WINTER- 18 EXAMINATION

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \hline \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 1 \& A
a

b

c

d \& | Attempt any six of the following (2×6) |
| :--- |
| a) Define density: It is defined as mass per volume. |
| Specific gravity: it is the ratio of mass density or specific weight of fluid to the mass density or specific weight of ideal fluid. |
| b) Define fluid pressure intensity: it is force per unit area. |
| Pressure head: It is the pressure exerted by a liquid and can also be expressed as the height of equivalent liquid column or vertical height or the free surface above any point in a liquid at rest. |
| c) State the Bernoulli's theorem |
| Total energy per unit weight of an ideal fluid and incompressible fluid at any point during flow remains constant. Therefore |
| Total energy per unit weight $=\mathrm{p} / \mathrm{w}+\mathrm{v}^{2} / 2 \mathrm{~g}+\mathrm{Z}=$ constant |
| d) State the types of fluid flow |
| 1) steady and unsteady flow |
| 2) uniform and non uniform flow |
| 3) laminar and turbulent flow |
| 4) compressible and incompressible flow |
| 5) rotational and irrigational flow | \& 1

1
1
1
1

1
1
1
2

\hline
\end{tabular}

WINTER - 18 EXAMINATION

Subject Name:
Model Answer
Subject Code:
17411

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{array}{|l|}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. } \\
& \text { N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline \& e

f

g \& | Describe continuity equation |
| :--- |
| It is based on law of conservation of mass according to which the mass can neither be created nor destroyed. |
| For a fluid flowing through a pipe of variable cross section, the quantity of fluid passing per second is constant at all sections. This is known as continuity equation. $\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}=\text { constant }$ |
| Define slip |
| It is the difference between theoretical discharge and actual discharge. |
| Negative slip: |
| Actual discharge of a reciprocating pump is more than the theoretical discharge. In such cases the coefficient of discharge will be more than unity, and the corresponding slip is known as negative slip of the pump. |
| Classify the hydraulic turbines |
| According to the type of energy available at inlet to the turbine |
| 1) impulse turbine and 2) Reaction turbine |
| According to direction of flow through runner |
| 1) tangential flow turbine |
| 2) radial flow turbine |
| 3) axial flow turbine |
| 4) mixed flow turbine |
| According to the head available at inlet to the turbine |
| 1) Low head turbine (2 m to 15 m) | \& 2

1
1
1
1
2

\hline
\end{tabular}

2)Medium head turbine (16 m to 70 m)
3)High head turbine (71 m and above)

According to the specific speed of the turbine

1)low specific speed
2)medium specific speed
3)High specific speed

Explain the meaning of Impact of Jet
the force exerted by the jet on a plate or vane which may be stationery or moving is called the impact of jet

The concept of impact of jet is used to determine forces alone or forces and work done.
Attempt any TWO of the following(2×4)
a) Enlist types of manometers and explain any one of them with neat sketch.

Types of manometers
A) simple manometer: 1) Piezometer
2) U- tube manometer
3) Micro-manometer
B) differential manometer: 1)U- tube differential manometers
2) Inverted U- tube differential manometers

U - Tube Manometer

A manometer is a device used for measure the pressure of a fluid by balancing it with against a column of a liquid. Five different types of manometers are shown below with images.

U-Tube Manometer:
It consist of a U - shaped bend tube whose one end is attached to the gauge point ' A ' and other end is open to the atmosphere. It can measure both positive and negative (suction) pressures. It contains liquid of specific gravity greater than that of a liquid of which the
\qquad
pressure is to be measured.
where ' γ ' is Specific weight, ' P ' is Pressure at A.
Pressure at A is $P=\gamma 2 h 2-\gamma 1 h 1$

Differential U-Tube Manometer:

A U-Tube manometric liquid is heavier than the liquid for which the pressure difference is to be measured and is not immiscible with it.
Construction
The simplest differential manometer is a U-shaped tube with both ends at the same height. A liquid, usually water or mercury, rests at the bottom of the tube.

Working

If one end of the tube is in a place with higher air pressure, the pressure will push down the liquid on that side of the tube. By measuring the difference between the heights of liquid, it is possible to calculate the difference in pressure.

Pressure difference between A and B is given by equation

$$
P_{A}-P_{B}=\gamma_{2} h_{2}+\gamma_{3} h_{3}-\gamma_{1} h_{1}
$$

Inverted U tube Manometer

Inverted U-Tube Manometer:

Inverted U-Tube manometer consists of an inverted U - Tube containing a light liquid. This is used to measure the differences of low pressures between two points where better accuracy is required. It generally consists of an air cock at top of manometric fluid type.

$$
P_{1}-\rho_{1}{ }^{*} g^{*} H_{1}-\rho_{m} * g\left(H_{2}-H_{1}\right)=P_{2}-\rho_{2}{ }^{*} g H_{2}
$$

Micro Manometer:

Micro Manometer is the modified form of a simple manometer whose one limb is made of larger cross sectional area. It measures very small pressure differences with high precision.

Micro Mamometer
Let ' a ' = area of the tube,
A = area of the reservoir,
$h_{3}=$ Falling liquid level reservoir,
$h_{2}=$ Rise of the liquid in the tube,
By conversation of mass we get $A^{*} h_{3}=a^{*} h_{2}$
Equating pressure heads at datum we get

$$
P_{1}=\left(\rho_{m}-\rho_{1}\right) * g h_{3}+\rho_{m} * g h_{2}-\rho_{1} * g h_{1}
$$

Inclined Manometer

Inclined Manometer

Inclined manometer is used for the measurement of small pressures and is to measure more accurately than the vertical tube type manometer. Due to inclination the distance moved by the fluid in manometer is more.

$$
P_{A}-P_{B}=\gamma_{2} l_{2} \sin \theta+\gamma_{3} h_{3}-\gamma_{1} h_{1}
$$

b) Define atmospheric pressure, gauge pressure and absolute pressure. state relationship between them

Atmospheric pressure: The pressure exerted by the atmosphere on any surface in contact is
\qquad

| f)Explain differential manometer with neat sketch | |
| :--- | :--- | :--- |
| A differential manometer is a device that measures the difference in pressure between two
 places. Differential manometers can range from devices simple enough to be built at home
 to complex digital equipment.
 Function
 Standard manometers are used to measure the pressure in a container by comparing it to
 normal atmospheric pressure. Differential manometers are also used to compare the
 pressure of two different containers. They reveal both which container has greater pressure
 and how large the difference between the two is.
 Use | 2 |
| Differential manometers have a wide range of uses in different disciplines. One example is
 that they can be used to measure the flow dynamics of a gas by comparing the pressure at
 different points in the pipe.
 Construction
 The simplest differential manometer is a U-shaped tube with both ends at the same height.
 A liquid, usually water or mercury, rests at the botom of the tube.
 Working
 If one end of the tube is in a place with higher air pressure, the pressure will push down the
 liquid on that side of the tube. By measuring the difference between the heights of liquid, it
 is possible to calculate the difference in pressure.To calculate the difference in pressure,
 multiply the difference in height by the density of the gas and the acceleration due to
 gravity. The final units should be in Pascals. | |

e	(1) Velocity of vane. $\begin{align*} & u=\frac{v}{2}=\frac{28.01}{2} \tag{u}\\ & t \Rightarrow 14.005 \mathrm{~m} / \mathrm{s} \text { _ ans. } \end{align*}$ (2) workdone $/ \mathrm{kg}$ of water, $\begin{aligned} w & =(v-u)(1+\cos \theta) \cdot u \\ & =(28.01-14.005)\left(1+\cos 15^{\circ}\right) \cdot 14.055 \\ & =385.59 \mathrm{Nm} / \mathrm{s} \text { ans. } \end{aligned}$ Surface tension: Surface tension is defined as the force required to maintain unit length of the film in equilibrium condition. Or It is the property of fluid which is defined as the tensile force acting on the surface of a liquid in contact with a gas or on the surface between two immiscible liquids such that the contact surface behaves like a membrane under tension. Capillarity : :- It is defined as a phenomenon of rise or fall of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid. The rise of liquid surface is known as capillary rise while the fall of the liquid surface is known as capillary fall or depression	Definition - 02 mark each

Attempt any TWO:

Draft Tube: Draft tube is a pipe of gradually increasing diameter which connects the exit of runner of turbine to tail race.

Types of draft tube:

i. Conical draft tube.
ii. Simple elbow draft tube.
iii. Moody spreading draft tube.
iv. Elbow draft tube with circular cross section at inlet and rectangular at outlet.

Conical Draft Tube: (Straight Divergent Tube) The shape of this tube is that of frustum of a cone. It is usually employed for low specific speed, vertical shaft Francis turbine. The cone angle is restricted to 8 to avoid the losses due to separation. The tube must discharge sufficiently low under tail water level. The maximum efficiency of this type of draft tube is 90\%.
Simple Elbow Type The draft tube is bent to keep its definite length. Simple elbow type draft tube will serve such a purpose. Its efficiency is, however, low (about 60\%). This type of draft tube turns the water from the vertical to the horizontal direction with a minimum depth of excavation. The horizontal portion of the draft tube is generally inclined upwards to lead the

Definition

- 02

Marks

Types - 02
Marks

Explain any one
(Figure - 02
Marks \&
Explanation

- 02 Marks)
\qquad

outlet of the turbine, inlet of pump, bend of pipe or convex surface of curved vanes. The vapour bubbles travel along with the liquid and on reaching in region of high pressure, suddenly collapse creating a vacuum in the place. Collapsing of bubbles produce very high pressure which causes damage in the blades of runner and draft tube, etc. It causes small pits cavities to be formed on inside surface. This action is known as pitting. Cavitation reduces efficiency of turbine and hence it is not desirable.

Calculate the power transmitted by 250 mm diameter pipe of length 500 m carrying water under a head of 100 m . Take friction factor 0.0015

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)

\qquad

Explain construction and working of single acting reciprocating pump in with neat sketch. Draw an indicator diagram for its assuming air vessel both suction and discharge

Single acting reciprocating pump:

1. Suction Pipe: Suction pipe connects the source of liquid to the cylinder of the reciprocating pump. The liquid is suck by this pipe from the source to the cylinder.
2. Suction Valve: Suction valve is non-return valve which means only one directional flow is possible in this type of valve. This is placed between suction pipe inlet and cylinder. During suction of liquid it is opened and during discharge it is closed.
3. Delivery Pipe: Delivery pipe connects cylinder of pump to the outlet source. The liquid is delivered to desired outlet location through this pipe.
4. Delivery Valve: Delivery valve also non-return valve placed between cylinder and delivery pipe outlet.
5. Cylinder: A hollow cylinder made of steel alloy or cast iron. Arrangement of piston and piston rod is inside this cylinder. Suction and release of liquid is takes place in this so, both suction and delivery pipes along with valves are connected to this cylinder.
6. Piston and Piston Rod: Piston is a solid type cylinder part which moves backward and forward inside the hollow cylinder to perform suction and deliverance of liquid. Piston rod helps the piston to its linear motion.
7. Crank and Connecting Rod: Crank is a solid circular disc which is connected to power source like motor, engine etc. for its rotation. Connecting rod connects the crank to the piston as a result the rotational motion of crank gets converted into linear motion of the piston.
8. Strainer: Strainer is provided at the end of suction pipe to prevent the entrance of solids from water source into the cylinder.
9. Air Vessel: Air vessels are connected to both suction and delivery pipes to eliminate the frictional head and to give uniform discharge rate.

Working of Reciprocating Pump

When the power source is connected to crank, the crank will start rotating and connecting rod also displaced along with crank.

The piston connected to the connecting rod will move in linear direction. If crank moves outwards then the piston moves towards its right and create vacuum in the cylinder.

This vacuum causes suction valve to open and liquid from the source is forcibly sucked by the suction pipe into the cylinder.

When the crank moves inwards or towards the cylinder, the piston will move towards its left and compresses the liquid in the cylinder.

Now, the pressure makes the delivery valve to open and liquid will discharge through delivery pipe.

When piston reaches its extreme left position whole liquid present in the cylinder is delivered through delivery valve.

Then again the crank rotate outwards and piston moves right to create suction and the whole process is repeated.

Generally the above process can be observed in a single acting reciprocating pump where there is only one delivery stroke per one revolution of crank. But when it comes to double acting reciprocating pump, there will be two delivery strokes per one revolution of crank.
indicator diagram for its assuming air vessel both suction and discharge

Construction 2 Marks, Working 2 Marks , Sketch 2 Marks \& Diagram 2 Marks)
2 Marks
\qquad / N

