17411

21314 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
 - (8) Use of Steam tables, logarithmic, Mollier's chart is permitted.

Marks

1. a) Attempt any SIX of the following:

- i) Define Specific Weight and Specific Gravity.
- ii) Define 'Total Pressure' and 'Centre of Pressure'.
- iii) Define 'Steady Flow' and 'Uniform Flow'.
- iv) Write the formulae of force exerted by jet of water on moving vertical plate and work done.
- v) What is 'Continuity Equation'?

17411 [2]

2.

		N	Iarks
	vi)	What do you mean by 'Negative Slip'?	
	vii)	Classify the hydraulic turbines.	
	viii)	Write the types of impellers and casings of centrifugal pump.	
b)	Atte	mpt any <u>TWO</u> of the following:	08
	a)	Explain 'Single Column Manometer' in brief.	
	b)	What is Atmospheric Pressure, Gauge Pressure and Absolute Pressure? State their relation.	
	c)	Write the equation of power transmission by fluid in pipe and obtain the condition for maximum power transmission.	
	Atte	mpt any <u>FOUR</u> of the following:	16
a)	Expl	ain Bourden pressure gauge with a neat sketch.	
b)	Deri	ve the equation of actual discharge through venturimeter.	
c)	25 m	et of water of diameter 75 mm moving with velocity of n/s strikes a fixed plate in such a way that angle between and plate is 60°. Find the force exerted by jet on plate.	
	i)	in the direction normal to plate.	
	ii)	in the direction of jet.	
d)	when 500 1	ulate the discharge through a pipe of diameter 200 mm in difference of pressure head between two ends of pipe im apart is 4 m of water. Take value of 'f' = 0.009 in the rula $hf = 4fLV^2/d \times 2g$.	e
e)	Expl	ain 'Hydraulic Gradient Line' and 'Total Energy Line'.	
f)	Expl	ain simple differential manometer with a neat sketch.	

17411 [3]

Marks

3. Attempt any **FOUR** of the following:

- a) Explain general layout of hydraulic power plant.
- b) A pelton wheel is having a mean bucket diameter of 1m and running at 1000 rpm. The net head on pelton wheel is 700 m. If the side clearance angle (φ) is 15° and discharge through nozzle is 0.1 m³/s. Find
 - i) Power available at nozzle.
 - ii) Hydraulic efficiency of nozzle.
- c) Explain construction and working of Kaplan turbine.
- d) A jet of water of diameter 50 mm moving with velocity of 40 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by jet of water in the direction of jet, if jet is deflected through an angle of 120° at outlet of curved plate.
- e) Define surface tension and capillarity.
- f) A circular plate 3 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 4 m and 1.5 m respectively. Determine the total pressure and position of centre of pressure.

17411	[4]	
4.	Attempt any <u>TWO</u> of the following:	Marks 16
a	What is draft tube? State the types of draft tube. Explain any one in detail.	
b	A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm works against a total head of 40 m. Velocity of flow through impeller is constant and equal to 2.5 m/s. The vanes are set back at an angle at 40° at outlet. If diameter of impeller is 500 mm and width at outlet is 50 mm. Calculate	

- i) Discharge
- ii) Vane angle at inlet
- iii) W.D. by impeller on water per second.
- iv) Manometric efficiency.
- c) What is multistage pumps? Explain construction and working of multistage pumps.

5. Attempt any <u>FOUR</u> of the following:

- a) Define:
 - i) NPSH
 - ii) Manometric efficiency.
- b) Define cavitation and separation.
- c) Explain methods of priming in brief.
- d) Explain Darcy's and Chezy's equation for frictional losses.
- e) Explain construction and working of 'Orificemeter' with neat sketch.
- f) Explain law's of fluid friction.

17411 [5]

Marks

6. Attempt any <u>TWO</u> of the following:

- a) i) Derive the equation of force exerted by jet on inclined moving plate in direction of jet.
 - ii) Differentiate between Francis and Kaplan turbine.
- b) An oil of specific gravity 0.8 is flowing through venturimeter having inlet diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate discharge of oil through the horizontal venturimeter. Take $C_d = 0.98$.
- c) Explain construction and working of single acting and double acting reciprocating pump in brief with neat sketch.