

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques Subject Code: 17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.	A)	Attempt any six:	12
	1)	What is Positive logic and Negative logic in digital system?	2M
	Ans.	Positive Logic : A logic 1 level represents a more positive of the two	
		voltage levels while the least positive of the two voltage levels	Each
		represents a logic 0 level.	term 1M
		Example, If +5 V represents a logic 1 level	
		And 0 V represents a logic 0 level	
		Logic $1 = +5V$	
		Logic 0 = 0V	
		Or if logic $1 = +5V$, logic $0 = +2V$	
		Negative Logic: A logic 1 level represents a most negative of the two	
		voltage levels while the least negative of the two voltage levels	
		represents a logic 0 level.	
		Example, If 0V represents a logic 1 level	
		And +5V represents a logic 0 level	
		Logic 1 = 0V	
		Logic 0 = +5V	
		Or if logic $1 = +2V$, logic $0 = +5V$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

2)	Define: i) Propagation delay ii) Noise margin.	2M				
Ans.	i) Propagation delay: Propagation delay is the average transition	Each				
	delay time for the signal to propagate from input to output when the	definitio n 1M				
	signals change in value. It is expressed in ns.					
	ii)Noise Margin: Noise immunity is defined as the ability of a logic					
	circuit to tolerate the noise without causing any unwanted changes in					
	the output. A quantitative measure of noise immunity is called as					
2)	'noise margin'.	23.4				
3)	Draw the symbol and T.T. of i) EX-OR ii) NAND gate.	2M				
Ans.	i) EX-OR	Each				
	Symbol	Eacn symbol				
	A . 1	symbol with				
	B -) - y	truth				
	b 7) -	table 1M				
	Truth Table	wow III				
	Truth Table for two input EX-OR gate. A logical gate whose output					
	is one when odd number of inputs are one, for any other condition					
	output is low.					
	Inputs Output					
	A B Y					
	0 0 0					
	1 0 1					
	0 1 1					
	1 1 0					
	ii) NAND gate:					
	Symbol					
	A SET SEE SEE					
	^)•— X					
	В					
	THE PARTY WAS A STATE OF THE PARTY OF THE PA					
	Truth Table Truth table					
	Input Output					
	A B Y					
	0 0 1					
	1 0 1					
	1 1 0					

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

5)	of the complements. State any four Boolea	$\overline{AB} = \overline{A} + \overline{B}$		
Ans.	State any Tour Boolea	Theorem	Theorem No.	A
	Commutative Laws Associative Law Distributive Law AND Laws OR Laws Double Inversion Law Absorption Laws Other Laws De Morgan's Theorem	$A + B = B + A$ $A \cdot B = B \cdot A$ $A \cdot (B + C) = (A + B) + C$ $A(BC) = (AB)C$ $A(B + C) = AB + AC$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot 0 = 0$ $A \cdot \bar{A} = 0$ $A \cdot \bar{A} = 0$ $A + 0 = A$ $A + A = A$ $A \cdot 1 = 1$ $A + \bar{A} = 1$ $A = A$ $A \cdot A $	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	f lu
6)	Solve the following: i) (110101) ₂ + (10110 ii) (1010) ₃ - (1000) ₃ n	$\overline{AB} = \overline{A} + \overline{B}$. $\overline{D1}$ $D1$	thod.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Ans.	i) $(110101)_2 + (101101)_2$	
	i) (110101) + (101101) ₂ Ans:	Each Solution 1M
	ii) $(1010)_2$ - $(1000)_2$ using 1's complement method.	
	Step 2 - 1010 (First No)	
	step 2 + 0111 (is compliment of 2nd No) step 3 Carry (Add the carry with the result	
	Step 4: Result is in three form Ans: (1010) - (1000) = (0010)	
7)	Draw the logic diagram of IC 7485. Note: Any other relevant diagram shall be considered.	2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Ans.	A input A_3 A_2 A_1 A_0 B_3 B_2 B_3 B_0 I (A <b) (a="" i="">B) A I C - 7485 I (A>B) Cascade Loputs A < B A=B A>B Outputs</b)>	Correct diagram 2M
8)	Define any two specifications of ADC.	2M
Ans.	 Resolution: The voltage input change necessary for a one-bit change in the output is called the resolution. It can also be expressed as a percentage. The resolution in terms of voltage is the full-scale input voltage divided by the total number of bits. Resolution = VFS / 2n-1 x 100 Accuracy: The accuracy of the A/D converter depends upon the 	Any two specifica tions 1M each
	accuracy of its circuit components. The relative accuracy of an A/D converter is the maximum deviation of the digital output from the ideal linear line.	
	3. Conversion time: The conversion time is the time required for conversion from an analog input voltage to the stable digital output. This conversion time is also called as speed.	
	4. Linearity: Linearity is conventionally equal to the deviation of the performance of the converter from a best straight line.	
	5. Differential Linearity: The differential linearity is defined as the maximum amount of voltage change necessary to cause the digital output to change one bit minus the ideal voltage change necessary to change one bit.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

		6. Monotoxicity: In response to a continuously increasing input signal, the output of an A/D converter should not at any point decrease or skip one or more codes. This is called the monotoxicity of the A/D converter.	
		7. Analog Input voltage: This is the maximum allowable input voltage range.	
		8. Format of Digital output: An A/D converter can be made for any standard digital code.	
		9. Quantization error: The approximation process is known as quantization. The error due to the quantization process is known as quantization error.	
1.	B)	Attempt any two:	8
	a)	Design OR and AND gate using NOR gate only.	4M
	Ans.	OR gate using NOR gate:	0.D
		Expression for OR gate is $Y = A + B = \overline{A + B}$ A A A A B A A B A A B A B A B A B A B A B A B A B A B A B A B B	OR gate using NOR gate 2M
		AND gate using NOR gate:	
		Expression for AND gate is $Y = AB = \overline{AB}(as \overline{A} = A)$	AND
		Applying De Morgan's second theorem, $Y = \overline{\overline{A} + \overline{B}}$, we can implement using NOR gates at this stage.	gate using NOR
		$A \circ \overline{A} = A \circ \overline{A} \circ$	gate 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

b)	Perform BCD addition: i) (264) ₁₀ + (668) ₁₀ ii) (454) ₁₀ + (379) ₁₀	4M
Ans.	i) $(264)_{10} + (668)_{10}$	Each
111150	1) (204)10 1 (000)10	additio
	Bea addition:	2M
	(264) 0010 0110 0100	
	0110-1000	
	$(668) \longrightarrow$	
	Addition: 1000 100 1100 invalid 800	
	Add(06) - 0110 0110	
	10010010	
	4 4	
	9 3	
	$(264) + (668) = (932)_{10}$	
	ii) $(454)_{10} + (379)_{10}$	
	(454)	
	1001	
	(279)	
	(379), OIII (100) (10) Invalid 800	
	P<	
	Add(66) 0110 0110	
	1000 0011 0011	
	4 4	
	8, 3	
	$(454)_{10} + (379)_{10} = (833)_{10}$	
	10	1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	s. Parameter	TTL	CMOS	Each
	Propagation Delay		70 ns	compari
	Power dissipation	10 mW	0.01mW	son 1M
	Fan out	10	50	
	Components Used		MOS family	
		Transistor on the	fabricates. MOS field	
		chip	effect transistors	
		•	(MOSFETs)	
	Attempt any four:			16
a			y. Also write O/P of each	4M
•	gate.	using Till to gave one	y. Hist write 3/1 of each	1111
Ar	S. The state of th	ub x Cir	•	Diagram
	A° TO A	ĀB	OR Gate using NAMO Gates	2M
	Во	A = Y 2 stap /	The Socieso expression for Ol	
	Boll B) ĀB.	AB ≅ A⊕B	Output
	A test		$B \longrightarrow D$	2M
	Ao	∠ AB	and the state of t	
b	Given $Y = A \overline{B} +$	$\overline{\overline{BC}} + \overline{AC}$.		4M
		ical expression using ga	ates.	
				Correct
Ar	S.			impleme
	_			ntation
	ABCA 8	3		<i>4M</i>
	*	~ AB		
		AB	JOI BC+ 7	
		AB BC	NB+BC+/	
		D BC L	AB4 BC + 7	
		Do AC	= AB + BC + AC	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

c) Ans.	Perform 2's complement subtraction $(59)_{10}$ - $(62)_{10}$.	4M
Alls.	$(59) = (111011)_{2}$ $(62)_{10} = (111110)_{2}$ $2 14 - 1$ $2 3 - 1$ $2 3 - 1$ $3 4 1 $	Each step 1M
	No carry. Answer is -ve. Take 25 compliment of Result 111101 is compliment 000011 (25 compliment of Result)	
	Step 4	
	Answer is (000011) = 1x2+1x2+0+0+0	
	Answer is -ve	
	$(59)_{10} - (62)_{10} = (-3)_{10}$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject	Code:	 333

		Inputs Outputs	Using
		A B S C	K-map
		0 0 0 0	2M
		$\left egin{array}{c c c c c} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right $	2111
		$egin{bmatrix} 1 & \dots & 0 & & 1 & & 0 \ 1 & & 1 & & 0 & & 1 \ \end{pmatrix}$	
		K-map for Sum K-map for Carry.	
		. 7	
		<u>Б</u> В.	
		, Ta B.	
		A O O	
		A 0	
		A 1 0 1 A	
		A 10	
		Y = AB.	
		Y = AB+ AB. Sum Carry.	
		Y = A P B.	
		y = 1.0 = 1	
		6	
		A 1	T 7 •
		To AB	Using
		Ysum	basic
			gates-
			<i>2M</i>
		AB	
		Yearry.	
		7 1 1 1	
		A 44 amount a may favorus	1.6
3.		Attempt any four:	16
	a)	Simplify using De-Morgan's theorem and realize it using basic	4M
		gates:	
		$Y = \overline{(A\overline{B} + \overline{A}\overline{B})(AB + \overline{A}B)}$	
		1	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

y	1	
An		
An	Y = $(A\overline{B} + \overline{A}\overline{B})(AB + \overline{A}\overline{B})$ Solution: using Demorgans theorem. $\overline{AB} = \overline{A} + \overline{B}$ Y = $(A\overline{B} + \overline{A}\overline{B}) + (AB + \overline{A}B)$	
	Since the output is equal to 1 the input line can be directly connected to logic 1 line.	
b)	Draw the logical block diagram of 4:1 mux and describe its working. Give the expression for the o/p and draw the circuit diagram using gates.	4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

Logical Block Diagram Ans. Logical block diagram *1M* data Multiplexer inputs D_3 Two select inputs **Working** Working: *1M* If S1S0=00, the data bit D0 will be selected and routed to the output. Similarly if, Output S1S0=01, the data bit D1 will be selected and routed to the output expressi S1S0=10, the data bit D2 will be selected and routed to the output on 1M S1S0=11, the data bit D3 will be selected and routed to the output i.e. Output will be high when the selected input D0 & D1is 1. Hence the logical expression for output is in SOP form. **Output Expression** $Y = \overline{S}_1 \overline{S}_0 D_0 + \overline{S}_1 S_0 D_1 + S_1 \overline{S}_0 D_2 + S_1 S_0 D_3$ **Circuit Diagram Using Gates** Circuit diagram using gates *1M* \$ 50 D

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	c)	Draw the block using IC 7447. A	Also di	aw its	Trut	h Tabl	е.		lecoder/dr	river	4M
	Ans.	Note: Any one ty 1. BCD to 7 segret bit BCD input an	nent de	ecoder	is a c	ombina	tional	circui	-		Explana ion 1M
		2. In order to prothe correct comb		_						play	
		3. A standard connections, one common termina	from	each	LED	segm	ent &	one	that acts		
		4. Therefore the	re are 2	2 types	of dis	splay					
		1. Common Ano	de Dis	play							
		2. Common Cath	ode D	isplay							
		Common Anode	Disnl	av·							
		BCD Nout (LSB) O VCC B (7447) (LSB) A (7447) FOR DOLLING Should] b					Circuit liagram 2M
		Truth Table		10		,					
İ		fox	Seven	Segman	nt dec	oder us	ing ro		anode		
		BGD Inputs D C B A a 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H (ode	0 1 0 0 1 0 0 1 0 0 1	-0-0-0-d	F 0 1 1 0 0 0 1 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Signary Charles and Charles an		Truth Table 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques Subject Code: 17333

e) Ans.

Explain different triggering methods used in Flip Flops.

There are four types of pulse-triggering methods:

1.Positive (High) Level Triggering: When a flip flop is required to respond at its HIGH state a HIGH level triggering method is used. It is mainly identified from the straight lead from the clock input. Take a look at the symbolic representation shown below.

4M

2. Negative (Low) Level Triggering: When a flip flop is required to respond at its LOW state, a LOW level triggering method is used. It is mainly identified from the clock input lead along with a low state indicator bubble. Take a look at the symbolic representation shown below.

3. Positive Edge Triggering: When a flip flop is required to respond at a LOW to HIGH transition state, POSITIVE edge triggering method is used. It is mainly identified from the clock input lead along with a triangle. Take a look at the symbolic representation shown below.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	Explanation:	Explana tion 2M
	DAC= Digital to Analog converter	
	EOC= End of conversion	
	SAR =Successive approximation register	
	S/H= Sample and hold circuit	
	Vin= input voltage	
	Vref= reference voltage	
	The successive approximation Analog to Digital converter circuit typically consisting of four sub circuits-	
	 A sample and hold circuit to acquire the input voltage Vin. An analog voltage comparator that compares Vin to the output of internal DAC and outputs the result of comparison to successive approximation register(SAR). SAR sub circuits designed to supply an approximate digital code of Vin to the internal DAC. An internal reference DAC that supplies the comparator with an analog, voltage, equivalent, of digital code, output of SAR for 	
	analog voltage equivalent of digital code output of SAR for comparison with Vin.	
	The successive approximation register is initialized so that most significant bit (MSB) is equal to digital 1. This code is fed into DAC which the supplies the analog equivalent of this digital code Vref/2 into the comparator circuit for the comparison with sampled input voltage. If this analog voltage exceeds Vin the comparator causes the SAR to reset the bit, otherwise a bit is left as 1. Then the next bit is set to 1 and the same test is done continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by DAC at end of the conversion (EOC).	
c)	Describe working of RS Flip Flop using NAND gates only. Note: Short explanation of truth table shall be considered	4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

Diagram

2M

Ans.

This circuit will operate as an SR flip-flop only for the positive clock edge but there is no change in output if clock = 0 or even for the negative going clock edge.

Operation:

Case I : S = X, R = X, clock = 0

- Since clock = 0, the outputs of NAND gates 3 and 4 will be forced to be 1 irrespective of the values of S and R. That means R'= S' = 1. These are the inputs of the SR latch.
- Hence the outputs of basic SR/F/F i.e. Q and Q will not change. Thus if clock = 0, then there is no change in the output of the clocked SR flip-flop.

Case II : S = X, R = X, clock = 1 (High level)

• As this flip flop does respond not respond to levels applied at the clock input, the outputs Q and Q will not change. So, Q n+1 = Qn

Case III : S = R = 0 : No change

- If S=R=0 then outputs of NAND gate 3 and 4 are forced to become 1.
- Hence R' and S' both will be equal to 1. Since R' and S' are the inputs of the basic S R flip-flop using NAND gates. There will be no change in the state of outputs.

Case IV : S = 1, R = 0, clock = \uparrow

• Now S=0, R=1 and a positive going edge is applied to the clock input.

Explana tion 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: Digital Techniques

Subject Code:

17333

- Output of NAND 3 i.e. R' = 0 and output of NAND 4 i.e. S' = 1.
- Hence output of SR flip-flop is Q n+1 = and Q n+1 = 0.
- This is the reset condition.

Case V : S = 1, R = 0, clock =

- Now S=0, R=1 and a positive edge is applied to the clock input.
- Since S=0, output of NAND -3 i.e. R'=1. And as R'=1 and clock = 1 the output of NAND-4 i.e. S' = 0. Hence this is the reset condition.

Case VI : S = 1, R = 1, clock \clubsuit

- As S=1, R=1 and clock = 1, the outputs of NAND gates 3 and 4 both are 0 i.e. S' = R' = 0.
- Hence the "Race Around" condition will occur in the basic SR flip-flop.
- The symbol of positive edge triggered SR flip flop is as shown in figure and the truth table is also shown in figure.

Truth table of a positive edge triggered SR flip flop Inputs Outputs Remark Q_{n+1} CLK S R $\overline{\bar{Q}}_{n+1}$ Q_n × No change \bar{Q}_n (NC) Q_n No change \bar{Q}_n (NC) 1 Q_n $\bar{\mathbb{Q}}_n$ No change (NC) 0 0 Q_n No change Q. (NC) Reset Race Race Avoid = Negative edge of clock,

Positive edge of clock S Inputs ->CLK Outputs

Symbol of positive

• Note that for clock input to be at negative or positive levels as the edge triggered flip flop does not respond. Similarly it does not respond to the negative edge of the clock.

R

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

y	tuai rechinques	
	1. The flip-flop will respond only to the positive edge of clock.	
	2. With positive edge of the clock, the SR flip flop behaves in the following way:	
	$S = R = 0$ \rightarrow No change in output	
	$S = 0, R = 1$ \rightarrow $Q_{n+1} = 0, \overline{Q}_{n+1} = 1$ Reset condition $S = 1, R = 0$ \rightarrow $Q_{n+1} = 1, \overline{Q}_{n+1} = 0$ Set condition	
	$S = 1, R = 0$ \rightarrow $Q_{n+1} = 1, \overline{Q}_{n+1} = 0$ Set condition $S = R = 1$ \rightarrow Race condition.	
d)	Explain the techniques used in elimination of Race-around	4M
Ans.	condition. Race-around condition is eliminated by: 1. Design the clock (enable) with time less than toggling time (but this method is not economical) 2. Use edge triggering. 3. Use Master slave JK flip-flop	Each conditio n 2M
	Use edge triggering: If the Clock On or High time is less than the propagation delay of the flip flop then racing can be avoided. This is done by using edge triggering rather than level triggering.	
	Use Master slave JK flip-flop: A master slave JK flip flops is a cascade of two JK flip-flops, with feedback from the output of the second to the inputs of the first. Direct clock pulses are applied to the first flip flop and clock pulses are inverted before these are applied to the second flip flop.	
	At the same time, the second flip-flop is inhibited. Whenclk=0, the second flip flop is enabled and the first flip-flop is inhibited. Therefore the outputs Q and \overline{Q} follow the output Qmand \overline{Q}_m .	
	Since the second flip flop simply follows the first one, it is referred to as the slave and the first one as the master. Hence the configuration is referred as master-slave (M-S) flip flop.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	f)	What is the need of data converters? List specifications of DAC.	4M				
	Ans.	Need of data converters:					
		It is often necessary that before processing the analog data, by a digital system, it should be changed to digital form as noise may get added hence difficult to process, store or transmit. Similarly, after processing the data, it may be desirable that the final result obtained in digital form be converted back to the analog form therefore data converters are needed.					
		Specifications of DAC: Following are the specifications of DAC 1. Resolution 2. Linearity 3. Accuracy 4. Settling Time 5. Temperature Sensitivity 6. Long term drift 7. Supply Rejection	Any four specifica tions 1/2 M each				
		8. Speed					
5.	a) Ans	Attempt any four: Convert the following: i) $(366.54)_8 \rightarrow (?)_{10}$ and ii) $(2015.32)_{10} \rightarrow (?)_{16}$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	16 4M Each Conversi on 2M				
		:. (e15.32) = (70F.51=) H					

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques Subject Code: 17333

b) Draw the block diagram of sequential logic and state the importance of clock signal in it.

4M

Diagram

2M

Ans.

Sequential circuit

<u>Clock:</u> A clock signal is a particular type of signal that oscillates between a high and a low state and is utilized to co-ordinate actions of the sequential circuits. It is produced by clock generator. The time required to complete one cycle is called as "clock period" or "clock cycle".

Importance:

- Most integrated circuits (ICs) of sufficient complexity use a clock signal in order to synchronize different parts of the circuit, cycling at a rate slower than the worst-case internal propagation delays.
- nce 2M

Importa

- In some cases, more than one clock cycle is required to perform a predictable action.
- A clock signal might also be gated, that is, combined with a controlling signal that enables or disables the clock signal for a certain part of a circuit. This technique is often used to save power by effectively shutting down portions of a digital circuit when they are not in use, but comes at a cost of increased complexity in timing analysis.
- It is also used to open and close digital paths, allow or stop a process and in general provide timing for the circuit.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

		43.5
c)	Simplify the following and realize it. $Y = A + \overline{ABC} + \overline{ABC} + ABC + \overline{AB}$	4M
Ans.	$Y = A + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{AB}$ $Y = A + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{AB}$	Simplify
7 11130		3M
	$Y = A + \overline{B}C + \overline{A}\overline{B} + ABC$	
	$Y = A + \overline{B} + C(\overline{B} + AB)$	
	$Y = A + \overline{B} + C(\overline{B} + A)$	
	$Y = A + \overline{B} + \overline{B}C + AC$	
	$Y = A(1+C) + \overline{B}(1+C)$	
	$Y = A + \overline{B}$	
	S A	
	Ā	
	TA.B	
	= A+B	D1!
	B = A+B	Realize 1M
		11/2
d)	Draw the circuit of ring counter and describe with timing	4M
	diagram.	<i>a</i>
Ans.	The output of FF-3 is connected back to FF-0 input. This is a special type of shift register. Initially a low clear pulse is applied to all flip-	Circuit
	flops. Hence all flip-flops except FF-0 are cleared but FF-0 is preset	Diagram 2M
	hence the corresponding outputs are $Q3 - Q0 = 0001$.	2171
	L PR	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	FF-0 FF-1 FF-2 FF-3	
	CLR CLR CLR	
	™ CIK	
	1 CLEAR	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques Subject Code: 17333

<u>2 Bit comparator:</u> The first number A is designated as A = A1A0 and the second number is designated as B = B1B0. This comparator produces three outputs as G (G = 1 if A > B), E (E = 1, if A = B) and E = B1B0.

Truth Table 2M

	Inputs				Outputs	
$\mathbf{A_1}$	\mathbf{A}_0	B ₁	\mathbf{B}_0	A>B	A=B	A <b< td=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	f)	Compare Synchronous and Asynchronous counter (any 4 points).	4M			
	Ans.	Sr. Asynchronous counter 1. In this type of counter the flip flops are connected in such a way that output of first flip flop drives the clock for the next flip flop. Synchronous Counter In this type of counter there is no connection between the output of first flip flop and clock input of next flip flop.	Any four points 1M each			
		 All the flip flops are not clocked simultaneously. Logic circuit is very simple even for more number of states. Main drawback of these counters is that their low speed as the clock is propagated through number of flip flops before it reaches All the flip flops are simultaneously clocked. Design involves complex logic circuit as number of states increases. As clock is simultaneously given to all flip flops there is no problem of propagation delay. Hence they are high speed counters and are 				
6.		last flip flop. preferred when number of flip flops increases in the given design. Attempt any two:	16			
	a)	i) Convert the following SOP equation into std. SOP equation. $V = AB + \overline{A}B + A\overline{B}\overline{C}$	2M Correct			
	Ans. $Y = AB + \overline{AB} + A\overline{BC}$ $Y = AB + \overline{AB} + A\overline{BC}$ $Y = AB(C + \overline{C}) + \overline{AB}(C + \overline{C}) + A\overline{BC}$ $Y = ABC + AB\overline{C} + \overline{ABC} + A\overline{BC}$					
		ii) List any four applications of multiplexer and implement the following logic expression using 16 : 1 Mux. $Y = \sum m(0, 3, 5, 6, 7, 10, 13)$	6M			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Ans.	Ans. Applications of Multiplexer IC's: 1. It is used as a data selector to select one out of many data inputs. 2. It is used for simplification of logic design. 3. In the data acquisition system. 4. In designing the combinational circuit. 5. In the DAC. 6. To minimize the number of connections.				
	logic 1 logic 0 2 3 4 5 6 7 8 MAX 10 11 12 13 14 15	Impleme ntation 4M			
b) Ans.	 i) List two applications of flip flops. It can be used as memory element. It can be used to eliminate key debounce. It is used as a basic building block in sequential circuits such as counters and registers. It can be used as delay element. 	2M Any two applicati ons 1M each			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

	,			thod to determine	2M		
Ans.	the no. of flip flops for a mod-52 counter. The total number of counts or stable states a counter can indicate is						
7 11130	called as Modulus of counter. It is used to describe the count						
	capability of co		it is asea to	describe the count	of counter		
	cupuointy of co	· differs.			definitio		
	For mod 52 co	unter:			n 1M		
			ber of flips flo	ops are related by	No of		
	formula: $2^n \ge r$		r .		flip flops		
		f states and $m = no$	of flips flops		determin		
	For 52 states (or importopo.		ation		
	number of flip				<i>1M</i>		
b)			le of negative	edge triggered D-	4M		
~)		ositive edge trigge	_	0 00			
Ans.		triggered D flip flo					
	Symbol	88 1	Truth Table	9	Each		
	·				symbol		
	D	Q			with		
			Input D _n	Output Q _{n+1}	truth		
			0	0	table		
	Clock	 	1	1	2M		
	Positive edge t Symbol	riggered JK flip fl	op:				
	J O J-K OQ						
		Flip-flo					
		Clk •					
		К 🕳	₽Q				
	Truth Table						
		Inputs Out	puts				
		J K CLK Q	Q Comments				
		0 0 ↑ Q ₀	Q No change				
		0 1 † 0	1 RESET				
		1 0 + 1	0 SET				
		1 1 † Q	Q ₀ Toggle				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

c)	i) List any four specifications of DAC.	2M
Ans.	Following are the specifications of DAC	Any
	1. Resolution	four
	2. Linearity	specifica
	3. Accuracy	tions
	4. Settling Time	½ M
	5. Temperature Sensitivity	each
c)	ii) Draw neat block diagram of RAMP ADC and explain its	6M
	working.	0111
Ans.	This method of A/D conversion uses a binary counter, to count a	Block
Alls.	continuous train of pulses. The pulses are produced from a clock.	diagram
		3M
	They pass through a gate, which is normally closed. It opens only when a start signal is applied to initiate a linear ramp. The gate	JIVI
	remains open till the linear ramp voltage reaches a value equal to the	
		TI 7 1 -:
	input voltage to be measured. The counter thus records a number of	Working
	clock pulses which is proportional to the input voltage. This method	<i>3M</i>
	is also called <u>counter method</u> .	
	The fig. shows a schematic diagram of a staircase ramp or counter	
	type A/D converter. This method uses a clock source, a counter and a	
	D/A converter.	
	RESET	
	RESET	
	CONTROLLOGIC CLOCK	
	BINARY	
	MONO S Y AND COUNTER DISPLAY	
	FF GATE	
	\mathbb{R}	
	VOLTAGE	
	COMPARATOR	
	CONVERTER	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques Subject Code: 17333

An analog input is applied to one input of an OP AMP which is used as a voltage comparator. A start or convert pulse is applied to the set input of the flip-flop through a monostable multivibrator (i.e. control logic) and also to the reset input of the binary counter. This pulse resets the binary counter and makes it ready for counting. As the counter resets, output of the D/A converter reduces to zero and thus with positive analog input to the voltage comparator, the output of the comparator goes low, which makes R=0. The start pulse also triggers the monostable multivibrator, which introduces the desired delay in the action of the other circuits. Thus the output of the monostable multivibrator goes high. This makes S=1, while R was already made O.

The RS flip-flop sets and the Y output goes high. The AND gate is enabled & the counter starts the counting the clock pulses. The output of the counter is fed to n D/A converter which produces an analog output in response to the digital signal as its input. This binary output starts increasing continuously with time. The output of the D/A converter also starts increasing in steps. The analog output is a staircase signal as shown in fig.

This D/A output is fed to the reference voltage for the comparator. The staircase signal (i.e. digital output) is compared by the comparator with the analog voltage. So long as the input signal, Vs is greater than the digital output the gate remains enabled and clock pulses are counted by the counter, thus continuously raising the digital output. But as soon as the staircase digital output exceeds the given analog input, the output of the comparator changes from a low to a high level. This makes R=1, while S is at 0. Thus, the flip-flop resets and Y output goes low. Hence the AND gate is disabled and no clock pulses can now reach the counter. This stops the counting and the binary output of the counter represents the final digital output.

magnitudes.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

The staircase ramp or counter method is simple and least expensive.
It is faster as compared to dual slope method. It needs longer time for conversion because of the following of the reasons

(a) The counter starts after it is reset to zero,

(b) The rate of clock pulses also decides the conversion time, and

(c) Conversion time is different for analog voltages of different