of it. 7) An upper clamp and upper tangent screw - An upper clamp clamps the upper to lower one, and the upper tangent screw finely controlled circular motion about vertical axis. 8) A diaphragm - It is provided with cross hairs in telescope to give a definite line of sight. 9) A vertical circle clamp and tangent screw - A vertical circle clamps the vertical circle and tangent screw enables finely controlled circular motion of it.	1 mark for each compo nent and functi on (any eight)	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	a)	Attempt ant TWO of the following Two tangents intersect at a chainage of 1250 m . The angle of intersection is 145^{0}. Calculate all the necessary data for setting out a curve of radius 250 m by deflection angle method. Take peg interval as 20 m and prepare setting out table. Ans. Given : Angle of intersection $\mathrm{I}=145^{\circ}$ Chainage of intersection point $=1250 \mathrm{~m}$ Radius of curve $=250 \mathrm{~m}$ Peg interval $=20 \mathrm{~m}$ Solution- $\text { 1. } \begin{aligned} \text { Deflection angle } & =\emptyset ́ \\ & =180^{\circ}-\text { Angle I } \\ & =30^{\circ}-145^{\circ} \end{aligned}$ 2. $\text { 2. Tangent length } \begin{aligned} & \mathrm{BT}_{1}=\mathrm{BT}_{2}=\mathrm{R} \cdot \tan \grave{\emptyset} / 2 \\ & =250 \cdot \tan (35 / 2) \\ & =78.82 \mathrm{~m} \end{aligned}$ 3. Chainage of first tangent point $\mathbf{T}_{\mathbf{1}}=$ Chainage of intersection point - Tangent length $=1250-78.82=1171.18 \mathrm{~m}$ 4. Length of curve $=(\pi R$ Ǿ $) / 180$ $\begin{aligned} & =(\pi \times 250 \times 35) / 180 \\ & =152.72 \mathrm{~m} \end{aligned}$ 5. Chainage of tangent point $\mathbf{T}_{\mathbf{2}}=$ Chainage of Tangent point $\begin{aligned} & \quad \mathrm{T}_{1}+\text { length of curve } \\ & =1171.18+152.72 \\ & =1323.9 \mathrm{~m} \end{aligned}$ 6. Chainage of peg $\mathbf{P}_{\mathbf{1}}$ on the curve $=1190 \mathrm{~m}\left(\mathrm{Next}\right.$ to $\left.\mathrm{T}_{1}\right)$ 7. Length of first sub chord $=1190-1171.18=18.82 \mathrm{~m}$ 8. Since the peg interval is 20 m , next pegs will have chainage as follows: $\begin{aligned} & \mathrm{P}_{2}=1210 \mathrm{~m} \\ & \mathrm{P}_{3}=1230 \mathrm{~m} \\ & \mathrm{P}_{4}=1250 \mathrm{~m} \\ & \mathrm{P}_{5}=1270 \mathrm{~m} \\ & \mathrm{P}_{6}=1290 \mathrm{~m} \\ & \mathrm{P}_{7}=1310 \mathrm{~m} \\ & \mathrm{~T}_{2}=1323.9 \mathrm{~m} \end{aligned}$	$1 / 2$ 1	16

Model Answer: Summer 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	b)	Describe layout of a small building by using total station. Ans. Layout of a small building by using total station : 1. On the plan supplied by an architect, number the column serially from left to right and top to bottom starting from top left corner. 2. Work out coordinates of column centre with respect to one plot corner or well defined point, assuming line parallel to any one face of building as meridian. 3. Create an excel document with 4 independent columns one for column number and rest three for $\mathrm{N}, \mathrm{E} \& \mathrm{H}$ coordinates. Upload this file to total station by using transfer software provided with instrument. 4. Set the total station at site at a point with respect which the coordinates of column centre are work out. Initiate the total station by proving with the coordinates of station and by orienting the telescope along the reference meridian. 5. Now, activate the setting out programme of the total station. Open the uploaded file \& bring in the coordinates of any column to be set out. Hold prism pole at tentative position of that column on ground, bisect it \& get measured its coordinates. 6. In next reading machine will display the discrepancies in the coordinates of the point \& point to be set out. Direct the reflector man accordingly to occupy the new position, bisect him again \& get measured its coordinates to know the discrepancy. 7. Repeat the process till you get no discrepancy in the coordinates of point occupied \& point to be set out. In this way Get marked centres of rest of the columns. 8. Check the accuracy of the process of setting out by comparing the diagonal distance between the extreme column centres to their calculated values.	$\begin{gathered} 1 \\ \text { mark } \\ \text { for } \\ \text { Each } \\ \text { point } \end{gathered}$	8

