Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q	$\begin{aligned} & \text { Sub. } \\ & \mathbf{Q} \end{aligned}$	Model Answer / Solution	Marks
1	A	Attempt any SIX of the following.	12
	a	Define specific gravity and specific volume. Specific gravity: It is defined as the ratio of density of liquid to density of water or specific weight of liquid to specific weight of water. Specific volume: It is defined as the ratio of volume to unit mass.	01mark 01mark
	b	Define fluid pressure intensity and pressure head. Fluid pressure intensity: Whenever a liquid such as water, oil, etc is contained in the vessel, it exerts force at all points on the sides and bottom of container. This force per unit area is called intensity of pressure. Pressure head: The vertical height or free surface above any point in a liquid at rest or height of equivalent liquid column. $\mathrm{h}=\mathrm{P} / \rho \mathrm{g}=\mathrm{P} / \mathrm{w}$	01mark 01mark
	c	State the Bernoulli's theorem. Statement: Total energy of an ideal and incompressible fluid at any point during fluid flow remains constant. Therefore, Total energy, $\mathrm{P} / \mathrm{w}+\mathrm{V}^{2} / 2 \mathrm{~g}+\mathrm{z}=$ constant	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$
	d	Sketch and label Bourden pressure gauge.	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$

	e	Define total pressure and centre of pressure. Total pressure: Total pressure exerted by the liquid on immersed surface. Centre of pressure: The resultant pressure on an immersed surface will act some point below the centre of gravity of the immersed surface and towards the lower edge of the figure. The point through which this resultant pressure acts is known as Centre of pressure.	01 mark 01 mark
	f	State any four functions of air vessels in reciprocating pump. i. To obtain uniform discharge. ii. To maintain uniform rate of flow of liquid in suction and delivery pipes. iii. It reduces the work required to drive the pump due to reduction in accelerating heads and friction losses. iv. The pump can used at higher speeds without the fear of flow separation caused by reduced acceleration heads.	1/2mark each
	g	Classify hydraulic turbines. According to types of energy available at inlet of the turbine: i. Impulse turbine ii. Reaction turbine According to direction of flow through runner: i. Tangential flow turbine ii. Radial flow turbine iii. Axial flow turbine iv. Mixed flow turbine According to head available at inlet of the turbine:	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$

Subject Name: Fluid Mechanics and Machinery Model Answer

	i. Low head turbine ($02 \mathrm{~m}-15 \mathrm{~m}$) ii. Medium head turbine ($16 \mathrm{~m}-70 \mathrm{~m}$) iii. High head turbine (71m - above) According to specific speed of the turbine: i. Low specific speed ii. Medium specific speed iii. High specific speed	
h	Define cavitation in centrifugal pump. The phenomenon of formation of vapour bubbles in the region of flowing liquid where its pressure falls below the vapour pressure of liquid, then the liquid will vapourises and flow will no longer will be continuous.	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$
B	Attempt any TWO of the following.	08
a	Explain concept of Absolute vacuum, Gauge Pressure, Atmospheric pressure and absolute pressure with the help of diagram. Absolute vacuum: - If a tube/ container is completely evacuated then the pressure exerted on the surface is zero such a zero pressure is called Absolute vacuum pressure. Gauge pressure: - The pressure which is measured above the atmospheric pressure is called gauge pressure. Atmospheric pressure: - The pressure exerted by the atmosphere on any surface in contact is called atmospheric pressure. It decreases with increase in altitude. It can be measured by barometer. Absolute pressure: - pressure which is measured above the absolute vacuum pressure.	01 mark 03 marks
b	Describe the procedure of pressure measurement using simple U-tube manometer. Simple U-tube manometer Figure:	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$

		(a) For gauge pressure (b) For vacuum pressure It consists of a tube bent in U shape, one end of which is attached to the gauge point and the other is open to atmosphere. It connected to pipe containing a light liquid under a high pressure. The high pressure in the pipe will force heavy liquid, in the left limb of the U-tube To move downwards. This downwards movement of the heavy liquid in the left limb will cause a corresponding rise of the heavy liquid in the right limb. Negative pressure in the pipe will suck the right liquid which will pull up the heavy liquid in the left limb of the U - tube. This upward movements of the heavy liquid in the left limb will cause a corresponding fall of the liquid in the right limb.	$\begin{gathered} 02 \\ \text { marks } \end{gathered}$
	c	A pipe is used for energy transmission. Length and diameter of pipe are 80 m and 50 m respectively. Flow rate is 105 lit/s. Calculate frication loss. Neglect minor loss, 0.03 . Solution:- Discharge $=$ Area \mathbf{x} Velocity $\begin{aligned} & 0.105 \mid=\pi / 4 \mathrm{xd}^{2} \mathrm{x} v \\ & 0.105=0.7854 \times 50^{2} \times v \\ & V=0.536 \end{aligned}$ Head loss hf $=4 f{ }^{\mathbf{2}}{ }^{\mathbf{2}} / \mathbf{2 g d}$ $\begin{aligned} & h f=4 \times 0.03 \times 80 \times(0.535) / 2 \times 9.81 \times 50 \\ & h f=0.28 \mathrm{~m} \end{aligned}$	01mark 01mark 01mark 01mark
	2	Attempt any four of the following:	
	a.	Derive the equation for total pressure on an inclined immersed surface. Consider a plane inclined surface, immersed in a liquid as shown in figure, let us divide the whole immersed surface into a number of small parallel strips as shown,	01 mark

		Let $\quad \mathrm{W}=$ Specific weight of the liquid, $A=$ Area of the surface, $X=$ depth of c.g. $\theta=$ angle at which the immersed surface is inclined with the liquid surface, let us consider a strip of thickness dx , width b and at a distance 1 from o , intensity of pressure on the strip $=\omega \operatorname{lsin} \theta$, and area of the strip $=b d x$ so pressure on the strip $\mathrm{p}=$ intensity of pressure *area $=\mathrm{wlsin} \theta * \mathrm{bdx}$ Total pressure on the surface $p=\int w l \sin \theta^{*} b d x=w \sin \theta \int l b d x$, $\begin{aligned} \text { But } \int 1 * \mathrm{bdx} & =\text { moment of the surface area } \mathrm{o}=\mathrm{A} \overline{\mathrm{x}} / \sin \theta \\ \therefore \mathrm{P} & =\mathrm{wlsin} \theta^{*} \mathrm{~A} \overline{\mathrm{x}} / \sin \theta=\mathrm{wA} \overline{\mathrm{x}} \end{aligned}$	03mark
	b.	Applying Bernoulli's equation derives the equation for discharge through a venturimeter. Expression for rate of flow through venturimeter Consider a venturimeter fitted in a horizontal pipe through which a fluid is flowing (say water), as shown Let $d_{1}=$ diameter at inlet or at section (1). $p_{1}=$ pressure at section (1) $v_{1}=$ velocity of fluid at section (1), $a=\text { area at section }(1)=\frac{\pi}{4} d_{1}{ }^{2}$ and $\quad d_{2}, p_{2}, v_{2}, a_{2}$ are corresponding values at section (2). Applying Bernoulli's equation at sections (1) and (2), we get $\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2}$ Venturimeter. As pipe is horizontal, hence $z_{1}=z_{2}$ $\therefore \quad \frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g} \text { or } \frac{p_{1}-p_{2}}{\rho g}=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g}$	$\begin{gathered} \hline \text { 04mark } \\ \mathrm{s} \end{gathered}$

	But $\frac{p_{1}-p_{2}}{\rho g}$ is the difference of pressure heads at sections 1 and 2 and it is equal to h or $\frac{p_{1}-p_{2}}{\rho g}=h$ Substituting this value of $\frac{p_{1}-p_{2}}{\rho g}$ in the above equation, we get $h=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g}$ Now applying continuity equation at sections 1 and 2 $a_{1} v_{1}=a_{2} v_{2} \quad \text { or } \quad v_{1}=\frac{a_{1} v_{2}}{a_{1}}$ Substituting this value of v_{1} in equation (6,6) or \therefore Discharge, $\begin{aligned} h & =\frac{v_{2}^{2}}{2 g}-\frac{\left(\frac{a_{2} v_{2}}{a_{1}}\right)^{2}}{2 g}=\frac{v_{2}^{2}}{2 g}\left[1-\frac{a_{2}^{2}}{a_{1}^{2}}\right]=\frac{v_{2}^{2}}{2 g}\left[\frac{a_{1}^{2}-a_{2}^{2}}{a_{1}^{2}}\right] \\ v_{2}^{2} & =2 g h \frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}} \end{aligned} \begin{aligned} v_{2} & =\sqrt{2 g h \frac{a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}}}=\frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}} \sqrt{2 g h}} \\ & =a_{2} v_{2} \\ & =a_{2} \frac{a_{1}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h}=\frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h} \end{aligned}$ Equation gives the discharge under ideal conditions and is called, theoretical discharge. Actual discharge will be less than theoretical discharge. $Q_{a \mathrm{at}}=C_{d} \times \frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g^{g h}}$ where $C_{d}=$ Co-efficient of venturimeter and its value is less than I .	
c.	A jet of water 50 mm in diameter strives on a fixed plate normally with a velocity of $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$. Find the force exerted on flat plate. Solution:- Given $\mathrm{d}=50 \mathrm{~mm}$, $\mathrm{V}=25 \mathrm{~m} / \mathrm{sec}$ Cross section area of the jet, $\mathrm{A}=\pi / 4 * \mathrm{~d}^{2}=\pi / 4 *(0.05)^{2}=0.0019635 \mathrm{~m}^{2}$ Force exerted on flat plate, $\begin{aligned} & \mathrm{F}=\operatorname{pav}^{2}=1000 * 0.0019635 *(25)^{2} \\ & \mathrm{~F}=1227.1875 \mathrm{~N} \\ & \mathrm{~F}=1.227 \mathrm{KN} \end{aligned}$	01mark 01mark 01mark 01mark

Subject Name: Fluid Mechanics and Machinery Model Answer
Subject Code: 17411

	d.	Find the maximum power that can be transmitted by a power station through a hydraulic pipe of 3 kilometer long and 200 mm diameter. The pressure of water at the power station is 1500 kPa . Take $\mathrm{f}=0.01$ Solution:- Given length $\mathrm{l}=3 \mathrm{~km}=3000 \mathrm{~m}, \mathrm{D}=200 \mathrm{~mm}$ pressure $=1500 \mathrm{kpa}=1500 \mathrm{KN} / \mathrm{m}^{2} \mathrm{f}=0.01$, Pressure head at the power station, $\mathrm{H}=\mathrm{P} / \mathrm{W}=1500 / 9.81=153 \mathrm{M}$ $\mathrm{H}=153 \mathrm{M}$ For maximum transmission of power, the loss of head due to friction $\mathrm{hf}=\mathrm{H} / 3=153 / 3=51 \mathrm{~m}$ Loss of head due to friction $\mathrm{hf}=\mathrm{flQ}^{2} / 3 \mathrm{~d}^{5}$ $\begin{aligned} & 51=0.01 * 3000 * \mathrm{Q}^{2} / 3^{*}(0.2)^{5}=31250 \mathrm{Q}^{2} \\ & \mathrm{Q}=0.04 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ $\begin{aligned} \text { Maximum power } & =\mathrm{WQ}(\mathrm{H}-\mathrm{hf}) \\ & =9.8 * 0.04 *(153-51) \\ & =40 \mathrm{KW} \end{aligned}$	01mark 01mark 01mark 01mark
	e.	Explain with sketch hydraulic Gradiant Line and Total energy line. Hydraulic Gradient Line: If pressure head $\mathrm{s}(\mathrm{p} / \mathrm{w})$ of a liquid flowing in a pipe be plotted as vertical ordinates on the centre line of the pipe, then the line joining the tops of such ordinates is known as hydraulic gradient line. Total energy line: If the sum of pressure heads \& velocity heads ($\mathrm{p} / \mathrm{w}+\mathrm{v}^{2} / 2 \mathrm{~g}$) of a liquid flowing in a pipe be plotted as vertical ordinates on the centre line of the pipe, then the joining the tops of such ordinates is known as Total energy line. The Total energy line lies over the hydraulic gradient by an amount equal to the velocity heads as shown in figure.	02mark S 01mark 01mark

Subject Name: Fluid Mechanics and Machinery Model Answer

Subject Name: Fluid Mechanics and Machinery Model Answer

		$\overline{\overline{\mathrm{h}}}=\text { Depth of center of pressure from the liquid surface. }$ Now, equating equations (i) and (ii), we get $\begin{array}{lll} \mathrm{P} * \overline{\mathrm{~h}} & =\mathrm{w} \cdot I_{0} & \\ \text { Or } & \mathrm{wA} \overline{\mathrm{x}} * \overline{\mathrm{~h}} & =\mathrm{w} \cdot I_{0} \\ \text { Or } & \overline{\mathrm{h}} & =I_{0} / \mathrm{A} \overline{\mathrm{x}} \end{array} \quad \ldots \ldots(\because \mathrm{P}=\mathrm{w} \mathrm{~A} \overline{\mathrm{x}})$ We know that from the $* *$ Theorem of parallel Axis that $I_{0}=I_{G}+\mathrm{Ah}^{2}$ Where $I_{G}=\text { moment of inertia of the figure, about horizontal axis through its }$ centre of gravity, and the figure (\bar{x} in this case) $\mathrm{h}=\text { Distance between the liquid surface and the centre of gravity of }$ now, rearranging the equation (iii), $\overline{\mathrm{h}}=\left(I_{G}+\mathrm{A} \overline{\mathrm{x}}^{2}\right) / \mathrm{A} \overline{\mathrm{x}}^{2}$ $=I_{G} / \mathrm{A} \overline{\mathrm{x}}^{2}+\overline{\mathrm{x}}$ Thus, the centre of pressure is always below the centre of gravity of the area by a distance equal to $I_{G} / \mathrm{A} \overline{\mathrm{x}}^{2}$	
	3	Attempt any FOUR of the following.	16
	A	Sketch layout of hydroelectric power plant and write any four features of it. Answer: Layout of hydroelectric power plant: Features of hydroelectric power plant:	02 marks for figure 02 marks

Subject Name: Fluid Mechanics and Machinery Model Answer
Subject Code: 17411

		ii.Pipes of large diameters called penstock, which carry water under pressure from the storage reservoir to the turbines. These pipes are made of steel or reinforced concrete.iii. Turbines having different types of vanes fitted tothe wheels.iv. Tail race, which is a channel which carries wateraway from the turbines after the water has worked on the turbines.	$\begin{gathered} \text { for } \\ \text { features } \end{gathered}$
	b	A Pelton wheel develops 2000 kw under a head of 100 meters and with an overall efficiency of $\mathbf{8 5 \%}$. Find the diameter of the nozzle if the co-efficient of velocity for the nozzle is $\mathbf{0 . 9 8}$. Solution:- Givendala: $P=2000 \mathrm{~kW} ; H=100 \mathrm{~m} ; \quad \eta_{0}=85 \%=0 . \mathrm{ks}$ $C_{v}=0.98$ $d=$ diancter of the nozzle $Q=$ discharge of the twibine velocity of jet, $\begin{aligned} & v=C_{v} \sqrt{2-g 14}=0.98 \times \sqrt{2 \times 9.81 \times 100} \\ & v=43.4 \mathrm{mlis} \end{aligned}$ Overall efficiency M_{0}). $\begin{aligned} & \eta=\frac{9}{\infty Q H}=\frac{2000}{9.51 \times 9 \times 100}=\frac{2.04}{Q} \\ & 0.85=\frac{2.04}{Q} \\ & \therefore Q=\frac{2.04}{0.85}=2.4 \\ & \therefore Q=2.1 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$ Total discharge of the wheel should be equal to the diccharge theough the jet i-e, $\begin{aligned} Q & =A V=\frac{\pi}{4} d^{2} \times 43.4 \\ 2.4 & =\frac{\pi}{4} d^{2} \times 43.4 \\ d^{2} & =\frac{2.4 \times 4}{\pi \times 43.4} \\ d & =\sqrt{0.0704} \\ d & =0.265 \mathrm{~m} \\ \therefore d & =265 \mathrm{~mm} \end{aligned}$ \therefore Siameter of the nazzle is 265 mm .	01mark 01mark 01mark 01mark
	c	State any two functions of Draft tube. Explain the types of Draft tube. (Any two) Functions of Draft tube: 1. It enables the turbine to be placed above the tail race, so that the turbine may be inspected property. 2. to convert the kinetic energy (v12) of the water, exhausted by the runner into pressure energy tube.	01 mark

Subject Name: Fluid Mechanics and Machinery Model Answer

		Types of Draft tube: a) Conical draft tubes b) Simple Elbow draft tubes c) Moody spreading tube d) Draft tube with circular inlet and rectangular outlet Explanation:- a) In a Conical type, the diameter of the tube gradually increases from the outlet of the runner to the channel. These are commonly used in Francis turbine. b) In elbow type, the bend of the draft tube is generally increases from the outlet of the runner to the channel. c) Moody spreading tube is best suited for inward and outward flow turbines, having helical flow which is due to velocity of whirl at outlet of the runner. d) Draft tube with circular inlet and rectangular outlet is used in Kaplan turbine. Efficiency of elbow draft tube is as large as $60 \%-70 \%$.	$\begin{gathered} 03 \\ \text { marks } \\ \text { for } \\ \text { explanat } \\ \text { ion } \\ \text { (any two } \\ \text {) } \end{gathered}$
	d	A jet of water of diameter 7.5 cm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between the jet and plane is 600 . Find the force exerted by the jet on the plate, i. In the direction normal to the plane. (ii) In the direction of the jet. i) The force exerted by the jet of water in the direction normal to plate is given by :- $\begin{aligned} F_{n} & =g a v^{2} \sin \theta \\ & =1000 \times 0.004417 \times 25^{2} \times \sin 60^{\circ} \\ F_{n} & =2390.7 \mathrm{~N} \end{aligned}$ ii) The force exeded in the direction of the jet is given by:- $\begin{aligned} F_{x} & =\rho 9 v^{2} \sin ^{2} \theta \\ & =1000 \times 0.004417 \times 25^{2} \times \sin ^{2} 60^{\circ} \\ F x & =2070.4 \mathrm{~N} \end{aligned}$	02 Marks 02 Marks

Subject Name: Fluid Mechanics and Machinery Model Answer
Subject Code: 17411

		Diagram of Kaplan turbine: Working of Kaplan turbine: i. It consists of hub fixed to the shaft. On the hub the adjustable vanes are fixed. ii. The water from penstock enters the scroll casing and then moves to the guide vanes. iii. From the guide vanes, the water turns through 90° and flows axially through the runner as shown in figure. iv. This turbine is suitable where a large quantity of water at low head available.	04 marks for figure marks for working
	b.	A centrifugal pump is to discharge $0.13 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of $\mathbf{1 2 0 0} \mathbf{~ r p m}$ against a total head of 20 meter. The impeller diameter is $\mathbf{2 5 0} \mathbf{~ m m}$, its with at outlet is 40 mm and manometric efficiency is $\mathbf{7 5 \%}$. Determine the vane angle at the outer periphery of the impeller. Solution:-	

	Tangential velocity of impellerac adteet U_{2}. $U_{2}=\frac{\pi D_{2} N}{60}=\frac{\pi \times 0.25 \times 1200}{60}=15.71 \mathrm{~m} / \mathrm{s}$ - Discharge: $Q=\pi D_{2} B_{2} \times V f_{2}$ $V_{f_{2}}=\frac{Q}{\pi D_{2} B_{2}}=\frac{0.13}{\pi \times 0.25 \times 0.04}=4.14 \mathrm{~m} / .$ Mamanetric efficienay $\begin{aligned} & V_{\text {mamo }}=\frac{g H_{\text {mamo }}}{V_{W_{2}} \cdot U_{2}} \\ & V_{W_{2}}=\frac{g H_{\text {mamo }}}{\eta_{\text {mano }} \times 42}=\frac{9.81 \times 20}{0.75 \times 15.71} \\ & V_{W_{2}}=16.65 \mathrm{~m} / \mathrm{s} \end{aligned}$ Fsom velocity triangle at antlet; $\begin{aligned} \tan \phi & =\frac{v f_{2}}{u_{2}-v_{w 2}}=\frac{4.14}{15.71-16.65} \\ \phi & =\tan ^{-1}\left(\frac{4.14}{15.71-16.65}\right) \\ \phi & =-77.21^{\circ} \end{aligned}$ vame angle at attet $\phi=-77.21^{\circ}$.	
c.	Define in connection with centrifugal pump: i. Manometric Efficiency ii. Mechanical Efficiency iii. Overall efficiency iv. Net positive suction head. Answer: i. Manometric Efficiency: The ratio of the manometric head to the head imparted by the impeller to the water is known as manometric efficiency. Mathematically it is written as, $\eta_{\text {man }}=$ manometric head / head imparted by impeller to water. ii. Mechanical Efficiency: The ratio of the power available at the impeller to the power at the shaft of the centrifugal pump is known as mechanical efficiency. Mathematically it is written as, $\eta_{\mathrm{m}}=$ power at the impeller / power at the shaft iii. Overall efficiency: It is defined as ratio of power output of the pump to the power input to the pump. The power output of the pump in KW. Mathematically it is written as,	02 marks 02 marks 02 marks

Subject Name: Fluid Mechanics and Machinery Model Answer
Subject Code: 17411

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\eta_{\mathrm{o}}=\eta_{\operatorname{man}} * \eta_{\mathrm{m}}
\] \\
iv. \\
Net positive suction head: \\
The net positive suction head (NPSH) is defined as the absolute pressure head at the inlet to the pump minus the vapor pressure head(in absolute head) plus the velocity head.
\end{tabular} \& 02 marks \\
\hline Q. 5 \& \& Attempt any FOUR of the following \& 16 \\
\hline \& a) \& \begin{tabular}{l}
Multistage of centrifugal pumps:- If the centrifugal pump consists of two or more impellers then pump is called multistage of centrifugal pump. \\
The impellers are mounted on the same shaft or on the different shafts. \\
i) Multistage centrifugal pump for High Head (Pumps are in Series):- To develop a high head, the numbers of impellers are mounted in series or on the same shaft. \\
ii) Multistage centrifugal pump for High Discharge (Pumps are in Parallel) :-To obtain high discharge pumps should be connected in parallel. \\
Two-stage Pumps with Impellers in Series \\
Pumps in Parallel
\end{tabular} \& 1 M
1 M

1 M

1 M

\hline \& b) \& | A-G-B=Suction stroke ,C-H-D=Delivery Stroke, |
| :--- |
| $\mathrm{H}_{\mathrm{atm}}=$ Atmospheric pressure head, $\mathrm{h}_{\mathrm{s}}=$ Suction Head, $\mathrm{h}_{\mathrm{d}}=$ Delivery Head | \& 3M

\hline
\end{tabular}

Subject Name: Fluid Mechanics and Machinery Model Answer

| | | | Angle | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Component of velocity in the direction of jet $=-\mathrm{V} \cos \theta$
Component of velocity perpendicular to the jet $=\mathrm{V} \sin \theta$
Force exerted by the jet on stationary curved plate in the direction of jet, $F_{x}=$ Rate of change of momentum in the direction of force

$\mathrm{F}_{\mathrm{x}}=$ (Mass/Sec) x (Velocity just before striking- Velocity just after striking)

$$
F_{x}=\rho a V[V-(-V \cos \theta)]
$$

$$
F_{x}=\rho a V[V+V \cos \theta]
$$

$$
\mathrm{F}_{\mathrm{x}}=\rho \text { a } V^{2}[1+\cos \theta]
$$

Force exerted by the jet on stationary curved plate in perpendicular direction of jet,
$\mathrm{F}_{\mathrm{y}}=(\mathrm{Mass} / \mathrm{Sec}) \mathrm{x}$ (Velocity just before striking- Velocity just after striking)

$$
\begin{gathered}
\mathrm{F}_{\mathrm{y}}=\rho \text { a } V[0-V \sin \theta] \\
\mathrm{F}_{\mathrm{y}}=-\rho \text { a } V^{2} \sin \theta
\end{gathered}
$$

ii) Velocity Triangles of Pelton Wheel

$\mathrm{u}_{1}=$ Plate Velocity at inlet, $\quad \mathrm{u}_{2}=$ Plate Velocity at outlet
$V_{1}=$ Absolute Velocity of jet at inlet, $\quad V_{2}=$ Absolute Velocity of jet at outlet
$\mathrm{V}_{\mathrm{r} 1}=$ Relative Velocity of jet and plate at inlet
$\mathrm{V}_{\mathrm{r} 2}=$ Relative Velocity of jet and plate at outlet
$\mathrm{V}_{\mathrm{w} 1}=$ Whirl Velocity of jet at inlet, $\quad \mathrm{V}_{\mathrm{w} 2}=$ Whirl Velocity of jet at outlet
$\theta=$ Vane angle at inlet,
$\phi=$ Vane angle at outlet
$\alpha=$ Guide blade angle at inlet, $\quad \beta=$ Guide blade angle at inlet

			$2 \mathrm{M}$ (Tri..)
	b)	Given Data $\begin{aligned} & \mathrm{d}_{1}=160 \mathrm{~mm}=0.16 \mathrm{~m}, \mathrm{~d}_{2}=0.08 \mathrm{~m}=8 \mathrm{~cm}, \mathrm{Q}=50 \mathrm{lps}=0.05 \mathrm{~m}^{3} / \mathrm{sec}, \mathrm{C}_{\mathrm{d}}=1, \mathrm{~S}_{\mathrm{oil}}=0.8 \\ & a_{1}=\text { Area of pipe }=\frac{\pi}{4} \mathrm{~d}_{1}{ }^{2} \quad=\frac{\pi}{4}(0.16)^{2}= \\ & a_{2}=\text { Area of throat }=\frac{\pi}{4} \mathrm{~d}_{2}{ }^{2} \quad=\frac{\pi}{4}(0.08)^{2}=0.005026 \mathrm{~m}^{2} \end{aligned}$ $0.0201 \mathrm{~m}^{2}$ We know that, $\begin{aligned} & Q=\frac{C_{d} a_{1} a_{2} \sqrt{2 g h}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \\ & 0.05=\frac{1 \times 0.0201 \times 0.005026 \sqrt{2 \times 9.81 h}}{\sqrt{0.0201^{2}-0.005026^{2}}} \\ & \\ & \sqrt{h}=2.17 \\ & \mathrm{~h}=1.4730 \mathrm{~m} \text { of Oil } \\ & \mathrm{h}=x\left[\frac{S_{h}}{s_{o}}-1\right] \end{aligned}$ $S_{h}=$ Specific gravity of water $=13.6$ $S_{o}=$ Specific gravity of oil $=0.8$ $\mathrm{X}=$ Reading of manometer $\begin{gathered} 1.4730=x\left[\frac{13.6}{0.8}-1\right] \\ \mathrm{x}=0.0920625 \mathrm{~m}=92.0625 \mathrm{~mm} \end{gathered}$	21M 1M 1M 2M 1M 2M
	c)	Slip of Reciprocating Pump:-Slip of a pump is defined as the difference between theoretical discharge and actual discharge of a pump. $\text { Slip }=\mathrm{Q}_{\mathrm{th}}-\mathrm{Q}_{\mathrm{act}}$ Negative Slip of Reciprocating Pump: - If actual discharge of a pump is greater than theoretical	1 M

