SUMMER - 2015 EXAMINATION

MODEL ANSWER

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	a) Ans.	i) Define contour and contour line. Contour: - It is an imaginary line on the ground joining the points of same elevation or same R.L's. Contour line: - It is a line passing through points of equal elevation or equal R.L's. ii) Define the terms: 1) Transiting and 2) Swinging in relation with theodolite surveying. Transiting :-The method of turning the telescope about its horizontal axis in vertical plane through 180° is termed as transiting Swinging: - It can be the process of turning the telescope in horizontal plane about vertical axis. Swinging of telescope may be left sway or right sway. iii) State the four uses of transit theodolite. The uses of transit theodolite are as follows. 1. Measuring horizontal angles 2. Measuring vertical angles 3. Measuring deflection angles 4. Measuring magnetic bearing 5. Measuring horizontal distance between two points 6. Finding vertical height of an object 7. Finding the difference of elevation between various points 8. Ranging a line		2

Model Solution: Summer 2015

Page No. 2/19

Model Solution: Summer 2015

Subject \& Code: Advanced Surveying (17419)
Page No. 5/19

| Que.
 No. | Sub.
 Que. | \quad Model Answers |
| :---: | :---: | :--- | :--- | :--- |\quad Marks | Total |
| :---: |
| Qarks |

Model Solution: Summer 2015

Model Solution: Summer 2015

Que. No.	Sub. Que.	Model Answers					Marks	Total Marks
Q. 5	e)	The following are the observations made with a tacheometer. Determine the constants of tacheometer						
		Inst. station \mathbf{O} \mathbf{O}	Staff	Distance(m)	Stadia	ading		
			reading		Top	Lower		
			A	100	2.500	1.490		
			B	150	2.000	0.600		
	Ans.	Note Assume $\theta=0^{\circ}$$\begin{aligned} & \mathrm{D}=(\mathrm{f} / \mathrm{i})(\mathrm{S}) \cos ^{2} \theta+(\mathrm{f}+\mathrm{c}) \operatorname{Cos} \theta \\ & \mathrm{D}=(\mathrm{f} / \mathrm{i})(\mathrm{S})+(\mathrm{f}+\mathrm{c}) \quad(\operatorname{Cos} 0=1, \mathrm{~S}=\text { Staff intercept }) \\ & 100=(\mathrm{f} / \mathrm{i})(1.010)+(\mathrm{f}+\mathrm{c}) \ldots \ldots \ldots \ldots . . \mathrm{Eq}_{\mathrm{n}} 1 \quad(\mathrm{~S}=2.500-1.490=1.010) \end{aligned}$					01 $1 / 2$	
							1/2	
		$150=(\mathrm{f} / \mathrm{i})(1.400)+(\mathrm{f}+\mathrm{c}) \ldots \ldots \ldots . . \mathrm{Eq}_{\mathrm{n}} 2(\mathrm{~S}=2.000-0.600=1.400)$ Solving equation 1 and 2 simultaneously, Subtracting eqn 1 from 2 $\begin{aligned} 150 & =(\mathrm{f} / \mathrm{i})(1.400)+(\mathrm{f}+\mathrm{c}) \\ -100 & =(\mathrm{f} / \mathrm{i})(1.010)+(\mathrm{f}+\mathrm{c}) \end{aligned}$					01	
		$50=0.39(\mathrm{f} / \mathrm{i})$ Therefore $(\mathrm{f} / \mathrm{i})=128.20$ Putting the value of (f / i) in eqn $1,(f+c)=-29.48$ A tacheometer fitted with anallatic lens was set up at station O and the following readings were taken on a staff held vertical.					$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	4
	f)							
		Inst. station	Staff station	Vertical angle	Stadia r	ling		
		O	BM	$+7^{\circ} 30^{\prime}$	0.900, 1	0, 1.500		
		0	B	-2 ${ }^{\circ} 30^{\prime}$	1.100, 1	0, 1.600		
		Find the horizontal distance 'OB' and RL of ' B ' if $R L$ of $B M$ is 50.000 m . Take the constant of tacheometer as 100						
	Ans.							

Model Solution: Summer 2015

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	f) Ans. a) Ans.	Given: Anallatic lens are provided, $(\mathrm{f}+\mathrm{c})=0, \mathrm{f} / \mathrm{i}=100$, B.M. RL. $=50.000 \mathrm{~m}$ Part I) Distance OB $\theta=\mathbf{- 2}^{\mathbf{o}} \mathbf{3 0}{ }^{\prime}$ (depression), $\mathrm{S}=$ staff intercept $=1.600-1.100=0.500$ Horizontal distance $\mathrm{OB}=\mathrm{f} / \mathrm{i}(\mathrm{S}) \cos ^{2} \theta+(\mathrm{f}+\mathrm{c}) \cos \theta$ $=100(0.500) \cos ^{2} 2^{\circ} 30^{\prime}+0$ Horizontal distance $O B=49.90 \mathrm{~m}$ Part II) RL of station B $\mathrm{V}_{1}=$ Vertical distance between horizontal collimation and axial reading at BM $\mathrm{V}_{1}=\mathrm{f} / \mathrm{i}(\mathrm{S}) \sin 2 \theta / 2+(\mathrm{f}+\mathrm{c}) \sin \theta$, $\theta=+\mathbf{7}^{\mathbf{o}} \mathbf{3 0}$ ' (Elevation) $\begin{array}{r} \mathrm{V}_{1}=100(0.600) \operatorname{Sin}\left(2 \times \mathbf{7}^{\mathbf{o}} \mathbf{3 0} \mathbf{3}\right) / 2+0 \\ \quad(\mathrm{~S}=1.500-0.900=0.600) \end{array}$ $V_{1}=7.76 \mathrm{~m}$ $\mathrm{V}_{2}=$ Vertical distance between horizontal collimation and axial reading at B $\mathrm{V}_{2}=\mathrm{f} / \mathrm{i}(\mathrm{S}) \sin 2 \theta / 2+(\mathrm{f}+\mathrm{c}) \sin \theta$ $\theta=\mathbf{- 2}^{\mathbf{o}} \mathbf{3 0}{ }^{\prime}$ (depression), $V_{2}=100(0.500) \operatorname{Sin}\left(2 \times \mathbf{2}^{\mathbf{o}} \mathbf{3 0}^{\prime}\right) / 2+0$ $(S=1.600-1.100=0.500 \mathrm{~m})$ $V_{2}=2.18 \mathrm{~m}$ RL of station $B=R L$ of $B M-V_{1}+h_{1}-V_{2}-h_{2}$ $=50.000-7.760+1.200-2.18-1.350$ RL of station $B=39.91 \mathbf{m}$ The $W C B$ of a straight portion $A B$ and $B C$ of a railway line are 120° and 150° respectively. The chainage of intersection point B is 1000 m . These two are to be connected by a circular curve of radius 300 m . calculate all the necessary data for setting out curve by tangential angle method. Peg interval may be taken as 30 m . $\begin{aligned} & \text { WCB of } \mathrm{AB}=120^{\circ}, \mathrm{FB} \text { of } \mathrm{AB}=120^{\circ} \\ & \mathrm{BB} \text { of } \mathrm{AB}=300^{\circ} \\ & \begin{aligned} & \text { WCB of } \mathrm{BC}=150^{\circ}, \mathrm{FB} \text { of } \mathrm{BC}=150^{\circ} \\ & \text { Therefore } \\ & \text { Intersection angle } \mathrm{ABC}=\mathrm{BB} \text { of } \mathrm{AB}-\mathrm{FB} \text { of } \mathrm{BC} \\ &=300^{\circ}-150^{\circ} \\ &=150^{\circ} \end{aligned} \end{aligned}$		4

Model Solution: Summer 2015

Subject \& Code: Advanced Surveying (17419)
Page No. 18/19

Que. No.	Sub Que.	Model Answers	Marks	Total Marks
Q. 6	c) i) Ans.	Uses of digital level. 1) Digital level can be used to draw maps using interface with computer 2) It is also used for day night work of survey. 3) It can be used for determined the quantity of earth work with interfacing of software. 4) It is used to prepare a layout map for water supply sanitary or drainage scheme. 5) To prepare a L section and cross section of a project (Roads, Irrigation canal etc.) in order to determine the volume of earth work. 6) To determine altitude of different important points. 7) To prepare a counter map for fixing sights for a different structure	$\begin{gathered} 1 \\ \text { mark } \\ \text { each } \\ \text { (any } \\ \text { four) } \end{gathered}$	4
	ii) Ans.	Salient features of Total Station. 1 High accuracy. 2 Long measuring range. 3 Large internal memory. 4 It is water resistance and dust proof. 5 Easy access to any desired programme and mode of selection. 6 Try axis compensation. 7 Easy to read arrangement. 8 Automatic atmospheric correction. 9 Guide message arrangement. 10 Higher distance resolution. 11 Two speed tangent movement. 12 Detachable tribrach facility. 13 Eighteen different programmes (modes of measurements). Use of micro-optic theodolite for measurement of vertical angle.	$\begin{gathered} 1 \\ \text { mark } \\ \text { each } \\ \text { (any } \\ \text { four) } \end{gathered}$	4
	Ans.	Horizontal or vertical circle reading $94^{\circ} 12^{\prime} 44^{\prime \prime}$ Fig.	01	

Que. No.	Sub. Que.	Model Answers Procedure 1) Take out micro optic theodolite from the box and fix it on the tripod over the required station. 2) Carry out the approximate leveling by leg adjustment and centering by judgment. 3) Accurate centering is done with the help of optical plummet. 4) Do levelling with help of foot screws and plate level.	Marks	Total Marks
	5) Focusing and sighting by using dioptric ring on the eye piece to get clear image of cross hair and focusing sleeve on telescope to get clear image of the object. 6) Open the illumination mirror and turn it towards the light to get the circle evenly illuminated. 7) Setting initial angle zero-zero by using vertical circle drive 8) Bisect the object whose vertical angle is to be found out. 9) Measure and take the reading of micrometer and record it.			

