

Subject Name: Fluid Mechanics and Machinery Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q	Sub.	Model Answer / Solution			
	V				
1	Α	Attempt any SIX of the following.	12		
		Define specific gravity and specific volume.	01mark		
	а	Specific gravity: It is defined as the ratio of density of liquid to density of water or specific weight of liquid to specific weight of water.	01mark		
		Specific volume: It is defined as the ratio of volume to unit mass.	01 mark		
		Define fluid pressure intensity and pressure head.			
	D	Fluid pressure intensity: Whenever a liquid such as water, oil, etc is contained in the vessel, it exerts force at all points on the sides and bottom of container. This force per unit area is called intensity of pressure.	01mark		
		Pressure head: The vertical height or free surface above any point in a liquid at rest or height of equivalent liquid column.	01mark		
		$h = P / \rho g = P / w$			
		State the Bernoulli's theorem.			
	c	Statement: Total energy of an ideal and incompressible fluid at any point during fluid flow remains constant. Therefore,	02 marks		
		Total energy, $P/w + V^2/2g + z = constant$			
	d	Sketch and label Bourden pressure gauge.			
			02 marks		

Subject Name: Fluid Mechanics and Machinery Model Answer

	Scale Bourdon tube Passe Passe Sector Fivot Socket Bourdon Tube Pressure Gauge					
e	Define total pressure and centre of pressure.					
	Total pressure: Total pressure exerted by the liquid on immersed surface.	01 mark				
	Centre of pressure: The resultant pressure on an immersed surface will act some point below the centre of gravity of the immersed surface and towards the lower edge of the figure. The point through which this resultant pressure acts is known as Centre of pressure.	01 mark				
f	State any four functions of air vessels in reciprocating pump.					
	i. To obtain uniform discharge.	each				
	ii. To maintain uniform rate of flow of liquid in suction and delivery pipes.					
	iii. It reduces the work required to drive the pump due to reduction in accelerating heads and friction losses.					
	iv. The pump can used at higher speeds without the fear of flow separation caused by reduced acceleration heads.					
g	Classify hydraulic turbines.					
	According to types of energy available at inlet of the turbine:	02				
	i. Impulse turbine	marks				
	ii. Reaction turbine					
	According to direction of flow through runner:					
	i. Tangential flow turbine					
	ii. Radial flow turbine					
	iii. Axial flow turbine					
	iv. Mixed flow turbine					
	According to head available at inlet of the turbine:					

Subject Name: Fluid Mechanics and Machinery Subject Code: 17411 Model Answer i. Low head turbine (02 m - 15 m)ii. Medium head turbine (16 m -70 m) iii. High head turbine (71m - above) According to specific speed of the turbine: i. Low specific speed ii. Medium specific speed High specific speed iii. h Define cavitation in centrifugal pump. 02 The phenomenon of formation of vapour bubbles in the region of flowing liquid where its pressure falls below the vapour pressure of liquid, then the liquid will vapourises and flow will no longer will be marks continuous. В 08 Attempt any TWO of the following. Explain concept of Absolute vacuum, Gauge Pressure, Atmospheric pressure and absolute pressure with the help of diagram. a PRESSURE GAUGE PRESSURE ATMOSPHERIC 01 mark PRESSURE VACUUM PRESSURE ABSOLUTE PRESSURE ABSOLUTE ZERO PRESSURE Absolute vacuum: - If a tube/ container is completely evacuated then the pressure exerted on the surface is zero such a zero pressure is called Absolute vacuum pressure. Gauge pressure: - The pressure which is measured above the atmospheric pressure is called gauge pressure. Atmospheric pressure: - The pressure exerted by the atmosphere on any surface in contact is called 03 atmospheric pressure. It decreases with increase in altitude. It can be measured by barometer. marks Absolute pressure: - pressure which is measured above the absolute vacuum pressure. Describe the procedure of pressure measurement using simple U-tube manometer. b Simple U-tube manometer Figure: 02 marks

Subject Name: Fluid Mechanics and Machinery Model Answer

	It consists of a tube bent in U shape, one end of which is attached to the gauge point and the other is open to atmosphere. It connected to pipe containing a light liquid under a high pressure. The high pressure in the pipe will force heavy liquid, in the left limb of the U-tube To move downwards. This downwards movement of the heavy liquid in the left limb will cause a corresponding rise of the heavy liquid in the right limb. Negative pressure in the pipe will suck the right liquid which will pull up the heavy liquid in the left limb of the U- tube. This upward movements of the heavy liquid in the left limb will cause a corresponding rise at the left limb of the U- tube. This upward movements of the heavy liquid in the left limb will cause a corresponding fall of the liquid in the right limb.	02 marks
с	A pipe is used for energy transmission. Length and diameter of pipe are 80 m and 50 m respectively. Flow rate is 105 lit/s. Calculate frication loss. Neglect minor loss, Take f = 0.03. Solution:- Discharge = Area x Velocity	01mark
	$0.105 \models \pi/4 \text{ xd}^2_{\text{x V}}$ $0.105 = 0.7854 \text{ X } 50^2 \text{X V}$	
	V= 0.536	01mark
	Head loss $hf = 4flv^2/2gd$	01mark
	hf = 4x0.03x80x(0.535)/2x9.81x50	
	hf= 0.28m	01mark
2	Attempt any four of the following:	
	Derive the equation for total pressure on an inclined immersed surface.	
a.	Consider a plane inclined surface, immersed in a liquid as shown in figure, let us divide the whole immersed surface into a number of small parallel strips as shown,	01 mark

Subject Name: Fluid Mechanics and Machinery Subject Code: 17411 **Model Answer** 03mark Let W= Specific weight of the liquid, A = Area of the surface,X = depth of c.g. θ = angle at which the immersed surface is inclined with the liquid surface, let us consider a strip of thickness dx, width b and at a distance l from o, intensity of pressure on the strip = wlsin θ , and area of the strip = bdx so pressure on the strip p= intensity of pressure *area = wlsin θ *bdx Total pressure on the surface $p = \int w lsin \theta^* b dx = w sin \theta \int lb dx$, But $\int 1^* b dx = moment of the surface area o = A\overline{x}/\sin \theta$ \therefore P = wlsin $\theta^* A \overline{x} / \sin \theta = w A \overline{x}$ Applying Bernoulli's equation derives the equation for discharge through a venturimeter. 04mark b. S Expression for rate of flow through venturimeter Consider a venturimeter fitted in a horizontal pipe through which a fluid is flowing (say water), as shown Let d_1 = diameter at inlet or at section (1). $p_1 =$ pressure at section (1) v_1 = velocity of fluid at section (1), $a = \text{area at section } (1) = \frac{\pi}{4} d_1^2$ d2, p2, v2, a2 are corresponding values at section (2). and NLET HROAT Applying Bernoulli's equation at sections (1) and (2), we get Venturimeter. $\frac{p_1}{\rho_g} + \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\rho_g} + \frac{v_2^2}{2g} + z_2$ As pipe is horizontal, hence $z_1 = z_2$ $\frac{p_1}{\rho g} + \frac{v_1^2}{2g} = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} \quad \text{or} \quad \frac{p_1 - p_2}{\rho g} = \frac{v_2^2}{2g}.$...

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code: 17411 But $\frac{p_1 - p_2}{\rho g}$ is the difference of pressure heads at sections 1 and 2 and it is equal to h or $\frac{p_1 - p_2}{\rho g} = h$ Substituting this value of $\frac{p_1 - p_2}{\rho_g}$ in the above equation, we get $h = \frac{v_2^2}{2g} - \frac{v_1^2}{2g}$ Now applying continuity equation at sections 1 and 2 $a_1v_1 = a_2v_2$ or $v_1 = \frac{a_2v_2}{a_1}$ Substituting this value of v_1 in equation (6.6) $h = \frac{v_2^2}{2v} - \frac{\left(\frac{a_2v_2}{a_1}\right)^2}{2v} = \frac{v_2^2}{2v} \left[1 - \frac{a_2^2}{a_1^2}\right] = \frac{v_2^2}{2v} \left[\frac{a_1^2 - a_2^2}{a_1^2}\right]$ $v_2^2 = 2gh \frac{a_1^2}{a_1^2 - a_2^2}$ $v_2 = \sqrt{2gh \frac{a_1^2}{a_1^2 - a_2^2}} = \frac{a_1}{\sqrt{a_1^2 - a_2^2}} \sqrt{2gh}$... $Q = a_2 v_2$ Discharge, $= a_2 \frac{a_1}{\sqrt{a_1^2 - a_1^2}} \times \sqrt{2gh} = \frac{a_1 a_2}{\sqrt{a_1^2 - a_1^2}} \times \sqrt{2gh}$ gives the discharge under ideal conditions and is called, theoretical discharge. Actual Equation discharge will be less than theoretical discharge. $Q_{\text{act}} = C_d \times \frac{a_1 a_2}{\sqrt{a_1^2 - a_2^2}} \times \sqrt{2gh}$ 4 where $C_d =$ Co-efficient of venturimeter and its value is less than 1. A jet of water 50 mm in diameter strives on a fixed plate normally with a velocity of 25 m/s. Find the force exerted on flat plate. c. Solution:- Given d= 50 mm, V = 25 m/secCross section area of the jet, 01mark $A = \pi/4 * d^2 = \pi/4 * (0.05)^2 = 0.0019635 m^2$ 01mark Force exerted on flat plate, $F = pav^2 = 1000 * 0.0019635 * (25)^2$ 01mark F= 1227.1875 N 01mark F= 1.227 KN

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code: 17411 Find the maximum power that can be transmitted by a power station through a hydraulic pipe of d. 3 kilometer long and 200 mm diameter. The pressure of water at the power station is 1500 kPa. Take f=0.01 Solution:-Given length 1 = 3km = 3000m, D = 200 mm pressure $= 1500 kpa = 1500 KN/m^2 f = 0.01$, Pressure head at the power station, H = P/W = 1500/9.81 = 153MH=153M 01mark For maximum transmission of power, the loss of head due to friction hf=H/3=153/3=51m 01mark Loss of head due to friction $hf=flQ^2/3d^5$ $51 = 0.01 * 3000 * Q^2 / 3 * (0.2)^5 = 31250Q^2$ $O = 0.04 \text{ m}^3/\text{sec}$ 01mark Maximum power = WQ(H-hf) $= 9.8 \times 0.04 \times (153 - 51)$ $=40 \mathrm{KW}$ 01mark Explain with sketch hydraulic Gradiant Line and Total energy line. e. radient line 02mark S Centre line of pipe **Hydraulic Gradient Line:** If pressure head s(p/w) of a liquid flowing in a pipe be plotted as vertical ordinates on the centre line of the pipe, then the line joining the tops of such ordinates is known as 01mark hydraulic gradient line. **Total energy line:** If the sum of pressure heads & velocity heads $(p/w + v^2/2g)$ of a liquid flowing in a pipe be plotted as vertical ordinates on the centre line of the pipe, then the joining the tops of such 01mark ordinates is known as Total energy line. The Total energy line lies over the hydraulic gradient by an amount equal to the velocity heads as shown in figure.

Subject Name: Fluid Mechanics and Machinery Model Answer

f.	Prove that the centre of a fully submerged uniformly thick plane lamina is always below the centre of gravity of the lamina.	
	Solution:-	
	Centre of Pressure of a Vertically Immersed Surface	
	Consider a plane surface immersed vertically in a liquid as shown	
	Liquid Surface $\downarrow \downarrow $	
	Vertically immersod surface	
	First of all, let us divide the whole immersed surface into a number of small parallel strips shown in figure.	
	Let W=Specific weight of the liquid,	
	A= Area of the immersed surface, and	
	\overline{x} = Depth of centre of gravity of the immersed surfacece from the liquid surface.	
	Let us consider a strip of thickness dx, widtg b and at a depth of x from the free surface of the liquid as shown in figure.	
	We know that, intensity of pressure on the strip, = wx	
	And Area of the strip, $= bdx$	
	\therefore Pressure on the strip, $p =$ Intensity of pressure * Area	
	= wx.bdx	
	Moments of this pessure about the liquid surface = $(wx.bdx) = wx^2.bdx$	
	Sum of moments of all such pressure $M = \int wx^2 bdx$	
	$=$ w $\int x^2.bdx$	
	But $\int x^2 \cdot b dx = I_0$ (i.e. Moment of inertia of the surface about the liquid level or second moment of area)	
	$\therefore \mathbf{M} = \mathbf{w}. I_0 \qquad \qquad \dots \dots \dots (\mathbf{i})$	
	whererb I_0 = Moment of inertia of the surface about the liquid level.	
	We know that sum of moment of pressure = $P^*\overline{h}$	
	Where $P = total pressure on the surface, and(ii)$	

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code: 17411 \overline{h} = Depth of center of pressure from the liquid surface. Now, equating equations (i) and (ii), we get $P*\overline{h} = w. I_0$ $wA\overline{x}^*\overline{h} = w. I_0$ Or $\dots (:: P = w A\overline{x})$ $\overline{\mathbf{h}} = I_0 / A\overline{\mathbf{x}}$ Or (iii) We know that from the **Theorem of parallel Axis that $I_0 = I_G + Ah^2$ Where I_G = moment of inertia of the figure, about horizontal axis through its centre of gravity, and h= Distance between the liquid surface and the centre of gravity of the figure (\overline{x} in this case) now, rearranging the equation (iii), $\overline{h} = (I_G + A\overline{x}^2) / A\overline{x}^2$ $= I_G / A\overline{x}^2 + \overline{x}$ Thus, the centre of pressure is always below the centre of gravity of the area by a distance equal to $I_G / A\overline{x}^2$ 3 Attempt any FOUR of the following. 16 Sketch layout of hydroelectric power plant and write any four features of it. A Answer: Layout of hydroelectric power plant: 02 $H = H_e - h_f$ marks for figure ENSTOC GROSS HEAD Features of hydroelectric power plant: 02 i. A dam constructed across a river to store water. marks

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

		SUMMER-18 EXAMINATION	
Subje	ct Nam	e: Fluid Mechanics and Machinery Model Answer Subject Code: 17411	
		ii. Pipes of large diameters called penstock, which carry water under pressure from the storage reservoir to the turbines. These pipes are made of steel or reinforced concrete.	for features
		iii. Turbines having different types of vanes fitted to the wheels.	
		iv. Tail race, which is a channel which carries water away from the turbines after the water has worked on the turbines.	
	b	A Pelton wheel develops 2000kw under a head of 100meters and with an overall efficiency of 85%. Find the diameter of the nozzle if the co-efficient of velocity for the nozzle is 0.98.	
		Givendatas P= 2000 KW; H=100 m; 2=85%=0.85 Cv= 0.98 d= diancter of the nozzle Q = discharge of the turbine Velocity of jet, V= Cv 128H = 0.98* 12×100	
		Overall efficiency (%), $l_0 = \frac{19}{2000} H = \frac{2000}{9.81 \times 9 \times 100} = \frac{2.04}{0}$ 0.85 = 2.04	01mark 01mark
		$\begin{array}{rcl} \cdot \cdot & \mathcal{Q} &=& \underbrace{2 \cdot 0 +}_{O.85} &=& 2 \cdot 4 \\ \hline & \overline{\mathcal{Q}} &=& 2 \cdot 4 & \underline{m^3/s} \end{array} \end{array}$ Total discharge of the wheel should be equal to the discharge through the jet i.e., $\mathcal{Q} &=& AV &= \underline{T} d^2 \times 43 \cdot 4 \end{array}$	01mark
		2.4= $\frac{T}{4} d^{L} \times 43.4$ $d^{2} = \frac{2.4 \times 4}{T \times 43.4}$ $d = \sqrt{0.0704}$ d = 0.265 m $\therefore [d = 265 \text{ mm}]$ $\therefore \text{ [d = 265 \text{ mm}]}$	01mark
	c	State any two functions of Draft tube. Explain the types of Draft tube. (Any two) Functions of Draft tube:	
		 It enables the turbine to be placed above the tail race, so that the turbine may be inspected property. to convert the kinetic energy (v12) of the water, exhausted by the runner into pressure energy tube. 	01 mark

Subject Name: Fluid Mechanics and Machinery Model Answer

	Types of Draft tube:	
	(a) CONICAL DRAFT-TUBE (b) SIMPLE ELBOW (c) MOODY SPREADING TUBE (c) DRAFT-TUBE (d) DRAFT-TUBE WITH CIRCULAR INLET AND RECTANGULAR OUTLET	03 marks for explanat ion (any two)
	a) Conical draft tubes	
	b) Simple Elbow draft tubes	
	c) Moody spreading tube	
	d) Draft tube with circular inlet and rectangular outlet	
	Explanation:-	
	a) In a Conical type, the diameter of the tube gradually increases from the outlet of the runner to the channel. These are commonly used in Francis turbine.	
	b) In elbow type, the bend of the draft tube is generally increases from the outlet of the runner to the channel.	
	c) Moody spreading tube is best suited for inward and outward flow turbines, having helical flow which is due to velocity of whirl at outlet of the runner.	
	d) Draft tube with circular inlet and rectangular outlet is used in Kaplan turbine. Efficiency of elbow draft tube is as large as 60%-70%.	
d	A jet of water of diameter 7.5 cm moving with a velocity of 25 m/s strikes a fixed plate in such a way that the angle between the jet and plane is 600. Find the force exerted by the jet on the plate,	
	i. In the direction normal to the plane. (ii) In the direction of the jet.	
	i) The tosce exceeded by the jet of water in the direction rozznal to plate is given by :- Fr = Rav ² sin0	
	= $1000 \times 0.004417 \times 25^2 \times since'$ $\left[F_n = 2390.7 \text{ H}\right]$ i) The Force exceeded in the direction of	02 Marks
	the jet is given by:- $F_{x} = Sqv^{2} sin^{2} O$ $= 1050 \times 0.004417 \times 25^{2} \times sin^{2} 60^{\circ}$ $F_{x} = 2070.4 M$	02 Marks

Subject Name: Fluid Mechanics and Machinery

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) SUMMER-18 EXAMINATION

Model Answer

Subject Code: 17411

Define: e 02 I. **Viscosity:** Viscosity is defined as the property of a fluid which offers resistance to the movement of one layer of fluid over another adjacent layer of the fluid. Marks SI unit of viscosity: Ns/m² Kinematic Viscosity: Kinematic Viscosity is defined as the ratio between the dynamic II. viscosity and density of fluid. Mathematically, 02 Marks $\mathbf{V} = \text{viscosity}/\text{density}$ $v = \mu \div \rho$ f. The discharge through an horizontal trapping is $0.06 \text{ m}^3/\text{s}$. the diameter at the inlet and outlet are 250 mm and 200 mm respectively. If the water enters the pipe at a pressure of 9.81bar, calculate the outlet pressure. Solution :-Grivendata: -Dichasse = Q = 0.06 m3/s Diameter at inlet di = 250 mm = 0.25m Diameter adoublet dz= 200 mm = 0.20 m Persure at entery P. = 9-81 baz Previouse at outlet P2 = ? Asea at inlet = 01 = I (0.25)2 = 0.049 m2 Azea at ad 10 = 92 = II (0.2) = 0.031m2 Let the datum line passes through the centre of the lawer end. Then 21=22 By using Continuity equation, $Q = a_1v_1 = a_2v_2$ 01mark $V_{1} = \frac{Q}{a_{1}} = \frac{0.06}{0.049} = 1.22 \text{ m/s}$ $V_{2} = \frac{Q}{a_{2}} = \frac{0.06}{0.031} = 1.93 \text{ m/s}$ 01mark Applying Bernoulli's of at section () & O. Applying Bermoullins of an article $\frac{P_1}{gg} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{gg} + \frac{V_2^2}{2g} + Z_2$ $P_1 + \frac{V_1^2}{2g} = \frac{P_2}{2g} + \frac{V_2^2}{2g}$ $(:Z_1 = Z_2)^2$ $P_2 = P_1 + \frac{V_1^2}{2g} - \frac{V_2^2}{2g}$ $= 3.81 + \frac{(1.22)^2}{2x9.81} - \frac{(1.93)^2}{2x9.81}$ 01mark 01mark P2 = 9.696 bar - pressure at addet 4 Attempt any TWO of the following. With labeled sketch explain the working of Kaplan turbine. a. Answer:

Subject Name: Fluid Mechanics and Machinery Model Answer

	Diagram of Kaplan turbine:	04 marks for figure
	i. It consists of hub fixed to the shaft. On the hub the adjustable vanes are fixed.	
	ii The water from penstock enters the scroll casing and then moves to the guide vanes	
	iii. From the guide vanes, the water turns through 90° and flows axially through the runner as shown in figure.	04 marks for
	iv. This turbine is suitable where a large quantity of water at low head available.	working
b.	A centrifugal pump is to discharge 0.13 m ³ /s at a speed of 1200 rpm against a total head of 20 meter. The impeller diameter is 250 mm, its with at outlet is 40mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	
	Solution:-	

Subject Name: Fluid Mechanics and Machinery Model Answer

					1				
		Tangential ve	elecity of impellezed ad le	t u2-					
		42= TD	5.71 mls						
		6	0 60 3						
		· Discharge	g = m D2B2 xVf2						
		$V_{b_2} = \frac{Q}{TD} = \frac{Q \cdot 13}{D} = \frac{4 \cdot 14}{D} = \frac{4 \cdot 14}{D} = \frac{14}{D} $							
		Momanatsic attraction							
		M	- Himano						
		(mono =							
	$V_{W2} = \frac{gHmano}{g} = \frac{g_{1}g_{1}g_{2}}{g_{1}g_{2}g_{2}}$								
			Wighton and Ort	2 (13, 1)					
			[Vw2 = 10.65 m[s]						
		From vel	ocity terrorgle at outle	5					
		te	$m\phi = V_{f2} = 4$.14					
			42-VW2 15	71-16.65					
			$\phi = \partial a \tilde{n}^1 \int 4.14$	0					
			(15.71-166	52					
			Ø= -17.21						
		Vone	angle adoutlet q =	= -77.21					
		Define in connection	with centrifugal pump:						
	c.		i.	Manometric Efficiency					
			ii.	Mechanical Efficiency					
			iii.	Overall efficiency					
			iv.	Net positive suction head.					
		Answer:		Manometric Efficiency:					
		1.		Manoineu le Emercicy.					
		The known as man	ratio of the manometric he ometric efficiency. Mathem	ad to the head imparted by the impeller to the water is natically it is written as,	02 marks				
		$\eta_{man} = manom$	etric head / head imparted	by impeller to water.					
		ii.		Mechanical Efficiency:					
	The ratio of the power available at the impeller to the power at the shaft of centrifugal pump is known as mechanical efficiency. Mathematically it is written as								
		n - now or ot	the impeller / now or at the	shaft	02				
	Shart	marks							
		iii.		Overall efficiency:	02				
		It is define power output of the put	ned as ratio of power outp mp in KW. Mathematically	put of the pump to the power input to the pump. The y it is written as,	marks				

Subject Name: Fluid Mechanics and Machinery Model Answer

		$\eta_{O} = \eta_{man} * \eta_{m}$	
		iv. Net positive suction head:	
		The net positive suction head (NPSH) is defined as the absolute pressure head at the inlet to the pump minus the vapor pressure head(in absolute head) plus the velocity head.	2 narks
Q.5		Attempt any FOUR of the following 16	6
	a)	Multistage of centrifugal pumps:- If the centrifugal pump consists of two or more impellers1Mthen pump is called multistage of centrifugal pump.1M	М
		The impellers are mounted on the same shaft or on the different shafts.	
		i) Multistage centrifugal pump for High Head (Pumps are in Series):- To develop a high head, the numbers of impellers are mounted in series or on the same shaft.	М
		ii) Multistage centrifugal pump for High Discharge (Pumps are in Parallel) :-To obtain high discharge pumps should be connected in parallel .	М
		FROM SUCTION PIPE SHAFT NUMBER 1 NUMBER	М
	b)	A-G-B=Suction stroke ,C-H-D=Delivery Stroke, H _{atm} =Atmospheric pressure head,h _s =Suction Head,h _d =Delivery Head	M
		Stroke Crank Friction Head Total Head	

Subject Name: Fluid Mechanics and Machinery Model Answer

		Angle					
	Suction Stroke	θ= 0 ⁰	$\sin \theta = 0$	$h_{fs} = 0.$	hs		
		θ= 90 ⁰	$\sin \theta = 1$	$h_{fs} = +ve$	h _s +h _{fs}	1M	
		θ= 180⁰	$\sin \theta = 0$	$h_{fs} = 0.$	h _s		
	Delivery Stroke	θ= 0 ⁰	$\sin \theta = 0$	$h_{fd} = 0.$	h _d		
		θ= 90 ⁰	$\sin \theta = 1$	$h_{fd} = +ve$	$h_d + h_{fd}$		
		θ= 180⁰	$\sin \theta = 0$	$h_{fd} = 0$	h _d		
c)	Cavitation:-The phenomenon in which the vapour bubbles are formed when vapour pressure of liquid (Water) falls below atmospheric pressure. The subsequent collapsing of vapour bubbles in high pressure region of centrifugal pump creates high stresses on metallic body of impeller, casing this produces cavities on such surfaces. Cavitation reduces efficiency of pumps.						
	 i) The design of pump should be such that the pressure of flowing liquid in any part of turbine should not be allowed to fall below vapour pressure of liquid. ii) The special materials or coatings such as aluminum, bronze and stainless steel should be used as a cavitation resistant. 						
d)	Chezy's formula						
	$V=C\sqrt{mi}$						
	Where; V = velocity of water in pipe, $m = hydraulic mean depth = A/P = d/4$						
	$i = \frac{h_f}{L} = loss of head per unit length, C = Chezy's constant$ 2						
e)	Use:-It is a	device used for	or measuring veloci	ty of flow at any point	in a pipe or channel.	1M	
	Principle: -If the velocity of flow at any point becomes zero, the pressure there is increased due to conversion of <i>K</i> institution and <i>K</i> institution of <i>K</i> insti						
	It is the glass tube with lower end of tube bent at 90° is directed in upstream direction. The liquid rises up in the tube due to conversion of kinetic energy into pressure energy.						
	$V = C_v \sqrt{2g}$	gh				1 M	
	V= velocity	v of flow, $C_v = C$	Coefficient of veloc	city, h= Dynamic Press	sure head	(Eqn)	

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code: 17411 1M (Dig) Loss of Energy of fluid in pipes: When fluid is flowing through a pipe, the fluid experiences f) some resistance to flow due to which some of energy of fluid is lost called Loss of Energy of fluid in pipes 1M **Energy Losses Major Energy Losses Minor Energy Losses** (Frictional Losses) Are calculated by i)Loss due to sudden expansion in pipe i) Darcy's Weisbach equation ii)Loss due to sudden contraction in pipe ii) Chezy's equation iii)Loss due to bend in pipe 3M iv)Loss due to fittings in pipe v)Loss due to obstruction in pipe Attempt any TWO of the following Q6 16 i) Force exerted by the jet of water on stationary Curved plate 4Ma) V sin 6 cos 0 FIXED CURVED PLATE Let, V=Velocity of jet, d= Diameter of jet, a = C/S Area of jet = $\frac{\pi}{4}r^2$

Subject Name: Fluid Mechanics and Machinery Model Answer Subject Code: 17411 Component of velocity in the direction of $jet = -V \cos\theta$ Component of velocity perpendicular to the jet = $V \sin \theta$ Force exerted by the jet on stationary curved plate in the direction of jet, F_{x} = Rate of change of momentum in the direction of force F_x=_______ Time F_x= (Mass x Initial Velocity - Mass x Final Velocity) Time $F_x = \frac{Mass}{Time}$ (Initial Velocity – Final Velocity) $\mathbf{F}_{\mathbf{x}} = (\text{Mass/Sec}) \times (\text{Velocity just before striking} - \text{Velocity just after striking})$ $\mathbf{F}_{\mathbf{x}} = \rho a V \left[V - (-V \cos \theta) \right]$ $F_{x} = \rho a V [V + V \cos\theta]$ $F_{v} = \rho a V^2 [1 + \cos\theta]$ Force exerted by the jet on stationary curved plate in perpendicular direction of jet, $\mathbf{F}_{\mathbf{v}} = (\text{Mass/Sec}) \times (\text{Velocity just before striking} - \text{Velocity just after striking})$ $\mathbf{F}_{\mathbf{v}} = \rho a V \left[0 - V \sin \theta \right]$ $F_v = -\rho a V^2 sin\theta$ ii)Velocity Triangles of Pelton Wheel **u**₁ = Plate Velocity at inlet, u₂= Plate Velocity at outlet V_1 = Absolute Velocity of jet at inlet, V_2 = Absolute Velocity of jet at outlet V_{r1}= Relative Velocity of jet and plate at inlet V_{r2} = Relative Velocity of jet and plate at outlet V_{w1} = Whirl Velocity of jet at inlet, V_{w2} = Whirl Velocity of jet at outlet 2M (Terms) θ = Vane angle at inlet, ϕ = Vane angle at outlet α =Guide blade angle at inlet, β =Guide blade angle at inlet

Subject Name: Fluid Mechanics and Machinery Model Answer

	ANGLE OF DEFLECTION	2M (Tri)
b)	Given Data	
	$d_1 = 160mm = 0.16m, d_2 = 0.08m = 8cm, Q = 50lps = 0.05m^3 / sec, C_d = 1, S_{oil} = 0.8$	
	$a_1 = \text{Area of pipe} = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.16)^2 = 0.0201 \text{m}$	21M
	$a_2 = \text{Area of throat} = \frac{\pi}{2} d_2^2 = \frac{\pi}{2} (0.08)^2 = 0.005026 \text{m}^2$	1M
	We know that,	
	$Q = \frac{C_d a_1 a_2 \sqrt{2gh}}{\sqrt{a_1^2 - a_2^2}}$	1M
	$0.05 = \frac{1x\ 0.0201 x 0.005026 \sqrt{2\ x\ 9.81\ h}}{\sqrt{0.0201^2 - 0.005026^2}}$	
	$\sqrt{h} = 2.17$	
	h = 1.4730 m of Oil	2M
	$h=x\left[\frac{s_h}{s}-1\right]$	1M
	$S_{0} = S_{0}$	1111
	$S_h = Specific \ gravity \ of \ water = 13.6$	
	$S_o = Specific \ gravity \ of \ oil = 0.8$ $X = Reading \ of \ manometer$	
	$1.4730 = x \left[\frac{13.6}{0.8} - 1 \right]$	
	x = 0.0920625 m = 92.0625mm	2M
c)	Slip of Reciprocating Pump:- Slip of a pump is defined as the difference between theoretical discharge and actual discharge of a pump.	1M
	$Slip = Q_{th}-Q_{act}$	
	Negative Slip of Reciprocating Pump: - If actual discharge of a pump is greater than theoretical	

 Subject Name:
 Fluid Mechanics and Machinery
 Model Answer
 Subject Code: 17411

 discharge then the slip become negative.
 Image: Communication of the slip become negative.
 Image: Communication of the slip become negative.

