WINTER - 2015 EXAMINATION

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	a)	Attempt any SIX of the following:		12
		i) Define contour interval and horizontal equivalent. Ans: Contour Interval - The vertical distance between two successive contours or contour lines, is known as Contour Interval.	$\begin{gathered} 1 \\ \text { mark } \end{gathered}$	
		Horizontal Equivalent - The horizontal distance between two successive contours or contour lines, is known as Horizontal Equivalent.	$\begin{gathered} 1 \\ \text { mark } \end{gathered}$	2
		ii) What do you mean by zero circle in area measurement? Ans: Zero Circle - It is the circle formed due to sliding of wheel of mechanical planimeter without changing the reading of circular measuring disc. It is unmeasured circular area on drawing sheet due to non-rotation of counter disc.	$\begin{gathered} 1 \\ \text { mark } \\ \begin{array}{c} 1 \\ \text { mark } \end{array} \end{gathered}$	2
		iii) Define grade contour. Ans: Grade Contour - It is the contour established on a specific grade or gradient along the hill side. OR The line joining the points of equal grade or gradient is termed as grade contour.	$\begin{gathered} 2 \\ \text { marks } \end{gathered}$	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	a)	iv) Define transiting and swinging of theodolite. Ans: Transiting of theodolite - The vertical movement of telescope about its horizontal axis through 360 degree is known as Transiting of telescope of theodolite. Swinging of theodolite - The lateral or horizontal movement of theodolite about its vertical axis through 360 degree is known as Swinging of theodolite. v) Define latitude and departure. Ans: Latitude - The projective distance of survey line parallel to meridian (i.e. N-S direction) is known as Latitude of a line. Departure - The projective distance of survey line perpendicular to meridian (i.e. N-S direction) is known as Departure of a line.(01 mark) vi) State any four component parts of micro-optic theodolite. Ans: The component parts of micro-optic theodolite are as follows. 1. Telescope with eyepiece screw 2. Microscope with focussing knob 3. Optical Plummet 4. Tri-batch with foot screws 5. Plate level 6. Circular bubble tube 7. Collimation slow motion screw 8. Horizontal clamp vii) Give classification of curve and explain any one in detail. Ans: Types of curve : The curve is classified broadly in two categories 1. Horizontal curve - When the points of curve are joined in horizontal plane then it is known as horizontal curve. 2. Vertical curve - When the points of curve are joined in vertical plane then it is known as horizontal curve. Explanation : 1. Horizontal curve - These curves are provided at turn or corner points of roadway or railway tracks. Horizontal curves are of four types. a) Simple circular curve b) Compound curve c) Reverse curve d) Transitition curve 2. Vertical curve - These curves are provided at rise or fall points of roadway or railway tracks. Vertical curves are of four types. a) Summit curve b) Valley curve	1 mark 1 mark 1 mark 1 mark $1 / 2$ mark each (Any four) 1 mark 1 mark (Any one)	

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	b)	Attempt any TWO of the following: i. Explain direct method of contouring. Ans: Direct method of contouring - In this method of contouring, the contours of required reduced level are plotted on ground itself. The procedure of direct method of contouring is as follows. FIGURE NO.1. Direct Method of Contouring Figure No. 1: Direct Method of Contouring 1. Set the level instrument at the center O as shown in figure 1 and do all temporary adjustments like levelling and focusing. 2. Take the first reading on bench mark (Reduced Level i.e. R.L. 100 m) as back sight reading (Say 1.200 m), so that R.L. of instrument axis will become 101.200 m . 3. If the contour of 100 m is required to plot, then reading on staff should be $101.200-100=1.200 \mathrm{~m}$. 4. This reading of 1.200 m is searched in radial directions (say 30° around instrument station O) by looking through telescope of level instrument. Once these points are found out, then they are marked with red coloured pegs. 5. Similarly, to set 99,98 , and 97 m contour, the reading on staff should be 2.2, 3.2 and 4.2 m respectively. These all contours can be searched in same radial directions and then marked with blue, green and yellow coloured pegs respectively. 6. By joining these identical coloured pegs, we get the required contours on ground by this direct method of contouring.	1 mark marks	88

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	b)			
		ii. State any four applications of remote sensing. Ans: Applications of remote sensing - Remote sensing is widely applicable in the following areas. 1. Resource exploration - The underground resources like fossil fuels, mineral and oil deposits can be explored using remote sensing. The geological features like faults, fractures, dykes etc can be determined using this. 2. Environmental prediction - The prediction of probable precipitation and related environmental changes can be made base of remote sensing techniques. 3. Land use and land cover analysis - By using remote sensing principles, one can analyse land use and land cover of any locality. 4. Flood or feminine relief - Remote sensing is very effective in case of flood and drought prone areas. 5. Navigation routes - The navigational routes of road, railway and airways can be controlled using remote sensing. 6. Determination of Topography - The various ground features like hill, valley, trees, houses etc. can be determined in highly steep slopes. iii. Explain the procedure of measurement of deflection angle. Ans: Procedure of measurement of deflection angle - The deflection angle of a survey line is measured by using following steps.	$\begin{gathered} 1 \\ \text { mark } \\ \text { (Any } \\ \text { four) } \end{gathered}$	4

Subject \& Code: Advanced Surveying (17419)
Page No. $6 / 25$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(b)	Define interpolation of contour. Explain in brief the method of arithmetical calculation for interpolation of contour. Ans: Interpolation of contour - The method of locating the required contour proportionally in between two points of different reduced levels, is known as interpolation of contour. Method of arithmetical calculation for interpolation of contour - In this method, the interpolation of contour is done on the basis of arithmetical calculations based of law of proportionality. Suppose the two ground points A and B has reduced level as 98.200 m and 101.800 m with horizontal equivalent 10 m . Now the distance X1 of 99 m contour from point A and to locate the contour of 99 m the following calculation should be done. Similarly distances X2 and X3 of 100 m and 101 m contours from point A can be calculated as follows. In this way the distances X1, X2 and X3 are calculated using method of arithmetical calculations. The same distances are then converted as per scale of drawing sheet to mark points of required contour. Note: 1 mark for 3 illustrations each.	1 mark marks	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	(e)	6. Repeat above procedure with face right condition. The average of both face reading can be taken as accurate horizontal angle AOB. Figure No. 4 : Measurement of horizontal angle by method of repetition The co-ordinates of two points C and D are as follows Find the length and bearing of line CD. Ans: Given: $\mathrm{L}_{\mathrm{C}}=982.5, \mathrm{D}_{\mathrm{C}}=825.2$ $\mathrm{L}_{\mathrm{D}}=1198.6, \mathrm{D}_{\mathrm{D}}=576.4$ Find: $1(\mathrm{CD})=$? $\theta(C D)=$? Solution: Latitude of line CD i.e. $\mathrm{L}_{\mathrm{CD}}=\mathrm{L}_{\mathrm{D}}-\mathrm{L}_{\mathrm{c}}=1198.6-982.5=216.5$ Departure of line CD i.e. $D_{C D}=D_{D}-D_{c}=576.4-825.2=-248.8(01$ mark) Length of line CD i.e. $\left.1(\mathrm{CD})=\sqrt{ }\left(\mathrm{L}_{\mathrm{CD}}\right)^{2}+\left(\mathrm{D}_{\mathrm{CD}}\right)^{2}\right)$ $\begin{aligned} 1(\mathrm{CD}) & =\sqrt{ }\left({ }_{(216.5)^{2}}+(248.8)^{2}\right) \\ 1(\mathrm{CD}) & =329.808 \mathrm{~m} \end{aligned}$ Reduced Bearing of line CD i.e. $\operatorname{e}(\mathrm{CD})=\tan ^{-1}(\mathrm{DCD} / \mathrm{LCD})$ $\Theta(C D)=\tan ^{-1}(248.8 / 216.5)$ $\mathrm{e}(\mathrm{CD})=48.96 \cong 49 \text { degree }_{(\text {S-E quadrant })}$ Whole Circle Bearing of line CD i.e. WCB (CD) $=180^{\circ}-49^{\circ}$ $\mathrm{WCB}(\mathrm{CD})=131^{\circ}$	$\stackrel{1}{2}$ 1 mark 1 mark 1 mark 1 mark	$4{ }^{4}$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(f)	State and explain temporary adjustments of theodolite. Ans: Temporary adjustments of theodolite - The following operations should be done as temporary adjustments before taking readings on any theodolite. 1. Setting of theodolite on tripod stand - The theodolite should be fixed by rotating its screw head on top of tripod stand. The legs of tripod stand should be fixed on ground very firmly to ensure safety of theodolite and easiness in taking observations. 2. Centring of theodolite over prefixed survey station - The centring of theodolite can be done by either dropping stone or suspending plumb bob from bottom of tri-batch plate. Then it made to match over nail point of station peg by adjusting one of the leg. In some theodolite, optical plummet is provided for this centring. 3. Levelling of theodolite in horizontal plane - By keeping horizontal plate bubble tube (HPBT) parallel to any two foot screws, both are rotated inward or outward simultaneously to bring the bubble at center. Then by keeping HPBT perpendicular to original position, the third foot screw is rotated inward or outward to bring the bubble at center. These should be continued till in both positions, bubble of HPBT remains at center. Once bubble remains at center, levelling of theodolite is said to be completed. 4. Focussing of telescope - The focusing of telescope is done to remove parallax. First eyepiece screw is rotated to see clear image of cross-hairs. Then focussing screw is rotated to see clear image of object. Once both images (i.e. cross hairs and object) simultaneously focussing of telescope is said to be completed.	1 mark each	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	d)	Explain the classification of EDM instruments. Ans. (A) Classification based on the type of carrier wave used: (i)Instruments using visible light waves, (ii) Instruments using invisible infra-red waves, (iii) Instruments using micro-waves and (iv) Instruments using long ratio-waves. (B) Classification based on the range of instruments: (i)Short range instruments (up to 10km) for example, various infra-red distances, (ii) Medium range instruments (up to 60km) for example, Geodimeters using visible light waves, (iii) Long range instruments (up to 150km) for example, Tellurometer using micro-waves. (C) Classification based on (external) appearance of instrument (i)Mount Type instruments for example EDM is mounted on the One Second Theodolite, (ii) Built in Type for example Total Station with built in vertical sensor. (D) Classification based upon reflected or transmitted wave: (i)Reflecting Type of instrument for example Geodimeters and Infra- red distancers, (ii) Transmitting type of instrument for example Tellurometer, Total station.	4	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(e)	Explain the working principle of EDM with neat sketch. Ans. The fig shows a survey line AB, the length D of which is to be measured using EDM equipment placed at ends A and B . Let a transmitter be placed at A to propagate electromagnetic waves towards B , and let a receiver B placed at B, along with a timer. If the timer at B starts at instant of transmission of wave from A, and stops at the instant of reception of incoming wave at B, the transit time foe the wave from A and B in known. From this transit time, and from the known velocity of propagation of the wave, the distance D between A and B can be easily computed. However this transit time is of the order of 1×10^{-6} which requires varying advanced electronics. Also it is extremely difficult to start the timer at B when the wave is transmitted at A. Hence a reflector is placed at B instead of a receiver. This reflector reflects the waves back towards A, where they are received as shown in the fig. Thus the equipment at A acts both as a transmitter as well as receiver. The double transit time can be easily measured at A . This will require EDM timing devices with an accuracy of $\pm 1 \times 10^{-9} \mathrm{~s}$.	1 mark 2 marks mark	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(f)	Calculate the ordinates at 25 m interval to set a circular curve having a long chord of 300 m and versed sine of 10 m . Ans. A versed sine is the offset at the middle of long chord. $O_{0}=R-\sqrt{ } R^{2}-(L / 2)^{2}$ Where $\mathrm{R}=$ radius of curve. $\mathrm{L}=\text { Length of Long chord }=300 \mathrm{~m} \text {. }$ Therefore $10=R-\sqrt{R^{2}-(150)^{2}}$ $\mathrm{R}=1130 \mathrm{~m} .$ The ordinates at distance x from the midpoint may be calculated from the formula $\begin{aligned} & \mathrm{Ox}=\sqrt{\mathrm{R}^{2}-\mathrm{x}^{2}}-\left(\mathrm{R}-\mathrm{O}_{0}\right) \\ & \mathrm{O}_{25}=\sqrt{ }\left(1130^{2}-25^{2}\right)-(1130-10)=9.70 \mathrm{~m} \\ & \mathrm{O}_{50}=\sqrt{ }\left(1130^{2}-50^{2}\right)-(1130-10)=8.89 \mathrm{~m} \\ & \mathrm{O}_{75}=\sqrt{ }\left(1130^{2}-75^{2}\right)-(1130-10)=7.51 \mathrm{~m} \\ & \mathrm{O}_{100}=\sqrt{ }\left(1130^{2}-100^{2}\right)-(1130-10)=5.56 \mathrm{~m} \\ & \mathrm{O}_{125}=\sqrt{ }\left(1130^{2}-125^{2}\right)-(1130-10)=3.06 \mathrm{~m} \\ & \mathrm{O}_{150}=\sqrt{ }\left(1130^{2}-150^{2}\right)-(1130-10)=0.00 \mathrm{~m} \end{aligned}$	1 mark 1 mark marks	4

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Que. } \\
& \text { No. } \\
& \hline
\end{aligned}
$$ \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline Q. 4 \& (d)

(e) \& \begin{tabular}{l}
State any four essential characteristics of tacheometer.

Ans. Following are some characteristics of tacheometer:

1.The value of constant $(\mathrm{f} / \mathrm{i})=100$

2.The telescope should be fitted with analytic lens to have the value of $(\mathrm{f}+\mathrm{c})=0$

3.The telescope should be powerful, the magnification should be 20 to 30 times the diameters

4. The vision through the telescope should give a clear and bright image at a long distance.

How would you determine the constants of given tacheometer on field.

Ans.

The values of tacheometric constants, i.e. additive constant ($\mathrm{f}+\mathrm{c}$), multiplying constant (f / i) for given instrument may be determined on field as follows:

(A)In this method value of $(\mathrm{f}+\mathrm{c})$ is obtained by direct measurement and the value of $(\mathrm{f} / \mathrm{i})$ is computed.

Steps:

1. Sight any distance object and focus it carefully.

2. Measure the distance between object glass and plane of cross hairs along the top of telescope with scale, let it be (f) focal length of objective.

3. Measure the distance (c) from object glass to the vertical axis of the instrument.

4. Measure the distance D1, D2, D3 etc. From instrument and let the corresponding staff intercepts be $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ etc.

5. In the formula $D=(f / i) . S+(f+c)$, Knowing $(f+c)$ as directly measured distance in step 2 and 3 and measured distances D1, D2, D3 etc., obtain several values of (f / i) by computation and get the mean of it as the value of constant (f / i).

OR

(B) An alternative method to determine the constants is to the definite distances D1 and D2 and find the corresponding staff intercepts S1 and S 2 on the staff held at these positions.

By substituting the values in the equation

$\mathrm{D}=(\mathrm{f} / \mathrm{i}) . \mathrm{S}+(\mathrm{f}+\mathrm{c})$, two simultaneous equations are obtained.

$\mathrm{D} 1=(\mathrm{f} / \mathrm{i}) . \mathrm{S} 1+(\mathrm{f}+\mathrm{c})$
$$
\mathrm{D} 2=(\mathrm{f} / \mathrm{i}) \cdot \mathrm{S} 2+(\mathrm{f}+\mathrm{c})
$$

These are solved to find out the two unknown quantities of (f/i) and ($\mathrm{f}+\mathrm{c}$).

 \&

1

mark

each

4

marks

marks
\end{tabular} \& 4

\hline
\end{tabular}

Subject \& Code: Advanced Surveying (17419)
Page No. 21 / 25

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	(c)	A tacheometer was fixed with anallatic lens and having multiplying constant 100 was used and the following observations were made on a staff held vertical. RL of Station M is 50 m . Calculate RL of $P \& Q$ and Horizontal distance PQ. Ans- Given: Anallatic lens, $(\mathrm{f}+\mathrm{c})=0$, $\mathrm{f} / \mathrm{i}=100$, RL of $\mathrm{M} .=50 \mathrm{~m}$ Part (I) Distance PQ , $\theta=-4^{\circ} 40^{\prime}$ (depression), $\mathrm{S}=$ staff intercept $=2.29-1.1 .35=0.94$ Horizontal distance $P Q=f / i(S) \cos ^{2} \theta+(f+c) \cos \theta$ $=100(0.94) \cos ^{2} 4040^{\prime}+0$ Horizontal distance $\mathrm{PQ}=93.378 \mathrm{~m}$ Part (II) RL of station P and Q V1 = Vertical distance between horizontal collimation and axial reading at M $\begin{aligned} & \mathrm{V} 1=\mathrm{f} / \mathrm{i}(\mathrm{~S}) \sin 2 \theta / 2+(\mathrm{f}+\mathrm{c}) \sin \theta, \\ & \mathrm{H} 1=\text { axial reading at } \mathrm{M} \\ & \theta=+2^{\circ} 30^{\prime} \text { (Elevation) } \\ & \mathrm{V} 1=100(1.26) \operatorname{Sin}\left(2 \times 2^{\circ} 30^{\prime}\right) / 2+0 \quad(\mathrm{~S}=2.46-1.20=1.26) \\ & \mathrm{V} 1=\mathbf{5 . 4 9} \mathbf{~ m} \end{aligned}$	3 marks 2 marks	8

Que. No.	Sub Que.	Model Answers	Marks	Total Marks
		$\mathrm{V} 2=$ Vertical distance between horizontal collimation and axial reading at Q $\begin{aligned} & \mathrm{V} 2=\mathrm{f} / \mathrm{i}(\mathrm{~S}) \sin 2 \theta / 2+(\mathrm{f}+\mathrm{c}) \sin \theta, \\ & \mathrm{H} 2=\text { axial reading at } \mathrm{Q} \\ & \theta=-4^{\circ} 40^{\prime}(\text { depression }), \\ & \mathrm{V} 2=100(0.94) \operatorname{Sin}\left(2 \times 4^{\circ} 40^{\prime}\right) / 2+0 \quad(\mathrm{~S}=2.29-1.35=0.94) \\ & \text { V2 }=7.62 \mathrm{~m} \end{aligned}$ $\begin{aligned} \text { RL of station } \mathrm{P} & =\mathrm{RL} \text { of } \mathrm{M}+\mathrm{H} 1-\mathrm{V} 1-\mathrm{HI} \\ & =50+1.83-5.49-1.5 \end{aligned}$ $\text { RL of station } P=44.84 \mathrm{~m}$ $\begin{aligned} \text { RL of station } \mathrm{Q} & =\mathrm{RL} \text { of } \mathrm{P}+\mathrm{HI}-\mathrm{V} 2-\mathrm{H} 2 \\ & =44.84+1.5-7.62-1.85 \end{aligned}$ RL of station $Q=36.87 \mathrm{~m}$	1 mark 1 mark 1 mark	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(b)	Enlist Components parts of mechanical planimeter. Calculate area of figure from following data. i) Initial reading $=\mathbf{1 . 5 8 6}$ ii) Final reading $=\mathbf{0 . 3 9 2}$ iii) Multiplying constant $=\mathbf{1 0 0}$ iv) Additive constant $=20$ v) Rotation of disc $=$ once in reverse direction. Ans- Components parts of mechanical planimeter- 1)Tracing Arm 7)Wheel 2)Tracing Point 8)Graduated Drum 3)Weight 9)Vernier 4)Anchor Arm 10)Adjusting screw for tracing arm 5)Anchor Point 11)Index 6)Hinge 12)Magnifier Given data, $\mathrm{IR}=1.586 \quad \mathrm{FR}=0.392 \quad \mathrm{M}=100 \mathrm{sq} . \mathrm{cm}$ $\mathrm{C}=20 \quad \mathrm{~N}=-1$ Formula-- $\mathbf{A}=\mathbf{M}(\mathbf{F R}-\mathbf{I R} \pm \mathbf{1 0 N}+\mathbf{C})$ $\begin{aligned} & =100(0.392-1.586-10 X 1+20) \\ & =\mathbf{8 8 0 . 6 0} \mathbf{~ s q . c m} \end{aligned}$ Describe layout of small building by using Total station. Ans- Layout of small building using total station. 1. On the site plan supplied by an architect, number the columns serially and workout the co- ordinates of the column centers with respect to any one plot corner assuming any one side of building as meridian. 2. Create an excel document with four independent columns for column no. and upload this file to total station by making use of communication/ transfer software. 3. Carry this total station to proposed site. Set the total station at site at a point with respect the co ordinates of column centers which are worked out. 4. Get done all the temporary adjustments of total station. Initiate the total station providing it with the co- ordinates of the station occupied and by orienting the telescope along the meridian taken at the time of reduction of co-ordinates of column centers. 5. Activate setting out the programme on total station \& open the uploaded file and bring the co-ordinates of any column to be set out. 6. Hold the prism pole at tentative position of that column at ground, bisect it and get measured its co-ordinates. 7. Repeat the process till you get no discrepancy in the coordinates of points occupied and point to be set out. 8. This way, you will get marked the centers of rest of columns.	$1 / 2$ mark each (Any four) 4 marks 1 mark each step	88

