

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subject Code: 17412 **Model Answer**

<u>Important Instructions to examiners:</u>

Subject Name: TOM

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. No.	Answer	Marking Scheme
1.A		Attempt any SIX	
	a)	Higher pair. When the two elements of a pair have a line or point contact when relative motion takes place, the pair is known as higher pair. Toothed gearing, ball and roller bearings and cam and follower are the examples of higher pairs.	1 M each
	b)	Sliding pair, Turning pair, Rolling pair, Screw pair or helical pair, spherical pair (Any four)	½ M each
	c)	Fluctuations of energy: The variations of energy above and below the mean resisting torque line are called fluctuations of energy. Coefficient of fluctuations of energy: It may be defined as the ratio of the maximum fluctuation of energy to the work done per cycle.	1 M each
	d)	Slip: The forward motion of the driver without carrying the belt with it or forward motion of the belt without carrying the driven pulley with it, is called slip of the belt. Creep: When the belt passes from the slack side to the tight side, a certain portion of the belt extends and it contracts again when the belt passes from the tight side to slack side. Due to these changes of length, there is a relative motion between the belt and the pulley surfaces. This relative motion is termed as creep.	1 M each
	e)	A flywheel used in machines serves as a reservoir, which stores energy during the period when the supply of energy is more than the requirement, and releases it during the period when the requirement of energy is more than the supply. In case of internal combustion engines the energy is developed during one stroke (power/ expansion) and the engine is to run for the whole cycle on the energy produced during this one stroke. So, flywheel is necessary.	

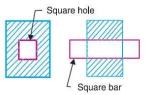
		1			
	f)	S t	days. It is, therefore, very essential should be completely balanced as fabalanced, the dynamic forces are set on bearings and stresses in the various even dangerous vibrations. Thus, bal	· · ·	
	g)	i) V ii) T iii) I	Advantages of Roller follower over keep Working is smooth due to rolling monothere is no noise in operation Life is more Due to rolling action it results in more	tion	
	h)	Sing	Applications of le plate clutch: Trucks and Buses ti-plate clutch: Two wheeler geared	vehicles	
1.B			t any TWO		
	a)	The brakelement 1. Hydra 2. Electr 3. Mech 4. Air / N The med Radial b The radi Accordinates a	its, are classified as: aulic brakes ic brakes anical brakes. Vacuum Brakes chanical brakes may be divided into brakes and Axial brakes ial brakes may be sub-divided into Exitation and Band brakes.	ents, these brakes may be Block or Shoe	
			nce between Flywheel and Governo		
		S.N. 1	Flywheel The flywheel stores the energy and gives up the energy whenever required during cycle.	Governor It regulates the speed by regulating the quantity of charge (fluid) of prime mover.	
		2	It has no control over the quantity of working fluid.	Governor takes care of quantity of working fluid.	
	b)	3	It works continuously from cycle to cycle	It works intermittently, i.e. only when there is change in load	
		4	It regulates the speed during one cycle only.	It regulates the speed over period of time.	
		5	It take care of fluctuation of speed during thermodynmic cycle	It take care of fluctuation of speed during variation of load	
		6	It is used in toys, IC engine, hand watches, press, punching and shear machines,	It is used in turbines and engines	

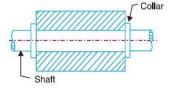
		(ISO/IEC - 2/001 - 2013 Certified)	
		Problem on Belt:-	
		d = 60mm = 0.06m T1 = 2500 N θ = 180 = 3.14 rad N = 200 r.p.m.; μ = 0.25	
		We know that velocity of the belt,	
		$v = \frac{\pi d \cdot N}{60} = \frac{\pi \times 0.06 \times 200}{60} = 0.628 \text{ m/s}$	
	c)	Let T_2 = Tension in the slack side of the belt.	
	,	We know that $\frac{T_1}{T_2} = e^{\mu \theta} = 2.19$	
		P = (T1 - T2) x V = (2500 - 1141.5) x 0.628	
		= 853.57 watt	
		= 0.853 kW	
Q.2		Solve any FOUR	
		Angular Velocity :- The rate of change of angular displacement is known as Angular Velocity. It is denoted as ω .	1 M each
		Absolute Velocity :- Velocity of any point on a link with respect to another fixed point on the mechanism is known as Absolute Velocity. It is denoted as V_A or V_B or V_P etc.	
		Relative Velocity :- Velocity of any point on a link with respect to another moving point on the mechanism is known as Relative Velocity. It is denoted as V_{AB} or V_{BC} or V_{PQ} etc.	
		Angular Acceleration:- The rate of change of angular velocity is known as Angular Acceleration. It is denoted as α	
	a)		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Consider a disturbing mass m_1 attached to a shaft rotating at ω rad/s as shown in Fig. Let r_1 be the radius of rotation of the mass m_1 (i.e. distance between the axis of rotation of the shaft and the centre of gravity of the mass m_1). We know that the centrifugal force exerted by the mass m_1 on the shaft, $F_{C1} = m_1 \cdot \omega^2 \cdot r_1$. (i) This centrifugal force acts radially outwards and thus produces bending moment on the shaft. In order to counteract the effect of this force, a balancing mass (m_2) may be attached in the same plane of rotation as that of disturbing mass (m_1) such that the centrifugal forces due to the two masses are equal and opposite. Disturbina b) Balancing mass Balancing of a single rotating mass by a single mass rotating in the same plane r_2 = Radius of rotation of the balancing mass m_2 (i.e. distance between the Let axis of rotation of the shaft and the centre of gravity of mass m_2 ∴ Centrifugal force due to mass m₂, $F_{C2} = m_2 \cdot \omega^2 \cdot r_2$. (ii) Equating equations (i) and (ii), $m_1 \cdot \omega^2 \cdot r_1 = m_2 \cdot \omega^2 \cdot r_2$ or $m_1 \cdot r_1 = m_2 \cdot r_2$ 1 M Inversion each The method of obtaining different mechanisms by fixing different links in a kinematic chain, is known as inversion of the mechanism. Inversions of Four Bar Chain 1. Beam engine (crank and lever mechanism). \mathbf{C} 2. Coupling rod of a locomotive (Double crank mechanism). 3. Watt's indicator mechanism (Double lever mechanism). **1M** Difference Between structure and machine:each Sr. Structure Machine 1 The member of structure do not The part of machine move relative to one anoth move relative to one other Structure Do not transform Machine Transform available energy into usefu d energy in to the useful work 3 The member of structure The link of m/c made transmit both power relative transmit forces only motion and forces. 4 It has no mechanism Machine can have one or more mechanism

		5	e,g: Railway Bridge,	truss.	e.g : Lath	ne m/c , Milling m/c, IC engine	
			Machine frames	/	2.0.200	, , , , , , , , , , , , , , , , , , , ,	
							43.5
		Con	npare Cross and Ope			Onen Belt	1M each
			Basis	Cross E	seit	Open Belt	Cucii
		1	VR	More		Less	
	e	2	Direction of Pulleys	Opposite	9	Same	
		3	Application	Lathe, Fl mill	our	Spindle Mould Machine, Circular Saw Machine, heavy Duty Treadmills	
		4	Length of Belt Drive	More		Less	
2	f	gas a Sphe Radia Cyline Fig sh	r follower:- Extension nd oil engines and air rical faced follower:- al or disc cam:- Used drical cam:- Used in ows Radial and Cyling apt any FOUR	craft engines. Used in auton in Engines Clothing and w	nobile engi veaving m/	'c	2M each
3							
	а.			rank ink 2)	A	Slider Link 3) (Link 4)	2M each
				Sc	otch yol	ke mechanism.	
		motion fixed as ce	on. The inversion is ol . In this mechanism, v	otained by fixir when the link	ng either ti 2 (which c	g rotary motion into a reciprocating the link 1 or link 3. In Fig. 5.35, link 1 is orresponds to crank) rotates about B or reciprocates. The fixed link 1 guides	

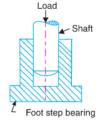



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

1.Completely constrained motion:- When the motion between a pair is limited to a definite

direction irrespective of the direction of force applied, then the motion is said to be a completely constrained motion.

Any one diagram



Square bar in a square hole.

Shaft with collars in a circular hole.

Examples:

- 1. The motion of a square bar in a square hole
- 2. the motion of a shaft with collars at each end in a circular hole,
- **2. Successfully constrained motion:-** When the motion between the elements, forming a pair, is such that the constrained motion is not completed by itself, but by some other means, then the motion is said to be successfully constrained motion. Consider a shaft in a foot-step bearing as shown in Fig. The shaft may rotate in a bearing or it may move upwards. This is a case of incompletely con-strained motion. But if the load is placed on the shaft to prevent axial upward movement of the shaft, then the motion of the pair is said to be successfully constrained motion.

Shaft in a foot step bearing.

Examples: 1. The motion of an I.C. engine valve (these are kept on their seat by a spring)

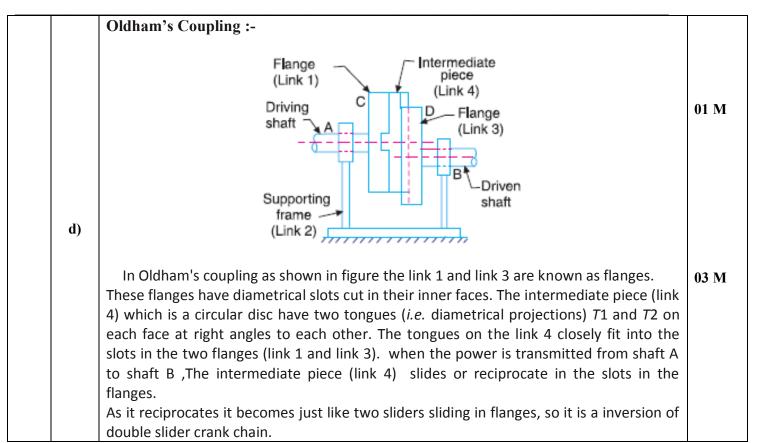
- 2. The piston reciprocating inside an engine cylinder
 - 3. Shaft in a foot step bearing

b.

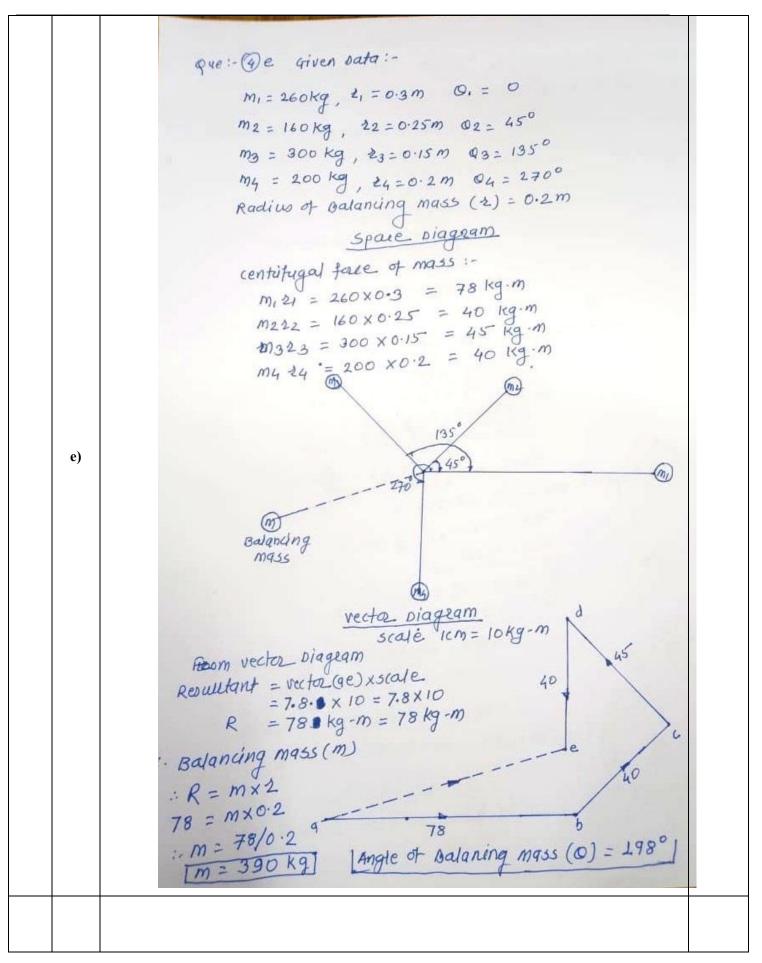
2 M

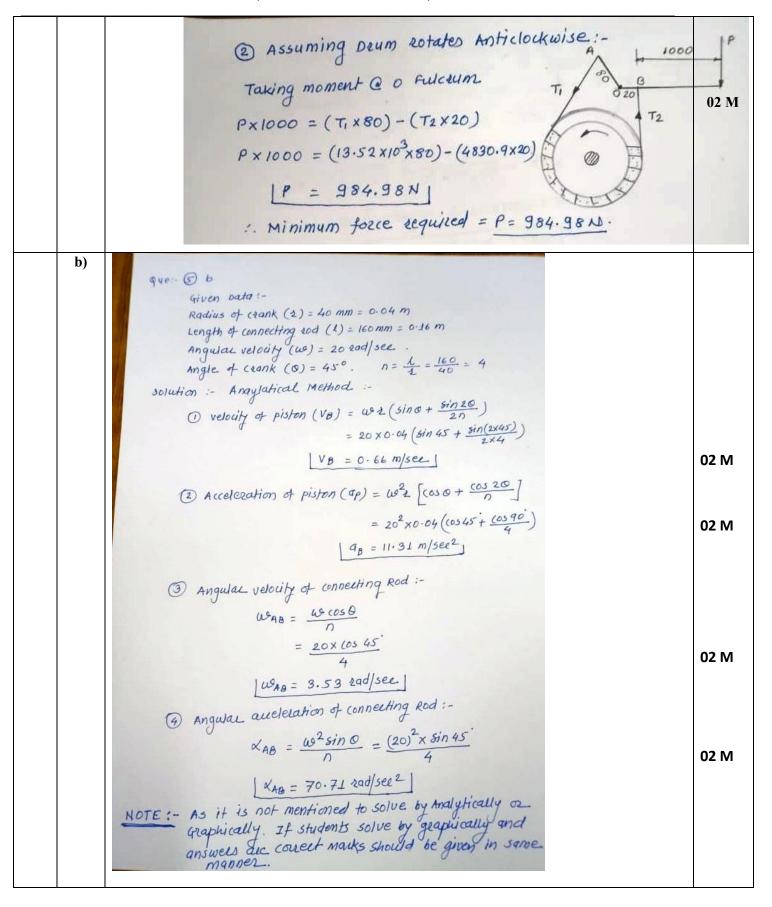
each

c.)	Epicyclic gear train: A simple epicyclic gear train is shown in Fig. where a gear A and the arm C have a common axis at O1 about which they can rotate. The gear B meshes with gear A and has its axis on the arm at O2, about which the gear B can rotate. If the arm is fixed, the gear train is simple and gear A can drive gear B or vice- versa, but if gear A is fixed and the arm is rotated about the axis of gear A (i.e. O1), then the gear B is forced to rotate upon and around gear A. Such a motion is called epicyclic and the gear trains arranged in such a manner that one or more of their members move upon and around another member is known epicyclic grae train. Arm C B Epicyclic gear train.	Worki ng – 2 M
d)	Advantages of chain drive over belt drive (Any Four points) 1. As no slip takes place during chain drive, hence perfect velocity ratio is obtained. 2. Since the chains are made of metal, therefore they occupy less space in width than a belt or rope drive. 3. The chain drives may be used when the distance between the shafts is less. 4. The chain drive gives a high transmission efficiency (upto 98 per cent). 5. The chain drive gives less load on the shafts. 6. The chain drive has the ability of transmitting motion to several shafts by one chain only.	1M each
e)	Offly: T_{max} Positive loop Mean resisting torque T_{mean} Negative loop T_{mean} Suction Compression Working Exhaust	02 M
	Turning moment diagram for a four stroke cycle internal combustion engine. Significance of Turning Moment Diagram:- 1. It shows variation of Turning moment with respect to crank angle of an Engine. 2. The variation of Torque indicates the size of Flywheel 3. More variation indicates Larger Flywheel and vice-a -versa. 4. Single curve variation is indication of single cylinder engine.	02 M

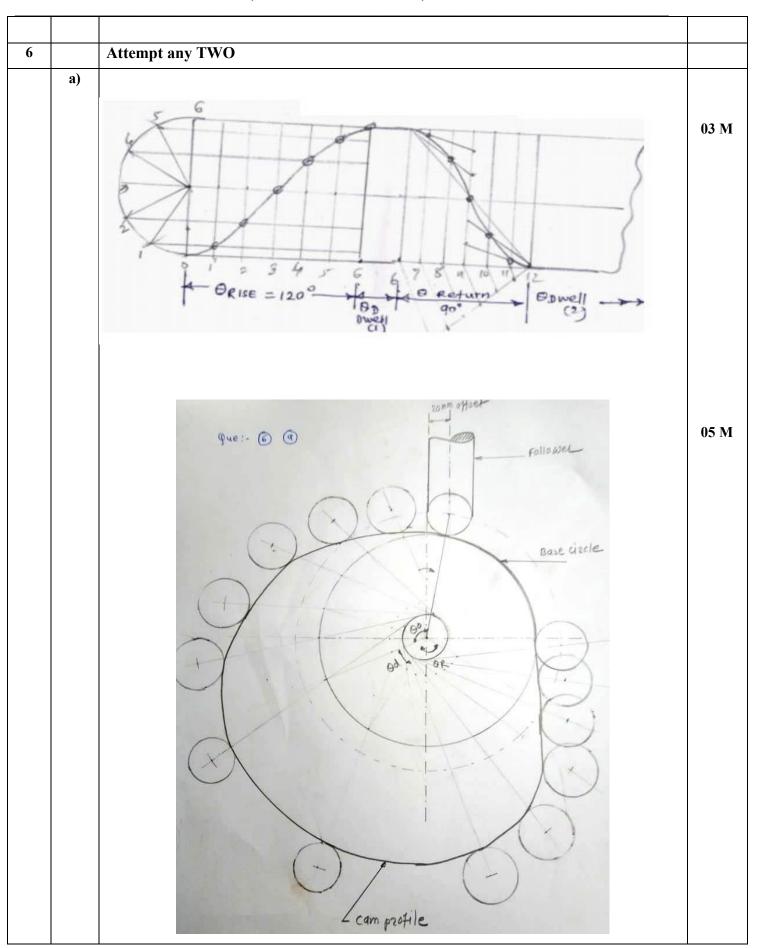


		6. Area below and above of mean torque line indicated requirement of power or generation of power during that angle. Above points can be well understood and explained by Turning moment diagram and	
		we can design the proper flywheel for the engine for reducing speed variation of crank during each cycle.	
	f)	 klein's construction 1) Draw the basic diagram with the angle made by crank, crank (AO) and connecting rod (AP) with dimensions and scale. 2) Extend the connecting rod upto the vertical line of the crank circle and mark intersection point M, the triangle created ΔOAM is the velocity triangle. 3) Bisect the connecting rod at X. 4) Draw the circle with radius equal to XA or XB. 5) Draw the circle with Centre as "A" and radius equal to AM. 6) Both circles will intersect each other at two points (K, L), join these two points. 7) This line will intersect the connecting rod at point "C" and line of stroke at point "N". Quadrilateral OACN is the acceleration diagram. This is required acceleration diagram of the links 	
		If ω AO is the angular velocity of the crank, then Linear velocity's of the links is given by- VAO = ω AO x AO, VAP = ω AO x AM, VPO = ω AO x MO Acceleration of the links is given by- arAO = ω 2AO x AO, arAP = ω 2AO x AC, atAP = ω 2AO x CN, aPO = ω 2AO x NO	
4		Attempt any FOUR	
		 i) Centrifugal Tension:- Since the belt continuously runs over the pulleys, therefore, some centrifugal force is caused, whose effect is to increase the tension on both, tight as well as the slack sides. The tension caused by centrifugal force is called centrifugal tension ii) Initial Tension:- When the pulleys are stationary and the belt is tightened up to get frictional grip ,the belt is subjected to some tension, which is called as called initial tension. 	01 M each
	a)	ii)Formulae for Initial Tension:-	
		$T_0 = \frac{T_1 + T_2}{2}$ (Neglecting centrifugal tension) $= \frac{T_1 + T_2 + 2T_C}{2}$ (Considering centrifugal tension)	
		iv) Condition for Maximum Power Transmission :	


	1. for maximum power, $T_{\rm C} = \frac{T}{3}$.	
	$T_1 = T - \frac{T}{3} = \frac{2T}{3}$ 2. velocity of the belt for the maximum power,	
	$v = \sqrt{\frac{T}{3m}}$	
	Following are the important follower motions. 1. Uniform velocity 2. Simple harmonic motion 3. Uniform acceleration and retardation.	Types 01 M
b)	B ₁ C ₁ B ₂ C ₁ B ₃ B ₄ B ₅ B ₆ B ₇ B ₈ B ₈ B ₉ B ₉ B ₁ C ₁ B ₁ B ₁ C ₂ B ₁ B ₁ C ₃ B ₁ B ₁ B ₁ B ₁ B ₁ B ₁ B ₂ B ₃ B ₄ B ₃ B ₄ B ₄ B ₄ B ₅ B ₆ B ₇ B ₈ B ₉ B ₉ B ₁ B ₂ B ₃ B ₄ B ₁ B ₄ B ₄ B ₅ B ₆ B ₇ B ₈ B ₇ B ₈ B ₉ B ₉ B ₁ B	Dia. 01 M Each
	1. Uniform velocity 2. Simple harmonic motion	
	3. Uniform acceleration and retardation.	
	Eddy Current Dynamometer : It consists of a stator on which are fitted a number of electromagnets and a rotor disc made of copper or steel and coupled to the output shaft of the engine. When the rotor rotates, eddy currents are produced in the stator	02 M
	due to magnetic flux set up by the passage of field current in the electromagnets. These eddy currents oppose the motion of the rotor thus loading the engine. The eddy	
	currents are dissipated in producing heat so that this type of dynamometer also requires some cooling arrangements. The torque is measured similar to absorption	
	dynamometers i.e. with the help of moment arm. The load is controlled by regulating the current in the electromagnets.	
c)	Field Stator	02 M
	Eddy current dynamometer.	


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)



f	 Circular pitch (Pc): - It is the distance measured on the circumference of the pitch circle from a point of one tooth to the corresponding point on the next tooth. Clearance: - It is the radial distance from the top of the tooth to the bottom of the tooth, in a meshing gear. Backlash: -It is the difference between the tooth space and the tooth thickness, as measured along the pitch circle. 	01 M each
5	Attempt any TWO	
a	t = 5cm = 0.05 m, 4 = 0.35, 1 = 1m, Tb = 5000 H-m	
	Solution: piameter of Band. $0 = d + 2t$ $= 1.05 + (2 \times 0.05)$	
	D = 1.15 m 2 = 0.575 m Maximum Ozaking Torque.	
	$T_b = (T_1 - T_2) \times$	
	5000 = (T, -T2)x0.575	01 M
	T, - T2 = 8695.65 N	
	For Band and block brake, we know that	
	$ \frac{T_1}{T_2} = \left[\frac{1 + \alpha \tan \alpha}{1 - \alpha \tan \alpha} \right]^n $ $ = \left[\frac{1 + 0.35 \times \tan (7)}{1 - 0.35 \times \tan (7)} \right]^{12} $	
	$\frac{T_1}{T_2} = \left(\frac{1.043}{0.957}\right)^{12} = 2.80$ 2.80 T2 - put in squn (1)	01 M
	$2.80 \frac{7}{2} - \frac{7}{2} = \frac{8630 \cdot 9}{4830 \cdot 9}$	01 M
	Ti = 13.52 Kre Ti = 13.52 Kre A L 1000 Pi	01 M
	Taking moment @ O Fulcium point	
	$P \times 1000 = (T_2 \times 80) - (T_1 \times 20)$ $P \times 1000 = (4830.9 \times 80) - (13.5 \times 10^3 \times 20)$ $\therefore P = 116.47 \text{ N}$	02 M
	: Minimum Force required P = 116.47 N	

c) Que:- (5) C. Given Data:- $P = 55 \text{ kw} = 55 \times 10^3 \text{ watts}, N = 1800 \text{ ym}, u = 0.1$ $p = 160 \text{ kN/mm}^2 = 160 \times 10^3 \text{ N/mm}^2, 22 = 80 \text{ mm},$ $2_1 = 114.28 \text{ mm}, n = 9$ Solution:- Angular velocity (we) = $\frac{29 \text{ N}}{60} = \frac{2 \times 9 \times 1800}{60}$ $w = 188.49 \text{ tad/sec}$. Power Transmitted (P) = $T \times w = 55 \times 10^3 = T \times 188.49$	
Since the intensity of pressure is maximum at inneradius x_2 therefore $p \cdot 22 = C$	02 M
160 × 10 ³ × 80 = C $C = 12.8 \times 10^6 \text{ N/mm}$ Axial Face required to Engage the clutch, $W = 2 \text{ RC} \left(\frac{2}{1} - \frac{2}{2} \right)$ $W = 2 \times 10^6 \times 10^6 \left(114.28 - 80 \right)$ $W = 2 \times 10^6 \times 10^6 \left(114.28 - 80 \right)$	02 M
M = $2.75 \times 10^9 \text{ N}$ Mean Radius of friction surface. $R = \frac{2i+2z}{2} = \frac{114.28+80}{2} = 97.14 \text{ m}$ $R = 0.09714 \text{ m}$ Torque transmitted (T)	02 M
$T = n.4.W.R$ $291.79 \times 10^{9} = n \times 0.1 \times 2.75 \times 10^{9} \times 0.09$ $291.79 \times 10^{9} = n \times 26.71 \times 10^{6}$ $\therefore n = 0.09 \times 10^{-5} - \text{Not feasible}$ I think Intensity of preosure is incorrect (It should be o	02 M

b)	
	UZCENSIDER UNIFORM ENTRUM TO THE TOTAL TO
	Land to the same than the same of the same
	Torque, T = = = WWR N-m
	= 3 x0105 X15 X10 X01075
	Power last, = 37. F Non [2 M]
	7 5 2.9TNT = 0.191 KN [210]
	(11) Considering Uniform wear Honory
	Torque, T = 1 H W & Nom
	= 1 KO-45 X 15 KP3 X 0-075
	= 28.1 Nom [2 m]
	Fower feet
	P = 10NT = 0.194 KW -[2.17]
	46 W1000

(Autonomous) (ISO/IEC - 27001 - 2013 Certified) c) VCB ACCLN DIG VEL. DIG.

Each Dia. 02 M

VBA = VB = &W = 0.06×100 From velocity diagram VcD = Vc = 4.5 m/s and VCB = 4 m/s : WCD = 4.5/0.04 = 112 rad/s ... Ans & WBC = 4/0.08 = 50 rad/s ... Ans Acceleration: $f_{BA}^{R} = f_{B}^{R} = \frac{(6)^{2} - 600 \text{ m/s}^{2}}{0.06}$ fin = ABX4000 = 240 m/s2 fR = 300 m/32 & fR = 506.2 m/32 From Acch diag. fcB = 240 m/s2 & fcD = 850 m/s2 =- 0xc8 = 240 = 3000 rad s2 and -- Ans xc0 = 850 = 21250 rad | 82 -- Ans.

02 M

