

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

Subject Code:

17410

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	sub	Answer	Marking Scheme
1.a		Attempt any SIX of the following	
	i	 Define path function and point function. Ans: Path function: the thermodynamic quantities which are dependent on path followed between two end states of the process and independent of the two end states are called path functions. Point function: the property whose change depends on the initial and final state of system and not on the path adopted to bring about change is called point function. 	1
		State Clausius statement of second law of thermodynamics.	1
	ii	Ans: Clausius statement: It state that "it is impossible to construct a heat pump, which while operating in a cyclic process, which will produce no effect other than transfer of heat from lower temperature reservoir to higher temperature reservoir.	2
	iii	Represent Isobaric process on P-V and T-S charts. Ans: $f = \frac{1}{p + 1} \frac{p = c}{p + 1} \frac{1}{p = c} \frac{p + c}{p + 1} \frac{p = c}{p + 1} p = c$	01 for P-V and 01 for T-S
	iv	State relationship between universal gas constant and characteristic gas constant. Write the meaning of each term. Ans: The values of gas constant R are different for different gases. Universal gas constant doesn't depend on types of gases. For uniformity another unit of mass called Kg-mole is introduced. R= Characteristic gas constant = 287 J/KgK R_0 = Universal gas constant = 8314.3 J/Kg-moleK R= R_0/ µ	1 mark for values, 1 mark for relation

SUMMER-17 EXAMINATION

Model Answer

		Differentiate between boiler mountings and a		Any two
		Boiler mountings	Boiler accessories	points, 1
		Mountings are safety devices to control the	Accessories are the auxiliary parts to	Mark each
	v	steam generation process	increase overall efficiency of the boiler	
	v	Mountings are compulsory to be fitted	Accessories are optional	
		Example: - water level indicator, stop valve,	Example:- Economiser, air preheater,	
		blow off cock etc.	superheater.	
		They are mounted on boiler.	They increase boiler efficiency.	
		State the meaning of terms 'governing' and 'c	compounding' of steam turbines.	
		Governing: Steam turbine governing is the proc		1 Mark
		a steam turbine so as to maintain its speed of rota	ation as constant.	
	vi	Compounding: the arrangement to reduce p		
		pressure by use of multiple system of rotors in se		1Mark
		number of stages and the steam pressure or stea		
		over moving blades. This is known as compound		
		Write continuity equation of steam nozzle and		
		It is the passage of varying cross sectional area in		
		kinetic energy.		
		Applying S. F. E. E ,		
		$Q + h_1 + gZ_1 + (1/2) C_1^2 = W + h_2 + gZ_2 + (1/2) C_2^2$	2	1 mark for
		Since $Q = 0, Z1, Z2 = 0, W = 0$ where,		equation
	••	h1 - h2 = $(C^2 2/2) - (C^2 1/2)$		-
	vii	$2(h1 - h2) = C^2 2 - C_1^2$		
		$C2 = \sqrt{2 (h1-h2) + C_1^2}$		1 mark for
		Where		meaning
		C ₁ :Velocity at inlet		U
		C_2 : Velocity at exit		
		h_1 : enthalpy at inlet		
		h_2 : enthalpy at exit		
		Define condenser efficiency.		1 mark for
		Ans:		definition,
		it is defined as the ratio of temperature rise of co	oling water to the vacuum temperature minus	1 mark for
		inlet cooling water temperature.		
		Temp rise o	f cooling water	and
		Condenser efficiency = $\frac{\text{Temp. rise of cooling water}}{\text{Vacuum tempInlet cooling water temp.}}$		
		vacuum temp. –Inio	et cooling water temp.	
	viii			
		Condenser efficiency = $\frac{t_0 - t_0}{t_0 - t_0}$	ti	
		t_v	ti	
		Where,		
		to - Outlet temp. of cooling water.		
		ti - inlet temp. of cooling water.		
		tv - Vacuum temp . It is the saturation temp. Cor	responding to the condenser pressure.	
.b		Attempt any TWO of the following		
		Define following terms:		1 mark for
		1) Dryness fraction		definition,
		2) Degree of superheat		1 mark for
		3) Dry saturated steam		formula
	i	4) Superheated steam		and
		Ans: 1) Dryness fraction:- It is defined as a fraction	ction of steam that is in vapour form in liquid	meaning of
		vapour is called dryness fraction.	× 1	each

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

Subject Code:

	Wodel Answer Subject Code:	
	Mv	
	$X = \frac{Mv}{Mv + Ml}$	
	Where x – Dryness fraction	
	Mv – mass of vapour (dry steam) contain in steam	
	ML = mass of water in suspension in steam	
	 Dryness fraction is ratio of the mass of actual dry steam to the mass of wet steam. 2)Degree of superheat: It is the difference between the temperature of superheated vapour & saturation temperature corresponding at given pressure. is said to be degree of superheat. Degree of superheat = (Tsup - Tsat) 3) Dry saturated steam 	
	It is defined as the quality of heat required to raise the temperature of one kilogram of water from freezing point to temperature of evaporation to convert it into dry saturated steam at that temperature & pressure. $H_s = H_f + H_{fg}$	
	Where Hs enthalpy of dry saturated steam H_f = sensible heat	
	H_{fg} = latent heat of evaporation <i>The quantity of heat required to convert 1 kg of water at 0</i> ^{0}c <i>into dry saturated steam at constant pressure is known as enthalpy of dry saturated steam.</i> 4)Superheated steam	
	An amount of heat required to one kg of water from freezing temperature into superheated steam is called enthalpy of superheated steam. $H_{sup} = H_f + H_g + C_{vs} (T_{sup} - T_{sat})$	
	Where H_{sup} = enthalpy of superheated steam H_{f} = sensible heat	
	$H_g = latent heat$	
	\tilde{C}_{vs} = specific heat of superheated vapour	
	T _{sat} – saturated temperature	
	The quantity of heat required to convert 1 kg of water at 0 0c into superheated steam at	
	constant pressure is known as enthalpy of superheated steam.	
	State Dalton's law of partial pressures. Apply it to steam condenser with the help of	1 mark-
	suitable diagram.	definition,
ii	Ans: Dalton's law of partial pressure: This law states that "The total pressure exerted by a mixture of air and water vapour on the walls of container is the sum of partial pressure exerted by air separated and that exerted by vapour separately at common temperature of the condenser". If there were no air present in the condenser the total pressure in the condenser would be equal to partial pressure of steam corresponding to temperature of condenser and in this case maximum vacuum would be obtained in the condenser. Hence, practically, the total pressure in the condenser is sum of partial pressures of exhaust	1mark – equation, 1 mark- meaning, 1 mark – related diagram
	steam and air present in the condenser. P = Pa + Ps	ulagrafii
	Where	
	Pa= partial pressure exhausted by air	
	Ps = partial pressure exhausted by vapour	
	P = total pressure of mixture at temperature.	
	r martin r	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER-17 EXAMINATION

Subject Code:

	Model Ansv		ject Code:	7410
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	+ Steam Vm, T		
iii	Define black body, grey body, emissivity, abso Ans: Black body: A body which absorbs all the incident radiation is For black body condition is $\alpha = 1$, $\beta = 0$, $\tau = 0$. Grey body: If the body absorbs a definite per their wavelengths, the body is known as 'grey bo Emissivity: it is defined as total emissive power the same temperature. Absorptivity: It is defines as the ratio of amount incident on a body	s called black body irrespect centage of incident radiatidy'. to total emissive power of of energy absorbed to amo	ion irrespective of a black surface, at	2mark to each definition
	OR Fraction of total energy absorbed by the body is			
2	Attempt any FOUR of the following			
a	Differentiate between heat engine and heat pur Heat pumpHeat pumpthermodynamic system which transfers heat from low temperature body and gives out the same to high temp body.it works between hot body temp and atmospheric temp(COP) _{HP} = Q ₁ /Q ₁ -Q ₂ COP of heat pump is greater than 1 in case of HP atmosphere acts as a cold body it takes work as an inputT2Hot BodyRefrigeratorRQ2 = Q1 + WR R	Heat engine thermodynamic system v heat from high tempera gives out the same to low it works between hot b reservoir temp. $(COP)_{HE} = Q_2/Q_1-Q_2$ COP of heat engine is alw in case of HE source acts it gives work as an output	ture body and temp body. body temp and vays less than 1 as a hot body	any 4 points, 1 mark to each
b	A tank of 2.2 m ³ capacity contains air at 260 ⁰ tank without changing temperature until pres (i) Mass of air left in the tank. (ii) Mass of air pumped out. (take R= Ans: Given	$\frac{1}{T_1}$		04 marks

SUMMER-17 EXAMINATION

Model Answer

Subject Code:

1	<u>г.</u>					
			$2 m^3$,			
			$0^{0}C$,			
	-		MPa,			
	-	= 4 K		notione and inconstant of tarls	and alter will not also as	
			•	rature remains constant as tank	capacity will not change.	
			$n_1 RT_1$			
			V_1 / RT_1	(260, 272))		
			.1* 10 ³ *2.2)/(0.287*	(260+273))		
			438 Kg			
			V_2/RT_2	77))		
	-		*2.2)/(0.287*(260+2	(73))		
)5752 Kg			
	ner	nce,	Mass of six loft	in the territy 1 429 Ke		
		i)		in the tank= 1.438 Kg		
			Mass of air pumped		•	1 1 0
				state various types of boiler dr		1 mark for
			-	ure difference which causes a fl	ow of gas to take place is termed	definition
	as a	a dra	aught.			, 3 marks
		1.0		OR		for
					t flow of air and to discharge the	classificatio
	gas	es th	nrough the chimney	to atmosphere is known as boile	er draught.	n with
		••	1 1.1.1	OR		meaning
					ry to draw the required quantity of	
	air	for c	combustion and to re	emove the flue gases out of the l	boiler combustion chamber.	
			ity of boiler draugh			
				antity of air for combustion.		
				es to flow through the boiler.		
	3.			to atmosphere through chimney	у.	
			draught is classified			
				ught: draught is produced with		
		•••		etween hot flue gases inside the	chimney and cold air outside the	
		mne				
			ficial draught			
				y mechanical fan) : draught is p	roduced with the help of fan	
				pt before boiler furnace.		
				kept after boiler furnace and bef	ore the chimney.	
			anced draught			
			m jet draught (Produ	iced by steam jet)		
			ced draught			
			ed draught			
	Co	-		action turbine on the basis of f	ollowing points:	1 mark
		(i)	Shape of blade			each for 4
		(ii) Admission of steam				points
		(iii) Power generated				
	_ .	(iv)) Speed			
Ċ	d An			I	I	
	S					
	1 1 1 1 1	0	Parameter	Impulse turbine	Reaction turbine	
	N					
		,				
		l	Shape of blade	symmetrical profile	Asymmetrical profile. i.e. aerofoil shape	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

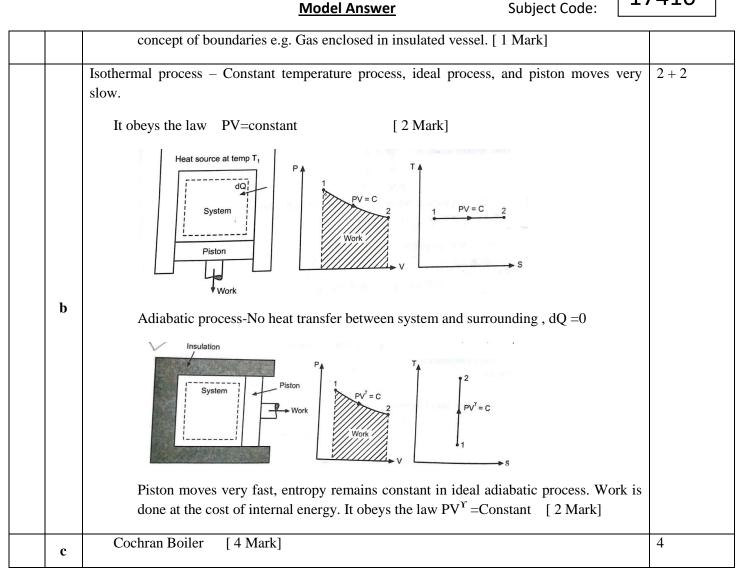
Model Answer

SUMMER-17 EXAMINATION

Subject Code:

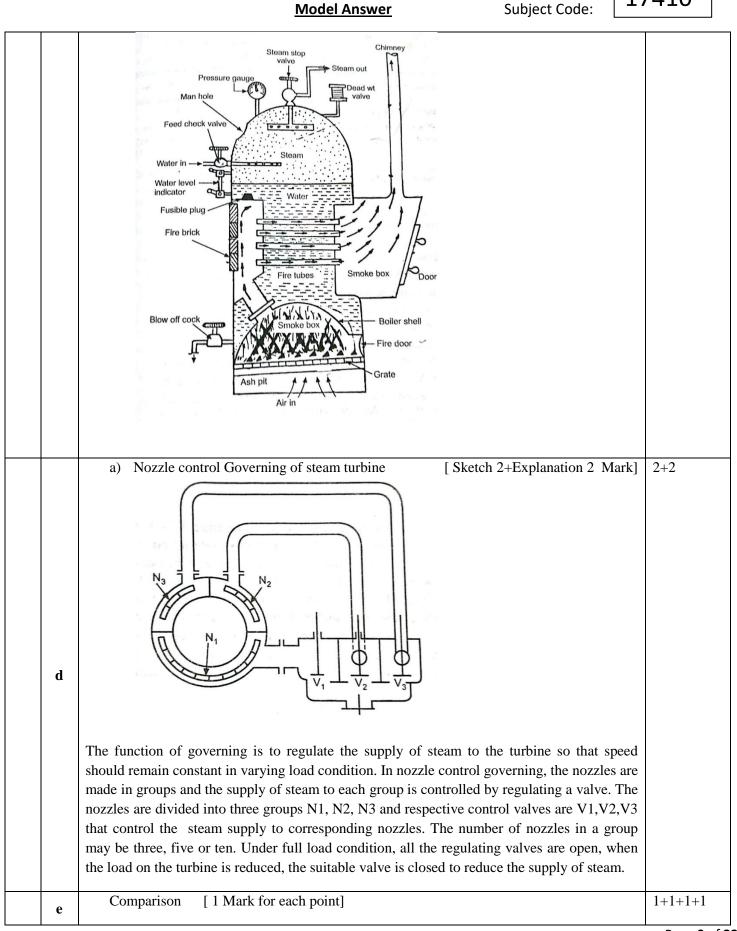
			Model / Model		
	2	Admission of steam	steam completely expand in nozzle and pressure remain constant during flow through blade passage	Steam expands partially in nozzle and further expansion takes place in rotor blades passage.	
	3	Power generated Speed	less higher	high lower	
		t various losses in ste		lower	1 marks
e	Ans: Losse 1. Res 2. Los 3. Lea 4. Los 5. Rac	s in steam turbine sidual velocity loss ss due to friction skage loss ss due mechanical fric diation loss			each to any 4 points
		ss due to moisture			
	Ans: steady	y flow energy equati $1 + gZ1 + (1/2) C^21 =$	equation and apply it to boiler on W+h2+gZ2+(1/2) C ² 2	and nozzle.	2 mark- steady flow energy equation, 1 marks – application to turbine,
		Flow IN -	Adiabatic wall	2 → Flow OUT 7 2	1 marks - application to boiler
f		For this system,	commonly used convergent-diverge $\Delta PE = 0$ $W = 0$ $Q = 0$ v equation to the system, $h_1 + \frac{C_1^2}{2} = h_2 + \frac{C_2^2}{2}$		
	or		$\frac{C_2^2}{2} - \frac{C_1^2}{2} = h_1 - h_2 \text{or} C_2^2$	$2 - C_1^2 = 2(h_1 - h_2)$	
	or		$C_2^{\ 2} = C_1^{\ 2} + 2(h_1 - h_2)$		
			$C_2 = \sqrt{{C_1}^2 + 2(h_1 - h_2)}$		
	wher	re velocity C is in m/s	and enthalpy h in joules.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION


Model Answer

Subject Code:

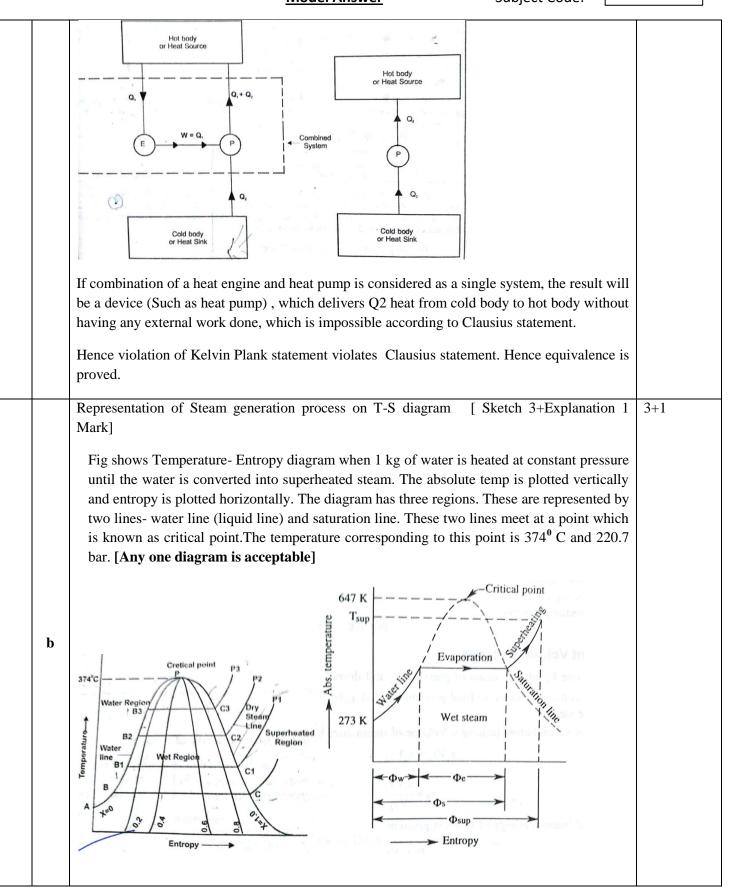
		Boiler:	
		<u>Assumptions</u> : $\Delta P.E=0$	
		W=0	
		∆K.E=0 Answer:	
		Answer: $\mathbf{Q} = \mathbf{h}_2 - \mathbf{h}_1$	
		heat supplied is utilized to increase enthalpy	16
Q3		Attempt any FOUR (4 X 4 =16) The thermodynamic system is defined as a prescribed region, or space or finite quantity	16 04
		of matter surrounded by an envelope called boundary. The boundary may be real physical surface/imaginary, fixed/moving. Types of system are – [1 Mark] 1.Closed system(Non-flow system) – In closed system mass within the boundary of the system remains constant and only energy (i.e. heat and work) may transfer across the boundary. It can be explained with the concept of boundaries e.g. piston and cylinder arrangement without valve [1 Mark]	
	a	Closed System W A W Gas I Gas Gas Highpressure Control Gas Control Gas Highpressure Control Contro	
		2. Open system-The system is called open if mass as well as energy (i.e. heat and work) transfer across boundaries. Such system is described with the help of control volume and control surface. e.g. steam turbine, compressor, I.C. engine [1 Mark]	
		3. Isolated system -When no flow of heat, work and mass takes place across the 11boundaries, the system is termed as isolated system. It can be explained with the	


SUMMER-17 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION

SUMMER- 17 EXAMINATION

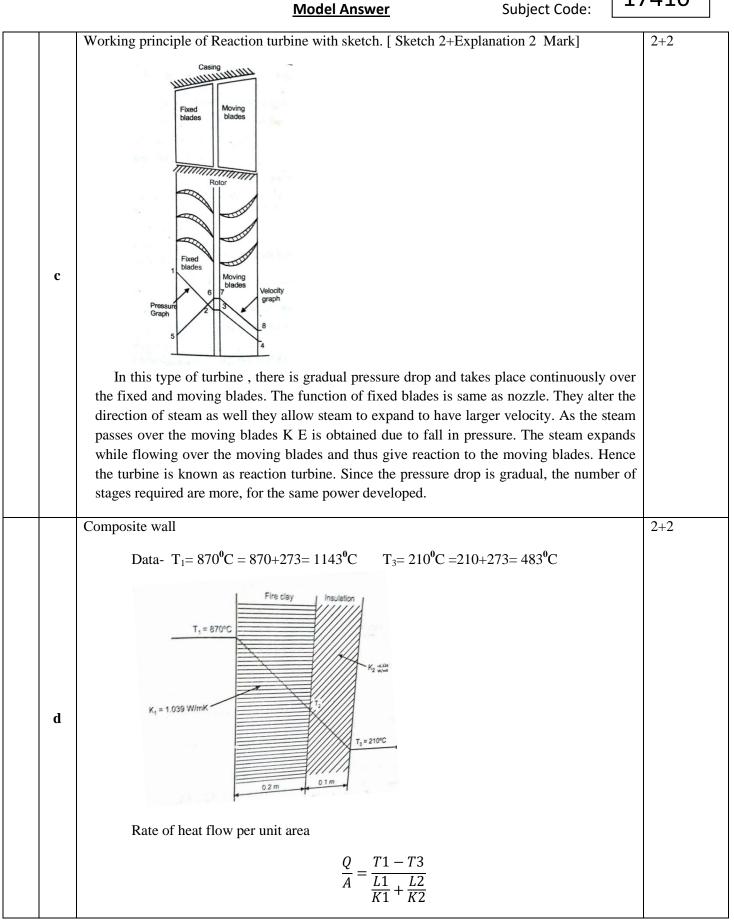
Model Answer


		SR.	CRIERIA	JET CONDENSER	SURFACE CONDENSER	
		NO				
		1	Amount of cooling water required	Less amount of cooling water is required	More amount of cooling water required	is
		2	Vacuum efficiency	Vacuum efficiency is less due to mixing of cooling water and exhaust steam	Vacuum efficiency is more due non mixing type operation	to
		3	Construction	Simple and suitable for small capacity plant	Complex and suitable for lar capacity plant	ge
		4	Operation of heat exchange	Direct contact type ,as mixing of cooling water and exhaust steam occurs	Indirect contact type ,as mixing of cooling water an exhaust steam	no nd
	f	fluids fluids radiato industr	at different tempera are in motion and r ors, condenser coil	kchanger is a device, which transfe atures. In most of the thermal engin nain mode of heat transfer is conve in refrigerator, air conditioner, rs, oil coolers in heat engine, milk	neering applications, both of the ection. Examples are automobile , solar water heater, chemical	1+1+1+1
Q4			pt any four			16
		Therm Thoug seems one st	odynamics [Sket h Kelvin Plank stat to be different, the	Plank statement and Clausius ch 2+Explanation 2 Mark] ement and Clausius statement of S y are equivalent to each other. This iolation of another and vice versa n]	econd Law of Thermodynamics s can be proved by- violation of	2+2
		Violati	ion of Kelvin Plank	statement:-		
	a	statem	•	aving 100% efficiency (i.e. PMM engine will convert the heat energy	e e	
		∴ Q1	=W			
		Q2 fro	-	can be utilized to drive a heat pum at sink)and rejects an amount of l n in fig.	-	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION

Model Answer

Subject Code:



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified) SUMMER-17 EXAMINATION

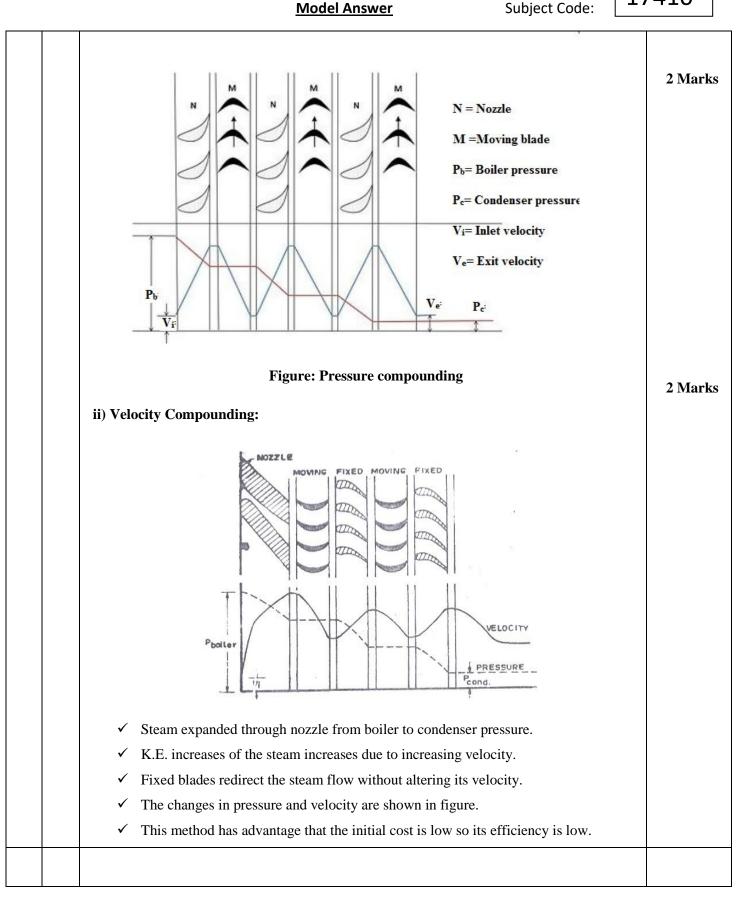
		(ISO/IEC - 27001 - 2005 Certified)	
		SUMMER– 17 EXAMINATION <u>Model Answer</u> Subject Code:	17410
		$=\frac{1143-483}{\frac{0.2}{1.039}+\frac{0.1}{0.228}}$	
		= 1046.124 W/m ² [2 Mark] Interface temperature Heat transfer /unit area for fire clay wall	
		$\frac{Q}{A} = \frac{T1 - T2}{\frac{L1}{K1}}$	
		$1046.124 = \frac{1143 - T2}{\frac{0.2}{1.039}}$	
		$T_2 = 941.628 \text{ K}$ = 941.628-273 = 668.62 °C [2 Mark]	
		Vacuum efficiency of Condenser	2+2
	e	Data- Vacuum reading or actual vacuum = 710 mm of Hg Barometer reading = 760 mm of Hg Hot well temperature = 30 °C We know that pressure in the condenser = 760- 710 = 50 mm of Hg From steam tables, corresponding to a temp. of 30 °C, ideal pressure of steam = 0.0 $bar = \frac{0.0424}{0.00133}$ = 31.88 mm of Hg Now, Ideal vacuum = Barometric reading –Ideal pressure = 760-31.88 = 728.12 mm of Hg [2 Mark] Vacuum efficiency = $\eta_{vacuum} = \frac{Actual vacuum}{Ideal vacuum} = \frac{710}{728.12} = 0.9751 = 97.51\%$ [2 Mark]	424
	f	Enthalpy of Wet steam = $H_{wet} = h + x L$ [1 Mark] h = Sensible heat in KJ/Kg L= Latent heat in KJ/Kg ; x = dryness fraction Enthalpy of Superheated steam = $H_{sup} = h + L + C_p (T_{sup} - T_{sat})$ [1 Mark] C_p = Specific heat of Superheated steam in KJ/Kg T_{sup} = Temperature of Superheated steam T_{sat} = Saturation temperature corresponding to pressure of steam generation Entropy of Wet steam = $S_{wet} = S_w + x(S_s - S_w)$ [1 Mark] Entropy of superheated steam= $S_{sup} = S_s + C_p \log_e \frac{Tsup}{Tsat}$ [1 Mark] S_s= Entropy of dry saturated steam	1+1+1+1
5.		Attempt any <u>TWO</u> of the following:	
a)	i	Differentiate between heat and work.	

SUMMER- 17 EXAMINATION

Model Answer

Subject Code:

			Heat	Work	
		1	Form of energy that is transferred between system and surrounding or two systems due to temperature difference.	The amount of energy transferred by a force acting though a distance.	1 Mark for each difference.
		2	Heat is a function of the state.	Work is function of path.	
		3	Heat is energy interaction due to temperature difference.	Work is energy interaction by reasons other than temperature difference.	
		4	The heat is form of energy. A unit of heat is joule.	The work is form of energy. Units of work are joule.	
	ii	Exp	lain Zeroth law of thermodynamics.		
		alrea	in thermal equilibrium with one another." This law was enunciated by R.H. Fowler in 1931 ady existed at that time it was designated as Zer and law to form a logical sequence.		2 Marks for Statement
			System C	7	2 Marks Figure and explanatio
			Figure: Zeroth law of the	rmodynamics	n
			ystem A and System C and System B and Syste r then system A, B are also in thermally equilibri	*	
b)			tch and explain pressure compounded and wing pressure and velocity variations along the		8 Marks


SUMMER-17 EXAMINATION

	Model Answer Subject Code:	7410	
Sol	i) Pressure Compounding:		
Sol	 i) Pressure Compounding: Compounding is the method adopted to reduce the speed of turbine rotor at the same time to utilize internal energy of steam effectively. This method is the combination of pressure and velocity compounding to get benefit of both methods. Arrangement of blades and nozzles are made as below; N-M-N-M-M Where: N = Nozzle MB = Moving blade Nozzle is reduced the pressure and increase the velocity. Moving blade absorb the kinetic energy of steam. Figure shows the rings of fixed nozzles incorporated between the rings of moving blades. The steam at boiler pressure enters the first set of nozzles and expands partially. The kinetic energy of the steam thus obtain is absorbed by the moving blades (stage 1). The steam the velocity and pressure. The number of stages depends on the number of rows of nozzles through which the steam must pass. The changes in pressure and velocity are shown in figure. 	2 Marl	ks

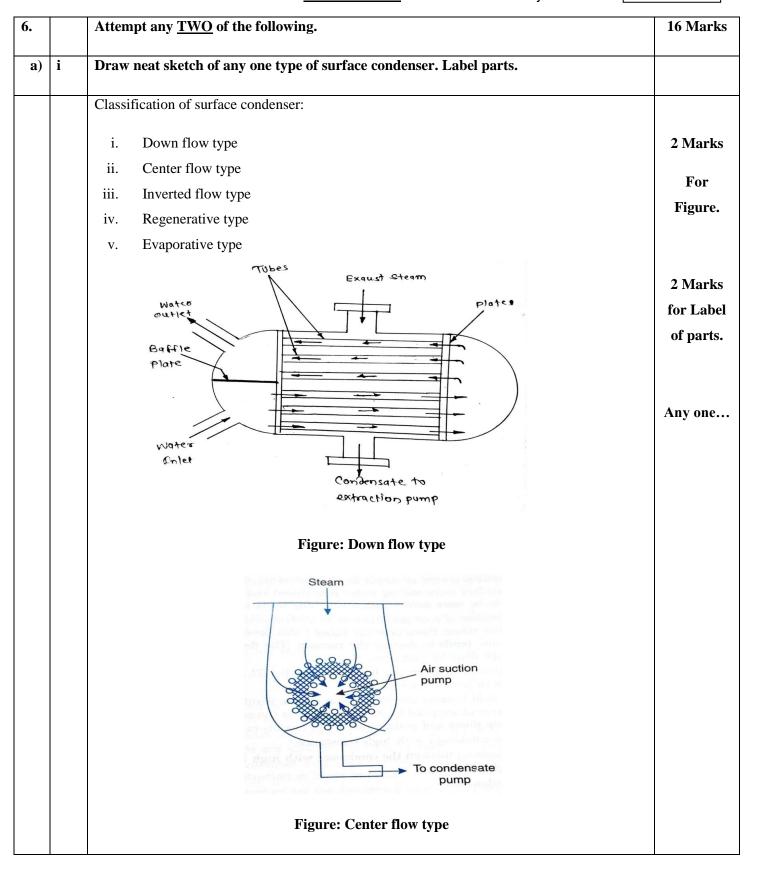
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) **SUMMER-17 EXAMINATION**

Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION <u>Model Answer</u> Subject Code:

17410

	<u>iviodel Answer</u> Subject Code.	
C.	A certain gas has C _P =1.968 KJ/kgK and C _V =1.507 KJ/kg K. Find its molecular weight	
	and the gas constant. A constant volume chamber of 0.3 m ³ capacity contains 2 kg of	
	this gas at 5 [°] C Heat is transferred to the gas until the temp is 100 [°] C. Find work done,	
	heat transfer and change in internal energy.	
	Characteristics gas constant R is;	
	$R = C_P - C_V$	
	R = 1.968 - 1.507	2 Marks
	R = 0.461 KJ/kgK	
	Universal gas constant R _U is;	
	$R_U = 8.314 \text{ KJ/kg} - \text{mole K}$	
	$R_U = MR$	
	So, Molecular weight M is;	
	$M = \frac{8.314}{0.461}$	
	M = 18.03 kg - mole	
	$T_1 = 5^{\circ}C = 5 + 273 = 278 \text{ K}$	
	$T_2 = 100^{\circ}\text{C} = 100 + 273 = 373 \text{ K}$	
	In Constant volume process i.e. Isochoric process Work done is zero.	2 Marks
	So;	
	1. Workdone	
	dW = 0	
	2. Heat transfer	2 Marks
	$dQ = m C_V (T_2 - T_1)$	
	= 2 X 1.507 X (373 – 278)	
	= 286.33 KJ	
	3.Change in Internal energy	Pagearkof 2



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER- 17 EXAMINATION

Model Answer

Subject Code:

		MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION <u>Model Answer</u> Subject Code:	7410
		Water pump Cooling pond	
		Figure: Evaporative type	
		* Any one of them	
	ii	State any two sources and effects of air leakage into steam condenser.	4 Marks
		 ✓ The main sources of air found in condenser are given below: There is leakage of air from atmosphere at the joint of the parts which are internally under a pressure less than atmospheric pressure. Air is also accompanied with steam from the boiler into which it enters dissolved in feed water. In jet condensers, a little quantity of air accompanies the injection water. ✓ The following are the effects of air leakage in a condenser: 	2 Marks
		 Lowered thermal efficiency Increased requirement of cooling water. Reduced heat transfer. Corrosion. 	2 Marks
b)	(i)	A sample of 3 kg. of steam at a pressure of 3 MPa exists in dry and saturated condition. For this sample, calculate enthalpy and entropy using steam table.	4 Marks
Sol		Properties of steam from Steam table;	
•		Mass of steam = $3 kg$. Pressure = $3MPa = 30 bar$ So; Specific enthalpy of dry saturated steam;	
		$h_g = 2802.3 \ KJ/kg$	

SUMMER-17 EXAMINATION

	<u>Model Answer</u>	Subject Code:	17410
	Enthalpy of 3 Kg of steam = $3 X 2802.3 = 8406.9 KJ/kg$		2 Marks
	Specific entropy of dry saturated Steam;		
	$S_g = 6.1837 \ KJ/kg K$		
	Entropy of 3 Kg of steam $= 3 X 6.1837$		
	= 18.551 KJ/kgK		2 Marks
ii	Steam at 8 bar and 0.85 dry is throttled to a pressure of 1 bar.		
	Find final quality of steam. Use steam table.		
	Properties of steam from Steam table;		
	<u>At 8 bar:</u>		
	Specific enthalpy:		
	$h_{f1} = 720.9 \text{ KJ/kg}$		
	$h_{fg1} = 2046.5 \text{ KJ/kg}$		
	Specific entropy:		
	$S_{f1} = 2.0457 \text{ KJ/kgK}$		1 Mark
	$S_{fg1} = 4.6139 \text{ KJ/kgK}$		
	<u>At 1 bar:</u>		
	Specific enthalpy:		
	$h_{f2} = 477.5 \; \text{KJ/kg}$		
	$h_{fg2} = 2257.9 \text{KJ/kg}$		
	Specific entropy:		
	$S_{f2} = 1.3027 \text{ KJ/kgK}$		
	$S_{fg2} = 6.0571 \text{ KJ/kgK}$		

SUMMER-17 EXAMINATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Cod

	Model Answer Subject Code:	17410
	In throttling process enthalpy is constant:	
	Enthalpy at 8 bar = Enthalpy at 1 bar	
	$h_1 = h_2$	
	$h_{f1} + x_1 h_{fg1} = h_{f2} + x_2 h_{fg2}$	
	$720.9 + 0.85 \times 2046.5 = 477.5 + 2257.9 x_2$	
	$x_2 = 0.878$	
	Initial entropy;	1 Mark
	$S_1 = S_{f1} + x_1 S_{fg1}$	
	$S_1 = 2.0457 + 0.85 \text{ X } 4.613$	
	$S_1 = 5.966 \text{ KJ/kgK}$	
	Final entropy;	
	$S_2 = S_{f2} + x_2 S_{fg2}$	2 Marks
	$S_2 = 1.3027 + 0.878 \mathrm{X} 6.0571$	
	$S_2 = 6.621 \text{ KJ/kgK}$	
	At 1 bar specific entropy S_2 is between S_{fg} and S_g , so quality of steam is dry.	
c)	Explain various modes of heat transfer with suitable example.	8 Marks
	Modes of heat transfer: Heat transfer takes place by the following three modes.	2 Marks
	1) Conduction	
	2) Convection	
	3) Radiation.	
	1) Conduction: Conduction is the transfer of the heat from one part of a substance to another	r
	part of same substance or from one substance to another substance in physical contact with it	2 Marks
	E.g. 1) Fins provided on motor cycle engine.	
	2) Heating a metallic rod at one end and sense the heat at other end.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER- 17 EXAMINATION

Model Answer

17410

2) Convection: Convection is the transfer of heat within a fluid by mixing of one portion of	
the fluid with another.	2 Marks
Convection is possible only in a fluid medium and is directly linked with the	
transport of medium itself.	
E.g. Boiling water - The heat passes from the burner into the pot, heating the water at the	
bottom. Then, this hot water rises and cooler water moves down to replace it, causing a	2 Marks
circular motion.	
3) Radiation: Radiation is the transfer of heat through space or matter by means other than	
conduction or convection.	
Radiation is heat through of as electromagnetic waves. All bodies radiate ; so	
a transfer of heat radiation occurs because hot body emits more heat than it receive and cold	2 Marks
body more heat than it emits. Radiation energy required no medium for transfer and will pass	
through vacuum.	
E.g.	
1) Heat from the sun warming your face	
2) Heat from a light bulb	
3) Heat from a fire	
4) Heat from anything else which is warmer than its surroundings.	