MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Question No.		Model Answer / Solution	Marks
Q.	1	(a) Attempt any Six	12
	i)	1) Specific Gravity - It is the ratio of specific weight of fluid to the specific weight of water. OR	01
		It is the ratio of mass density of fluid to the mass density of water.	
		2) Kinematic Viscosity - It is the ratio of dynamic viscosity to the mass density.	01
	ii)	Positive gauge pressure - when the pressure is measured above atmospheric pressure by an instrument is known as positive gauge pressure.	01
		Negative gauge pressure - when the pressure is measured below atmospheric pressure by an instrument is known as negative gauge pressure.	01
	iii)	Steady flow - The flow is said to be steady when flow parameters such as velocity pressure, density etc. remains constant with respect to time.	01
		pressure, density etc. varies from one section to another over a specified region at a particular instant.	01

b. (b) Attempt any Two
i) Pressure given -2.5 bar

$$
\mathrm{P}=2.5 \mathrm{bar}=2.5 \times 100 \mathrm{kN} / \mathrm{m}^{2}
$$

In terms of mercury column

$\mathrm{P}=\mathrm{w}_{\mathrm{Hg}} \times \mathrm{h}_{\mathrm{Hg}}$ where $\mathrm{W}_{\mathrm{Hg}}-$ specific weight of mercury

$$
\mathrm{w}_{\mathrm{Hg}}=9.81 \times 13.6=133.416 \mathrm{kN} / \mathrm{m}^{2}
$$

Therefore $2.5 \times 100=133.416 \mathrm{xh}_{\mathrm{Hg}}$
$\mathrm{h}_{\mathrm{Hg}}=\frac{2.5 \times 100}{133.416} \mathrm{~m}$ of mercury
$\mathrm{h}_{\mathrm{Hg}}=1.87 \mathrm{~m}$ of mercury

In terms of water column

$p=W_{w} \times h_{w}$ where $W_{w}-$ specific weight of water

$$
\mathrm{W}_{\mathrm{w}}=9.81 \times 1=9.81 \mathrm{kN} / \mathrm{m}^{3}
$$

Therefore $2.5 \times 100=9.81 \mathrm{x} \mathrm{h}_{\mathrm{w}}$
$\mathrm{h}_{\mathrm{w}}=2.5 \times 100 / 9.81$
$h_{w}=25.48 \mathrm{~m}$ of water
ii)

Measurement of pressure less than atmospheric pressure is done by means of an U tube manometer as shown in figure.

The negative pressure in the pipe sucks the manometric fluid (Hg) in the left limb causing the liquid in the right limb to go more down correspondingly.

Discharge Through Venturimeter

Let P_{1} - Pressure at section $1 \ldots . . \mathrm{N} / \mathrm{m}^{2}$
V_{1} - Velocity of liquid at section $1 \ldots \mathrm{~m} / \mathrm{s}$
Z_{1} - Elevation head section $1 \ldots . . \mathrm{m}$
A_{1} - Area of venturimeter at section $1 \ldots . \mathrm{m}^{2}$
$\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{Z}_{2}, \mathrm{~A}_{2}=$ corresponding values at section 1
Applying Bernoulli,s Theoram at section $1 \& 2$ and neglecting losses.
$\frac{V 1^{2}}{2 g}+\frac{P_{1}}{p g}+Z_{1}=\frac{V 2^{2}}{2 g}+\frac{p_{2}}{p g}+Z_{2} \ldots . \mathrm{m}$ of liquid
OR
$\frac{V 2^{2}-V 1^{2}}{2 g}=\left[\frac{p_{1}}{p g}+Z_{1}\right]-\left[\frac{p_{2}}{p g}+Z_{2}\right]=$ HpiZ
Where $\mathrm{H}_{\mathrm{piz}}$ - Differential piezometeric head between 1 and 2 .
From continuity equation
$\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$V_{1}=\frac{A_{2}}{A_{2}} V_{2}$
Substituting for V_{1} in equation (1)
$\frac{V 2^{2}}{2 g}\left[\frac{A 1^{2}-A 2^{2}}{A 1^{2}}\right]=H_{p i z} \quad V_{2}=\frac{A_{1}}{\sqrt{A 1^{2}-A 2^{2}}} \sqrt{2 g H_{p i g}}$
Discharge through pipe
$\mathrm{Q}_{\text {Th }}-$ Theoretical discharge

$$
=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

$Q T h=\frac{A_{1} A_{2}}{\sqrt{A 1^{2}-A 2^{2}}} \sqrt{2 g H_{p i z}} m^{3} / \mathrm{s}$
OR Actual discharge Qact $=C_{d} \times Q_{T h}$ where $C_{d}-$ Coefficient of discharge.

where hf - loss of head due to friction
f - coefficient of friction
L - Length of pipe
V- Velocity of pipe
D - Diameter of pipe
By putting respective values

$$
20=\frac{4 \times 0.008 \times 5000 \times V^{2}}{2 \times 9.81 \times D} \quad \text { OR }
$$

$$
\text { Velocity } V=\frac{Q}{A}=\frac{Q}{\pi} / 4 D^{2}
$$

$$
=\frac{4 Q}{\pi D^{2}}
$$

$$
20=\frac{4 \times 0.008 \times 5000 \times(4 Q)^{2}}{2 \times 9.81 \times D \times \pi^{2} \times D^{2}}
$$

$$
=\frac{4 \times 0.008 \times 5000 \times 16 \times(0.016)^{2}}{2 \times 9.81 \times D \times(3.14)^{2} \times D^{4}}
$$

$$
=\frac{0.655}{193.44 D^{5}}
$$

$$
20=\frac{0.0033}{D^{5}}
$$

$$
D^{5}=0.000165
$$

$$
D=0.175 \text { Meter } \quad D=175 \mathrm{~mm}
$$

e.

Minor Losses -

1) Loss due to sudden expansion
$h_{\exp }=\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}$

Any four
2) Loss due to sudden contraction -

Where Cc - Coefficient of contraction
3) Losses due to bends, elbows, tees and other fittings

$\mathrm{h}_{\text {fitting }}=K \frac{V^{2}}{2 g} \quad \mathrm{~m}$ of fluid.
Where K - constant and its value depends pon type of pipe fitting e.g.
$\mathrm{K}=0.35$ to 0.45 for 45^{0} bend
$=0.5$ to 0.75 for 90° bend etc.
4) Entrance loss - tank to pipe.

$$
h_{\text {ent }}-0.5 \frac{V^{z}}{2 g} \mathrm{~m} \text { of fluid }
$$

5) Exit - Pipe to tank

$h_{\text {exit }}=V^{2} / 2 \mathrm{~g} \mathrm{~m}$ of fluid.
f.

Figure shows arrangement of different fluid according to the data given in the problem.
Pressure due to air $-4 \mathrm{~kg} / \mathrm{cm}^{2}$

- 4 bar
- $4 \times 100 \mathrm{kN} / \mathrm{m}^{2}$

3. (a) Explain the concept of cavitation in turbines.

- Cavitation is defined as the phenomenon of formation of vapour bubbles of a flowing liquid.
- Cavitation occurs when the pressure in any condition falls below the vapour pressure.
- While passing through hydraulic turbine water comes in a region where its pressure falls below vapour pressure. At this point vapour bubbles are formed.
- This can happen at the outlet of the turbine, inlet of pump, bend of pipe or convex surface of curved vanes.
- The vapour bubbles travel along with the liquid and on reaching in region of high pressure, suddenly collapse creating a vacuum in the place.
- Collapsing of bubbles produce very high pressure which causes damage in the blades of runner and draft tube, etc.
- It causes small pits cavities to be formed on inside surface. This action is known as pitting.
- Cavitation reduces efficiency of turbine and hence it is not desirable.
(b)

Given: $\mathbf{D}=$ Diameter of Bucket=1m
Pressure at Nozzle=15Bar
$\mathbf{Q}=$ Discharge $=3.5 \mathrm{~m}^{3} / 60=0.058 \mathrm{~m}^{3} / \mathrm{s}$
N=600 RPM,
$\mathrm{u}=(\pi \mathrm{DN} / 60)=(3.14 \times 1 \times 600) / 60=31.41 \mathrm{~m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{v}}=0.98, \mathrm{y}_{\mathrm{o}}=85 \%$
To find: Power developed and Hydraulic Efficiency.

3	(c)	Solution: As the bucket is semi circular= $\boldsymbol{\Phi}=\mathbf{0}^{\mathbf{0}}$ Head of Nozzle $=(\mathbf{H})=($ Pressure at the Nozzle $) /($ Specific weight of water $)$ $=\left(15 \times 10^{5}\right) /(9810)$ Head of Nozzle $=152.905 \mathrm{~m}$ Velocity of Jet $\left(\mathbf{V}_{\mathbf{1}}\right)=\mathrm{C}_{\mathrm{V}} \times \sqrt{2 g H}$ Velocity of Jet $\left(\mathbf{V}_{\mathbf{1}}\right)=0.98 \times \sqrt{2 \times 9.81 \times 152.905}$ Velocity of Jet $\left(\mathbf{V}_{\mathbf{1}}\right)=53.67 \mathrm{~m} / \mathrm{s}$ 1) Power Developed $\mathbf{P}=\eta_{0} \times W \times Q \times H$ $=0.85 \times 9810 \times 0.058 \times 152.91$ $=73.95 \mathrm{Kw}$ 2) Hydraulic efficiency $\boldsymbol{\eta}_{\mathbf{h}}=\left\{\left[2\left(\mathbf{V}_{1}-\mathbf{u}\right)(1+\cos \boldsymbol{\theta}) \times \mathbf{u}\right] /\left[\mathbf{V}^{2}\right]\right\}$ $\begin{aligned} & =\left\{\left[2(53.67-31.41)\left(1+\cos 0^{0}\right) \times 31.41\right] /\left[53.67^{2}\right]\right\} \\ \mathrm{y}_{\mathrm{h}} & =0.9709=97.09 \% \end{aligned}$ Explain with neat sketch construction and working of Francis Turbine Construction: The main parts of the Francis turbine are: 1) Penstock: It is the large pipe which conveys water from the upstream of the reservoir to the turbine runner. 2) Spiral Casing: It is a closed passage whose cross sectional area gradually decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide Vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse	$\mathbf{2 M}$ $\mathbf{2 M}$ 2 M

and reaction effect. The number if a runner blade usually varies between 16 and 24 .
5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race.

Fig. Francis Turbine

Working:

1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially.
2) It operates under the medium head and medium discharge.
3) Water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design.
4) In the Francis turbine runner is always full of water.
5) After doing the work the water is discharge to the trail race through the draft tubes.
\qquad

3	d)	Given: $\mathrm{d}=$ diameter of jet $=7.5 \mathrm{~cm}=0.075 \mathrm{~m}$ $\mathrm{V}=$ Velocity of Jet $=20 \mathrm{~m} / \mathrm{s}$ $\mathrm{U}=$ Velocity of plate $=8 \mathrm{~m} / \mathrm{s}$ Angle of Deflection $=165^{\circ}$ $\Theta=180-$ Angle of Deflection $=180-165=15^{0}$ To find: 1) Force on the plate 2) Efficiency of the jet Solution:1)Force exerted by jet on the plate $\begin{aligned} & \mathbf{F}_{\mathrm{x}}=\boldsymbol{\rho} \mathbf{a}(\mathbf{V}-\mathbf{u})^{2}(\mathbf{1}+\cos \boldsymbol{\theta}) \\ & \mathrm{a}=(\pi / 4) \times(0.075)^{2}=4.417 \times 10^{-3} \mathrm{~m}^{2} \\ & \quad \mathrm{~F}_{\mathrm{x}}=1000 \times 4.417 \times 10^{-3} \times(20-8)^{2}(1+\cos 15) \\ & \mathrm{F}_{\mathrm{x}}=4.417 \times(12)^{2}(1+\cos 15) \\ & \quad \mathbf{F}_{\mathrm{x}}=\mathbf{1 2 5 0 . 6 7} \quad \mathbf{~ N} \end{aligned}$ 2) Efficiency of jet Efficiency of jet =(Work done by jet/sec)/(Kinetic energy of jet/sec) $=F_{x} \times u$ Kinetic energy of jet/sec $=1 / 2 \times\left(\mathrm{aV}^{3}\right)$ Efficiency of jet $=($ Work done by jet $/ \mathbf{s e c}) /($ Kinetic energy of jet/sec) $=(1250.67 \times 8) /\left[1 / 2 \times\left(1000 \times 4.41 \times 10^{-3} \times 20^{3}\right)\right]$ $\eta=0.567=56.7 \%$	
3.	(e)	Explain the concept of surface tension. Following figure shows the two molecules of liquid at point A and B . Fig. Intermolecular forces near a liquid surface	$\begin{gathered} 1 \\ \text { Marks } \end{gathered}$

Given:- Diameter of circular plate, $d=1 \mathrm{~m}$ Angle made by plate with horizontal, $\theta=30^{\circ}$
Area. $A=\frac{\pi}{4} d^{2}=\frac{\pi}{4} \times(1)^{2}=0.7854 \mathrm{~m}^{2}$
Distance, $D C=1.25 \mathrm{~m}, B C=1 \mathrm{~m}, G C=1.25 \mathrm{~m}$
Distance of C.G. from free surface,

$$
\bar{h}=C D+G C \sin \theta=1.25+1.25 \sin 30^{\circ}
$$

$$
\therefore \bar{h}=1.875 \mathrm{~m}
$$

(i) Total pressure (F),

$$
F=\rho g A \bar{h}
$$

$$
=1000 \times 9.81 \times \frac{\pi}{4} \times(1)^{2} \times 1.875
$$

$$
\therefore F=14.4464 \times 10^{3} \mathrm{~N} \text { or } 14.4464 \mathrm{kN}
$$

(ii) Centre of pressure $\left(h^{*}\right)$,

Using equation, we have $h^{*}=\frac{I_{a} \sin ^{2} \theta}{A \bar{h}}+\bar{h}$ where, $I_{G}=\frac{\pi}{64} d^{4}=\frac{\pi}{64} \times(1)^{4}=0.04909 \mathrm{~m}^{4}$

$$
\therefore h^{*}=\frac{0.04909 \times(\sin 30)^{2}}{0.7854 \times 1.875}+1.875
$$

$$
\therefore h^{*}=1.8833 \mathrm{~m}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

4.	(c) (i)	Submersible Pumps - A submersible pump as the name indicates consists of electric motor and pump both submerged in the water. - By submerging electric motors, pumps, large economy can be made by avoiding long shaft, large number of bearings, and large sized rising main, etc. - The complications due to thrusts are also avoided. - As it is a submersible pump, the only problem is to prevent the motor windings and the other electrical connections to be spoiled by water coming in contact. - For this purpose a special protection by suitable type of insulation is provided to prevent the water flow inside. - These pumps are vertical centrifugal pumps with radial or mixed flow impellers. All the metallic bearings are water lubricated and protected against the sand. - A non-return valve is fitted to a flange at the top of the pump. - The suction housing of pump is situated between the pump and motor and provided with a performed strainer. - Motor of the submersible pumps are wet squirrel cage type and are completely filled with water. Thrust bearings are provided for absorbing the axial thrust. - The pump shaft is connected to motor shaft by muff coupling. Gate valve is provided at the top of the pump as a non-return valve to discharge the water. - The total efficiency of these pumps is superior to conventional deep well pumps at much cheaper costs.	3 Marks

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
- The sucked water after coming in contact with the jet is carried into the delivery pipe. \\
- Here the kinetic head of the water is converted into pressure head, which forces the water into the delivery pipe. \\
- It is used for lifting water for boilers. \\
Fig. Jet Pump
\end{tabular} \& 1 Mark \\
\hline Q. 5 \& \& Attempt any FOUR of the following \& 16 \\
\hline a) \& \& \begin{tabular}{l}
i) Manometric Efficiency \(\left(\boldsymbol{\eta}_{\text {man }}\right)\) :-It is the ratio of the Manometric head to the head imparted by the impeller to the water is known as Manometric efficiency.
\[
\left(\eta_{\text {man }}\right)=\frac{\text { Manometric head }}{\text { Head imparted by the impeller to water }}
\] \\
ii) Static Head (H):-The sum of Suction Head and Delivery Head is called Static Head.
\[
\mathrm{H}=\mathrm{Hs}+\mathrm{Hd}
\] \\
iii) Mechanical Efficiency \(\left(\boldsymbol{\eta}_{\boldsymbol{m}}\right)\) :-It is the ratio of power available at the impeller to the power at the shaft of the centrifugal pump is known as mechanical efficiency.
\end{tabular} \& 1 M

1 M

1 M

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\[
\left(\eta_{\mathrm{m}}\right)=\frac{\text { Power at the impeller }}{\text { Power at the shaft }}
\] \\
iv)Neat Positive Suction Head(NPSH):-NPSH is the absolute pressure head at inlet to pump minus vapour pressure head (In absolute units) plus velocity head. \\
NPSH \(=(\) Absolute pressure head at inlet) \(-(\) Vapour Pressure head) \()+(\) Velocity Head).
\end{tabular} \& 1M \\
\hline b) \& \& \begin{tabular}{l}
Air Vessels:-An air vessel is a closed chamber containing compressed air in the top portion and liquid (Or water) at the bottom of chamber. \\
An air vessel is fitted to suction pipe and to the delivery point at a point close to cylinder of a single acting reciprocating pump. \\
Functions of Air vessel: \\
i) To obtain a continuous supply of liquid at uniform rate. \\
ii) To save a considerable amount of work in overcoming the frictional resistance in suction and delivery pipe. \\
iii) To run the pump at high speed without separation.
\end{tabular} \& 2 M

2 M

\hline \& c) \& | Types of impellers |
| :--- |
| i)Closed or Shrouded |
| ii)Open |
| iii)Semi Open |
| i)Closed or Shrouded |
| ii)Semi open |
| iii)Open |
| Applications: |
| i)Closed or Shrouded :-Liquid to be pumped is pure and relating free from debris |
| ii)Open :- Liquid to be pumped is impure and Containing small amount ofdebris |
| iii)Semi open:- Liquid to be pumped containing suspended solid matter like paper pulp, sewage, water containing sand etc | \& 1 M

\hline \& d) \& | i) Laws of fluid friction for Turbulent Flow |
| :--- |
| - Frictional resistance is proportional to square of velocity of flow. |
| - Frictional resistance is independent of pressure. |
| - Frictional resistance slightly varies with change in temperature of fluid. | \& 2M

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
- Frictional resistance is proportional to density of fluid flow. \\
ii) Darcy's equation for frictional losses is given by, \(h_{f}=\frac{4 f L V^{2}}{2 g D}\) \\
\(h_{f}=\) Head loss due to friction, \(4 \mathrm{f}=\mathrm{F}=\) Friction factor, \(\mathrm{f}=\) coefficient of friction, \\
\(\mathrm{V}=\) velocity of flow, \(\mathrm{L}=\) length of pipe, \(\mathrm{D}=\) Diameter of pipe
\end{tabular} \& 2M \\
\hline \& \begin{tabular}{l}
Pitot Tube: \\
It is a device used for measuring velocity of flow at any point in a pipe or channel. \\
Principle:- If the velocity of flow at any point becomes zero, the pressure there is increased due to conversion of Kinetic energy into pressure energy. \\
It is the glass tube with lower end of tube bent at \(90^{\circ}\) and is directed in upstream direction. The liquid rises up in the tube due to conversion of kinetic energy into pressure energy.
\[
V=C_{v} \sqrt{2 g h}
\] \\
\(\mathrm{V}=\) velocity of flow, \(C_{v}=\) Coefficient of velocity, h= Dynamic Pressure head \\
Fig. Pitot tube
\end{tabular} \& 2 M \\
\hline f) \& Diameter of smaller pipe, \(D_{1}=30 \mathrm{~cm}=0.3 \mathrm{~m}\) Area \(=A_{1}=\frac{\pi}{4} D_{1}{ }^{2}=\frac{\pi}{4} 0.3^{2}=0.070685 \mathrm{~m}^{2}\) Diameter of larger pipe, \(D_{2}=40 \mathrm{~cm}=0.4 \mathrm{~m}\) Area \(=A_{2}=\frac{\pi}{4} D_{2}{ }^{2}=\frac{\pi}{4} 0.4^{2}=0.12564 m^{2}\) Discharge, \(\mathrm{Q}=300 \mathrm{Lit} / \mathrm{Sec}=0.3 \mathrm{~m}^{3} / \mathrm{Sec}\) Velocity, \(V_{1}=\frac{Q}{A_{1}}=\frac{0.3}{0.070685}=4.244 \mathrm{~m} / \mathrm{sec}\) \& 1 M

1 M

\hline
\end{tabular}

		Velocity, $V_{2}=\frac{Q}{A_{2}}=\frac{0.3}{0.12564}=2.3877 \mathrm{~m} / \mathrm{sec}$ Velocity of head due to enlargement is given by $=\frac{\left(V_{1}-V_{2}\right)^{z}}{2 g}$ $=\frac{(4.244-2.3877)^{2}}{2 g}=0.1756 \mathrm{~m}$ of water	2 M
Q6	i) Attempt any TWO of the following Impact of Jet: - The stream of water leaving from a nozzle fitted at the end of water carrying pipe with high velocity and strikes on the blades of runner called as impact of jet. Conversion of Hydraulic energy into Mechanical Energy:- The water is stored in a reservoir containing tremendous potential energy. This water then carried by penstock (Pipe) to the inlet of turbines. At the end of penstock a nozzle is fitted that creates higher velocity jet water. As per the Newton's Second Law of motion, the rate of change in momentum exerts a force on blades of runner. Then due to this force runner will rotates where we get the mechanical energy as an output. ii) Hydroelectric Power Plant: i) Dam (Reservoir):- It is water reservoir generally constructed over the river it contains lot of potential energy. ii) Penstock: - Pipes of large diameters called penstock, which carries water under high pressure from storage reservoir to the turbines. These pipes are made of steel or reinforced concrete. iii) Turbines:- These are the wheels on which number of vanes are fitted and converts hydraulic energy to mechanical energy. iv) Tail race:- It is the channel which carries water away from turbines after the water has worked on turbines. The surface of water in the tail race is also known as tail race. v) Surge tank:-It is the tank provided in the path of penstock to avoid pulsating discharge at inlet of turbines. During flow of water from reservoir to turbine through penstock pressure surges are created to compensate these surges surge tank is provided.		

		 Layout of Hydraulic Power plant	2M
b)	i)	$\begin{aligned} & \text { i) Diameter of orifice }=d_{0}=12 \mathrm{~cm}=0.12 \mathrm{~m} \\ & \text { Area }=a_{0}=\frac{\pi}{4} d_{0}^{2}=\frac{\pi}{4} 0.12^{2}=0.0113 \mathrm{~m}^{2} \\ & \text { Diameter of pipe }=d_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m} \\ & \text { Area }=a_{1}=\frac{\pi}{4} d_{1}^{2}=\frac{\pi}{4} 0.2^{2}=0.0314 \mathrm{~m}^{2} \\ & P_{1}-P_{2}=9.81 \mathrm{~N} / \mathrm{cm}^{2}=9.81 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{~h}=\frac{P_{1}}{\rho g}-\frac{P_{2}}{\rho g}=\frac{9.81 \times 10^{4}}{1000 \times 9.81}=10 \mathrm{~m} \text { of water } \\ & C_{d}=0.6 \end{aligned}$ Actual Discharge $\begin{aligned} \mathrm{Q} & =C_{d} \frac{a_{0} a_{1}}{\sqrt{a_{1}^{2}-a_{0}{ }^{2}}} \sqrt{2 g h}=0.6 \frac{0.0113 x 0.0314}{\sqrt{0.0314^{2}-0.0113^{2}}} \sqrt{2 x 9.81 \times 10} \\ & =0.1017 \mathrm{~m}^{3} / \mathrm{sec} \quad=101.7 \mathrm{lps} \end{aligned}$	1M 1M $2 \mathrm{M}$
	ii)	$\begin{aligned} & \text { ii) Water stream Velocity, } \mathrm{V}=2.3 \mathrm{~m} / \mathrm{sec} \text {, } \\ & \text { Reading of manometer }=30 \mathrm{~cm}=0.30 \mathrm{~m} \\ & \mathrm{~h}=x\left(\frac{S_{m}}{S_{w}}-1\right)=0.30\left(\frac{13.6}{1}-1\right)=0.30 \times 12.6=3.78 \mathrm{~m} \text { of water } \\ & \mathrm{V}=C_{v} \sqrt{2 g h} \end{aligned}$	2M

		$2.3=C_{v} \sqrt{2 \times 9.81 \times 3.78}$ Coefficient of Velocity, $C_{v}=0.267$	2M
c)		Explanation of effect of friction and acceleration head on indicator diagram The pressure head in cylinder during suction and delivery strokes changes as follows: i) At beginning of suction stroke, $\theta=0^{0}$ hence $h_{a s}$ from equation is equal to $\frac{l_{g}}{g} \times \frac{A}{a_{s}} \omega^{2} r$ Buth $h_{f s}=0$. Thus the pressure head in cylinder will be $\left(h_{s}+h_{a s}\right)$ below atmospheric pressure head. ii) At middle of suction stroke, $h_{a s}=0$, but $h_{f s}=\frac{4 f l_{s}}{d_{s} 2 g}\left(\frac{A}{a_{s}} \omega r\right)^{2}$ thus the pressure head in cylinder will be $\left(h_{s}+h_{f s}\right)$ below atmospheric pressure head. iii) At the end of suction stroke, $h_{a s}=-\frac{l_{s}}{g} \times \frac{A}{a_{s}} \omega^{2} r$ but $h_{f s}=0$. Thus the pressure head in cylinder will be ($h_{s}-h_{a s}$) below atmospheric pressure head. iv) At beginning of delivery stroke, $h_{a d}=\frac{l_{d}}{g} \times \frac{A}{a_{d}} \omega^{2} r$. But $h_{f d}=0$. Thus the pressure head in cylinder will be ($h_{d}+h_{a d}$) above atmospheric pressure head. v) At middle of delivery stroke, $h_{a d}=0$, but $h_{f d}=\frac{4 f l_{d}}{d_{d} 2 g}\left(\frac{A}{a_{d}} \omega r\right)^{2}$ thus the pressure head in cylinder will be ($h_{d}+h_{f d}$) above atmospheric pressure head. vi) At the end of delivery stroke, $h_{a d}=-\frac{l_{d}}{g} \times \frac{A}{a_{d}} \omega^{2} r$. But $h_{f d}=0$. Thus the pressure head in cylinder will be ($h_{d}-h_{a d}$) above atmospheric pressure head. The indicator diagram with acceleration and friction in suction and delivery pipes is Area of indicator diagram $\mathrm{A}^{\prime} \mathrm{GB}^{\prime} \mathrm{C}^{\prime} \mathrm{HD}{ }^{\prime}=$ Area of $\mathrm{A}^{\prime} \mathrm{G}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{H}^{\prime} \mathrm{D}^{\prime}+$ Area of Parabola A'GB'+ Area of Parabola C'HD' But Area of A'G'B'C'H'D'=Area $\mathrm{ABCD}=\left(h_{s}+h_{d}\right) \times \mathrm{L}$ Area of Parabola $A^{\prime} G B^{\prime}=A^{\prime} B^{\prime} \times \frac{2}{3} \times G^{\prime} I=\frac{2}{3} x\left(A^{\prime} B^{\prime} x G^{\prime} I\right)^{\frac{2}{3}} x\left(A B x G G^{\prime}\right)$ $=\frac{2}{3} \times \mathrm{Lx} h_{f s}$ Similarly, Area of Parabola C'HD' $=\frac{2}{3} \times \mathrm{x} \times h_{f d}$	3M

