MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	$\begin{aligned} & \hline \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answer	Marking Scheme
1	a) (i) (ii) (iii)	Attempt any SIX of the following Define - Kinematic link --Each part of a machine, which moves relative to some other part, is known as a 'kinematic link (or simply link) or element. Example - any one Example of machine element, (e.g. shaft, spindle, gear, crank, belt, pulley, key etc.) Different mechanism generated by single slider crank chain mechanism. (Any four) a) Reciprocating engine, Reciprocating compressor b) Whitworth quick return mechanism, Rotary engine, c) Slotted crank mechanism, Oscillatory engine d) Hand pump, pendulum pump or Bull engine, Advantages of roller follower over knife edge follower a) Roller follower has less wear and tear than knife edge follower. b) Power required for driving the cam is less due to less frictional force between cam and follower	$6 \times 2=12$ (01 mark) (01 mark ($1 / 2 \times 4=$ 2 mark) (01 mark each)
	(iv)	Define slip and creep in the belt drive Slip --- Slip is defined as insufficient frictional grip between pulley (driver/driven) and belt. Slip is the difference between the linear velocities of pulley (driver/driven) and belt. Creep ----- Uneven extensions and contractions of the belt when it passes from tight side to slack side. There is relative motion between belt and pulley surface, this phenomenon is called creep of belt.	(01 mark each)

Rotary engine

Crank link is fixed (link 2), slider (link 4) is mounted in cylinder, all sliders are connected by connecting rod (link 3). The complete assembly of cylinders and crankcase rotates about center o.

Sliding pair 1-4,
Turning pair 3-4, 2-3, 1-2

Third-- Oscillatory engine. Slotted crank mechanism. link 3 is fixed

Oscillating cylinder engine
The crank (link 2) rotates; the piston is connected to piston rod (linkl) reciprocates and cylinder oscillates about fixed link 3.

Sliding pair 1-4,
Turning pair 1-2, 2-3, 3-4

Fourth Hand pump, pendulum pump. link 4 is fixed

Hand pump

Link 3 can oscillates about fixed point B on link 4, this makes end A of link 2 to oscillates about B and end O to reciprocates along the axis of the fixed link 4

Sliding pair 1-4,
Turning pair 1-2, 2-3, 3-4

Points	Multiplate clutch	Cone clutch
Power transmission	Small power transmission for same operating condition.	(Bery large power/torque transmission. (Because of increase of normal force). i.e.
Size	$\mathrm{F}_{\mathrm{n}}=\mathrm{F} /$ Sin $\alpha ; \alpha$ is semi cone angle F is axial force; F_{n} is normal force	
	Smaller size or require less actuating force compared with plate clutch.	

Central distance between two shafts; $\mathrm{C}=4$ Meters; $=4000 \mathrm{~mm}$.
Smaller pulley diameter $=\mathrm{d}=500 \mathrm{~mm}$; Smaller pulley radius $=\mathrm{r}=250 \mathrm{~mm}$;
Larger pulley diameter $=\mathrm{d}=700 \mathrm{~mm}$; lager pulley radius $=\mathrm{r}=350 \mathrm{~mm}$;
Angle subtended by each tangent β
a) Length of open belt drive

Angle subtended by each tangent $\beta=\sin ^{-1}(\mathrm{R}-\mathrm{r} / \mathrm{C})=\sin ^{-1}((350-250) / 4000)$

$$
\mathrm{B}=0.025 \text { radians }
$$

$$
\mathrm{L}_{0}=\pi(\mathrm{R}+\mathrm{r}) 2 \mathrm{x} \beta(\mathrm{R}-\mathrm{r})+2 \mathrm{C} \times \cos \beta=9.889 \mathrm{~m} \quad \mathbf{L}_{\mathbf{o}}=9.889 \mathrm{~m}
$$

b) Length of cross belt drive

Angle subtended by each tangent $\beta=\sin ^{-1}(\mathrm{R}+\mathrm{r} / \mathrm{C})=\sin ^{-1}((350+250) / 4000)$

$$
\beta=0.01575 \text { radians }
$$

$$
\mathrm{L}_{\mathrm{C}}=\pi(\mathrm{R}+\mathrm{r}) 2 \times \beta(\mathrm{R}-\mathrm{r})+2 \mathrm{C} \times \cos \beta=9.903 \mathrm{~m}
$$

$$
\mathrm{L}_{\mathrm{C}}=9.903 \mathrm{~m}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

		$\text { Belt tension ratio }=\mathrm{T}_{1} / \mathrm{T}_{2}=\mathrm{e}^{\mu \theta}=\mathrm{e}^{0.3(160 \mathrm{x} \pi / 180)}=\mathbf{2 . 3 1} ;$ $\begin{equation*} \mathrm{T}_{1} / \mathrm{T}_{2}=2.31 ; \quad \mathbf{T}_{\mathbf{1}}=\mathbf{T}_{\mathbf{2}} \times \mathbf{2 . 3 1 1 - -} \tag{1} \end{equation*}$ $\begin{align*} & \mathrm{P}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{V} ;-- \tag{2}\\ & \mathrm{P}=\left(\mathrm{T}_{2} \times 2.31-\mathrm{T}_{2}\right) \times 10 ; \end{align*}$ Putting value of power $\mathrm{P}=4 \mathrm{~kW}$ $4 \times 1000=\left(\mathrm{T}_{2} \times 2.31-\mathrm{T}_{2}\right) \times 10$ $\begin{gathered} \mathrm{T}_{2}=305.34 \mathrm{~N} \\ \mathrm{~T}_{1}=705.34 \mathrm{~N} \end{gathered}$ $\mathrm{T}_{\text {maximum }}=\mathrm{T}_{1}=705.34 \mathrm{~N}$	01 mark 1 mark for each step $=$ 03 marks
03	a.	i) uniform velocity. displacement diagram: Velocity and acceleration diagram: ii) simple harmonic motion. Displacement diagram:	$\begin{aligned} & \hline 04 \\ & \text { mark } \end{aligned}$

	b.	Relative Velocity Method. Given Data: Crank $=0.5 \mathrm{~m}$ Connecting rod=2m $\begin{aligned} & \mathrm{N}=180 \mathrm{rpm} \\ & \Theta=45^{0} \end{aligned}$ A) Space diagram: Scale: $1 \mathrm{~cm}=0.25 \mathrm{~m}$ $\begin{aligned} & \omega=\frac{2 \Pi \mathrm{~N}}{60} \\ & \frac{2 \Pi \times 180}{60} \\ & \omega=18.84 \mathrm{rad} / \mathrm{s} \end{aligned}$ Calculations: $\text { 1) } \begin{aligned} \mathrm{V}_{\mathrm{OA}} & =\mathrm{r} \omega \\ & =0.5 \mathrm{X} 18.84 \\ \mathrm{~V}_{\mathrm{OA}} & =\mathbf{9 . 4 2} \mathbf{~ m} / \mathrm{s} \ldots .1 \mathrm{mark} \end{aligned}$ B)Velocity diagram: Scale: $1 \mathrm{~cm}=3 \mathrm{~m} / \mathrm{s}$ 2) Velocity of piston: $\begin{aligned} \mathrm{Vp} & =\mathrm{L}(\mathrm{op}) \mathrm{X} \text { scale } \\ & =2.8 \mathrm{X3} \end{aligned}$	01

		Vp=8.4 m/sans 3) Angular velocity of connecting rod: $\begin{gathered} \omega=\frac{\text { Vap }}{\text { length of } A P}=\frac{l(a p) X \text { Scale }}{2}=\frac{2.2 \times 3}{2} \\ \omega=3.3 \mathrm{rad} / \mathrm{sec} \ldots . . \mathrm{ans} \end{gathered}$				01
03	c.					1 mark for each point.
			Parameters	Cross belt drive	Open belt drive	
		1	Velocity ratio	High velocity ratio	Low velocity ratio	
		2	Direction of driven pulley	Rotated in same direction as the driving as the driving pulley	Rotated in the opposite direction to the driving pulley	
		3	Application	Sawmills, buck saws	Conveyors, electrical generator	
		4	Length of belt drive	$\mathrm{L}=\Pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+2 \mathrm{C}+\frac{\left(r_{1-r_{2}}\right)^{2}}{c}$	$\mathrm{L}=\Pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+2 \mathrm{C}+\frac{\left(r_{\left.1+r_{2}\right)^{2}}{ }^{2}\right.}{}$	
	d.		Name of brake	Applications		1 mark for any 1 applica tion
		1	Band brake	Drums and chain saws, Railway braking system.		
		2	Disc brake	Any rotating shaft, motor cycles		
		3	Internal expanding brake	All type of light vehicles(motor cars, 2 wheelers),light truks		
			External shoe brake	Railway coach, electric cranes		
	e.	$\Theta_{1}=0^{0} \quad \Theta_{2}=60^{0} \quad \theta \quad 3=1500$ Resolving Horozontally, $\begin{aligned} \Sigma \mathrm{H} & =\mathrm{m}_{1} \mathrm{r}_{1} \cos \theta_{1}+\mathrm{m}_{2} \mathrm{r}_{2} \cos \theta_{2}+\mathrm{m}_{3} \mathrm{r}_{3} \cos \theta_{3} \\ & =200 \cos o^{\circ}+500 \cos 60^{0+} 225 \cos 150^{0} \\ & =255.14 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 \text { mark } \end{aligned}$ Resolving vertically,				
						$\Sigma \mathrm{V}=01$
						$\mathrm{Mb}=01$
						$\Theta^{\prime}=01$

	f	$\begin{gathered} \mathbf{R}=\sqrt{\sum \mathrm{H}^{2}+\sum \mathrm{V}^{2}} \\ =\sqrt{255.14^{2}+545.51^{2}} \\ \mathbf{R}=\mathbf{6 0 2 . 2 2} \\ \mathrm{R}=\mathrm{m}_{\mathrm{b}} \mathrm{r}_{\mathrm{b}}=602.22 \\ \mathrm{~m}_{\mathrm{b}} \mathrm{X} 30=602.22 \\ \mathrm{mb}=602.22 / 30 \\ \mathbf{m b}=\mathbf{2 0 . 0 7} \mathrm{Kg} \\ \text { Angle of balancing mass, } \\ \Theta=\tan ^{-1}\left(\frac{\sum V}{\sum \mathrm{H}}\right) \\ =\tan ^{-1}\left(\frac{545.51}{255.14}\right) \\ \Theta=64.93^{0} \\ \Theta^{\prime}=64.93^{0}+180=244.93^{0} \end{gathered}$ In single, Compound reveted gear trains the axis on which gears are mounted are fixed relative to each other. In case of epicyclic gear train the axis of shaft on which the gears are mounted may have relative motion between them. Gear ' A ' and arm ' C ' rotate about fixed axis. The gear ' B ' rotates about axis ' S ' and also about arm ' C ' which in turn revolves about fixed axis through ' R '. The gear ' A ' and ' B ' are simple gear train when arm ' C ' is fixed. ()	02
4.	a.	Power transmission in belt drive depends on angle of lap and frictional grip between belt and pulley. As slack side is at upper side angle of lap and grip increases.	04 marks

d.

It consist of two or more ropes wound around flywheel on ream of pulley rigidly fixed to the shaft of an engine. The upper end of rope is attached to a spring balance while the lower end of the rope is kept in position by applying dead weight.

To prevent slipping of rope over flywheel wooden blocks are used which is placed at intervals around the circumference of flywheel.

The operation of brake the engine is made to run at constant speed the frictional torque due to rope must be equal to torque being transmitted by the engine. Net brake load $=\mathrm{W}-\mathrm{S}$.

Therefore, frictional torque due to ropes $=$ torque transmitted by engine at constant speed.

Brake power $(\mathrm{P})=$ Torque transmitted into angular speed of engine.
If diameter of rope is neglected then, $\mathrm{P}=\frac{(W-S) \pi D N}{60}$
Applications:-It is commonly used for measuring brake power of the engine.

Fig.2m arks 2 marks explan ation.

fig. shows a mechanical brake or internal expanding brake used in automobile vehicles.

Construction:-

1) It consists of two semi-circular brake shoe having friction lining on their outer surface.
2) Brake shoes are hinged to back plate at lower end by an anchor pin while other end rest on cam.
3) The cams turns or actuate by camshaft passes through the hole in back plate.
4) The camshaft can be operated by brake pedal through linkage.
5) The outer portion of brake is brake drum which encloses the complete brake msm and protect it from dust and moisture.

Working:-

1) When break pedal is pressed the cam turn to outwear by expanding the brake shoe against the retractor spring force.
2) The friction lining comes in contact with drum and causes friction between them.
3) This force of friction oppose the direction of motion and by reducing the speed or stop vehicle.
4) When brake pedal is released the retracting spring pull the brake shoe inward which turn the cam and brakes are released.
f. $\quad m=$ Mass attached to shafts, $r=$ Distance of $C G$ from axis of rotation.

Consider mass ' m ' is attached to rotating shaft at a radius are then the centrifugal force exerted by mass 'M' on the shaft is $\mathbf{F c}=\mathbf{M} \mathbf{w}^{\mathbf{2}} \mathbf{R}$

Where,
$\mathrm{W}=$ Angular velocity of shaft
$\mathrm{R}=$ Distance of CG from axis of rotation

Fig.2m arks 2 marks explan ation
$\mathrm{M}=$ Mass attached to shaft.

Fig.1m arks 3
marks explan ation

Due to continuous rotation of shaft the centrifugal force developed will be continuously changing its direction. It will cause bending moment on shaft.

To counter act the effect of centrifugal force the balance weight may be introduced in same plane of rotation. This balance weight should be attached it will result in exactly equal but opposite centrifugal force to that of disturbing weight ' M '.

The balanced centrifugal force is given by $\mathrm{Fb}=\mathrm{mbw}^{2} \mathrm{R}_{\mathrm{b}}$
For balancing the shaft $-M w^{2} R=m b w^{2} R_{b}$.

Q. 5	a)	Attempt any TWO Radius of crank , $\mathrm{r}=100 \mathrm{~mm}=0.1 \mathrm{~m}$ speed. $\mathrm{N}=600 \mathrm{rpm}, \omega=2 \pi \mathrm{~N} / 60=62.83 \mathrm{rad} / \mathrm{sec}$ Length of connecting rod, $\mathrm{l}=400 \mathrm{~mm}=0.4 \mathrm{~m}$ (40 mm is printing mistake) Obliquity ratio, $n=1 / r=400 / 100=4$, Crank angle,$\theta=45^{\circ}$ Velocity of slider $V p=\omega r\left(\sin \theta+\frac{\sin 2 \theta}{2 n}\right)=5.225 \mathrm{~m} / \mathrm{s}$ Acceleration of slider $\mathrm{fp}=\omega^{2} \mathrm{r}\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)=279.15 \mathrm{~m} / \mathrm{s}^{2}$ Angular velocity of connecting rod $\omega_{\mathrm{pc}}=(\omega \cos \theta) / \mathrm{n}=11.107 \mathrm{rad} / \mathrm{sec}$ Angular acceleration of connecting rod $\alpha_{\mathrm{pc}}=\left(-\omega^{2} \sin \theta\right) / \mathrm{n}=-697.89 \mathrm{rad} / \mathrm{sec}^{2}$ [Note- If student has taken I=40,(due to printing mistake in QP) which is practically not possible, but values of answers in that case will be $V p=12.29 \mathrm{~m} / \mathrm{s} ; f p=279.15 \mathrm{~m} / \mathrm{s}^{2} ; \omega_{p c}=111.07$ $\mathrm{rad} / \mathrm{sec} ; \alpha_{p c}=6978.86 \mathrm{rad} / \mathrm{s}^{2}$, which may be acceptable.]	2 2 2 2

a) (i) Define ...(.1 for each definition with sketch)
(1) Pitch circle- Circle drawn from centre of cam through pitch points
(2) Pressure angle- Angle between direction of follower motion and normal to pitch curve
(3) Stroke- Maximum travel of follower from its lowest position to top most position
(4) Module -(Gears) - Ratio of pitch circle diameter in mm to No. of teeth on gear

DISC BRAKE	DRUM BRAKE
It uses disc shaped rotors	It uses cylindrical drum
It uses a clamp called caliper to hold the friction 'pads' against rotor disc	It uses expanding hydraulic cylinder to press the friction material (shoes) against the inside of rotating drum.
Good braking even at high temperature	Reduced performance at high temp.
Better heat dissipation	Slower heat dissipation
Fast braking, better braking force	Slow braking
Cost is more	Cheaper than disc brake
Generally Used for modern bikes, cars	Used for trucks, bus, scooter

b.
(b) Four bar chain Velocity Diagram2M ; Acceleration Diagram 2 M

Calculations-
$\mathrm{V}_{\mathrm{QP}}=\omega_{\mathrm{QP}} \times \mathrm{PQ}=10 \times 0.0625=0.625 \mathrm{~m} / \mathrm{s}$
From Velocity diagram,
By measurement, $\mathrm{V}_{\mathrm{RQ}}=0.333 \mathrm{~m} / \mathrm{s}, ; \omega_{\mathrm{QR}}=\mathrm{V}_{\mathrm{RQ}} / \mathrm{RQ}=0.333 / 0.175=1.9 \mathrm{rad} / \mathrm{s}$ (Anti clockwise)... 1 M
By measurement, $\mathrm{V}_{\mathrm{RS}}=0.426 \mathrm{~m} / \mathrm{s} ; ; \omega_{\mathrm{RS}}=\mathrm{V}_{\mathrm{RS}} / \mathrm{SR}=0.426 / 0.1125=3.78 \mathrm{rad} / \mathrm{s}$ (clockwise)..... 1 M
Find out radial acceleration of each link by using formula $-V^{2} /$ length of link
$\mathrm{Fr}_{\mathrm{QP}}=6.25 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{fr}_{\mathrm{RQ}}=0.634 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{fr}_{\mathrm{RS}}=1.613 \mathrm{~m} / \mathrm{s}^{2}$
From acceleration diagram, measure all tangential components (ft)
Angular acceleration of link $Q R, \alpha_{Q R}=\mathrm{ft} R Q / Q R=4.1 / 0.175=23.43 \mathrm{rad} / \mathrm{s}^{2}$ (Anti clockwise)... 1 M
Angular acceleration of link RS , $\alpha_{\text {RS }}=\mathrm{ft} R S / S R=5.3 / 0.1125=47.1 \mathrm{rad} / \mathrm{s}^{2}$ (Anti clockwise) ... 1 M

