MODEL ANSWER

SUMMER - 2018 EXAMINATION

Subject: Digital Techniques

Subject Code:
17333

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	$\begin{gathered} \text { A) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any six: State any two advantages and disadvantages of digital circuits. Advantages of digital circuits: 1. Digital Electronic circuits are relatively easy to design. 2. It has higher accuracy, programmability. 3. Transmitted signals are not degraded over long distances. 4. Digital Signals can be stored easily. 5. Digital Electronics is comparatively more immune to 'error' and 'noise'. But in case of high speed designs a small noise can induce error in signal. 6. More Digital Circuits can be fabricated on integrated chips; this helps us obtain complex systems in smaller size. Disadvantages of digital circuits: 1. Digital Circuits operate only with digital signals hence, encoders and decoders are required for the process. This increases the cost of equipment. 2. Energy consumption in digital circuit is more than analog circuit	12 2M Any two advanta ges and disadvan tages $1 / 2$ M each

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

		- The analog output voltage of D to A converter should not change due to changes in temperature. - But practically the output is a function of temperature. It is so because the resistance values and OPAMP parameters change with changes in temperature. 5. Settling time: - The time required to settle the analog output within the final value, after the change in digital input is called as settling time. - The settling time should be as short as possible. 6. Long term drift - Long term drift are mainly due to resistor and semiconductor aging and can affect all the characteristics. - Characteristics mainly affected are linearity, speed etc. 7. Supply rejection - Supply rejection indicates the ability of DAC to maintain scale, linearity and other important characteristics when the supply voltage is varied. - Supply rejection is usually specified as percentage of full scale change at or near full scale voltage at $25^{\circ} \mathrm{e}$ 8. Speed: - It is defined as the time needed to perform a conversion from digital to analog. It is also defined as the number of conversions that can be performed per second							
1.	$\begin{gathered} \hline \text { B) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any two: State and prove DeMorgan's theorem. Theorem1: It state that the, complement of a sum is equal to product of its complements							8 4M Theore m 1M each Prove 1M each
			A	B	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$	
			0	0	1	1	1	1	
			0	1	0	1	0	0	
		$\overline{A+B}=\bar{A} \cdot \bar{B}$	1	0	0	0	1	0	
			1	1	0	0	0	0	

MODEL ANSWER
SUMMER - 2018 EXAMINATION

Subject: Digital Techniques

Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

2.	a) Ans.	Attempt any four of the following: Simplify the following Boolean expression i) $\mathbf{Y}=\mathbf{A B}+\mathbf{A B C}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}$ ii) $\mathbf{Y}=(\mathbf{A}+\mathbf{B})(\mathbf{A}+\overline{\mathbf{B}})(\overline{\mathbf{A}}+\mathbf{B})$ i) $\mathbf{Y}=\mathbf{A B}+\mathbf{A B C}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}$ $\begin{array}{ll} =\mathrm{AB}+\mathrm{ABC}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A} B} & \\ =\mathrm{AB}+\mathrm{AC}(\mathrm{~B}+\overline{\mathrm{B}})+\overline{\mathrm{A}} \mathrm{~B} & \\ =\mathrm{AB}+\mathrm{AC}+\overline{\mathrm{A} B} & {[\mathrm{~B}+\overline{\mathrm{B}}=1]} \\ =\mathrm{B}[\mathrm{~A}+\overline{\mathrm{A}}]+\mathrm{AC} & {[\mathrm{~A}+\overline{\mathrm{A}}=1]} \\ =\mathrm{B}+\mathrm{AC} & \end{array}$ $\text { ii) } \begin{array}{rlr} \mathbf{Y} & =(\mathbf{A}+\mathbf{B})(\mathbf{A}+\overline{\mathbf{B}})(\overline{\mathbf{A}}+\mathbf{B}) & \\ & =(\mathrm{A} \cdot \mathrm{~A}+\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}+\mathrm{B} \overline{\mathrm{~B}}) \cdot(\overline{\mathrm{A}}+\mathrm{B}) & \\ & =(\mathrm{A}+\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}+0) \cdot(\overline{\mathrm{A}}+\mathrm{B}) & \\ & =[\mathrm{A}(1+\mathrm{B})+\mathrm{A} \overline{\mathrm{~B}}] \cdot(\overline{\mathrm{A}}+\mathrm{B}) & 1+\mathrm{B}=1 \\ & =[\mathrm{A}+\mathrm{A} \overline{\mathrm{~B}}] \cdot[\overline{\mathrm{A}}+\mathrm{B}] & \\ & =\mathrm{A}(1+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{A}}+\mathrm{B}) & 1+\overline{\mathrm{B}}=1 \\ & =\mathrm{A} \cdot(\overline{\mathrm{~A}}+\mathrm{B}) & \end{array}$	16 4M $2 M$ $2 M$

MODEL ANSWER
SUMMER - 2018 EXAMINATION

Subject: Digital Techniques

Subject Code: 17333

	$\begin{array}{rlr} & =\mathrm{A} \cdot \overline{\mathrm{~A}}+\mathrm{AB} & \mathrm{~A} \overline{\mathrm{~A}}=0 \\ \mathbf{Y} & =\mathbf{A B} & \end{array}$	
b) Ans.	Subtract the given number using 2's complement i) $(\mathbf{1 1 0 1 1})_{2}-(11100)$ ii) $(\mathbf{1 0 1 0})_{2}-(101)_{2}$ i) $(\mathbf{1 1 0 1 1})_{2}-(\mathbf{1 1 1 0 0})$: Step 1: 2's compliment of $2^{\text {nd }}$ no, Step 2: Add first no of the 2 's compliment of $2^{\text {nd }}$ no $\begin{array}{rrrrrl} 1 & 1 & 0 & 1 & 1 \\ + & 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 \end{array} \longrightarrow \text { No carry }$ Take 2's compliment of Answer 11111 $\begin{array}{llllll}\begin{array}{lll}0 & 0 & 0\end{array} & 0 & 0 \\ + & & & 1\end{array}$ $(11011)_{2}-(11100):-(00001)_{2}$ ii) $(\mathbf{1 0 1 0})_{2}-(101)_{2}$: Make $2^{\text {nd }}$ no as 04 digits by adding ' 0 ' to left side $\longrightarrow 0101$ Step 1: 2's compliment of $2^{\text {nd }}$ no	4 M $2 M$

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

	K-map for difference $\text { Difference }=\bar{A} B+A \bar{B}$ $=A \oplus B$ K-map for borrow Borrow $=\bar{A} B$ Logic implementation of half subtractor: Logic implementation using basic gates:	1M for Borrow Any one circuit 1M
d) Ans.	Simplify the following equation using K-map and realize it using logic gates $Y=\Sigma \mathrm{m}(1,5,7,9,11,13,15)$.	4M

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

	$A B$ $\bar{A} \bar{B}$ $\bar{A} B$ $A B$ A A A $A$$f=\bar{A} \bar{B}+C D$	$2 M$
f) Ans.	Draw block diagram of ALU and describe any four function performed by ALU. Functions performed by ALU:	4M Block Diagram 2M

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

			Any four function $s 2 M$
4.	a) Ans.	Attempt any four of the following: Describe working of JK Flip-Flop and write its truth table. (Note: Diagram of J K flip flop optional) Truth Table	16 4M Truth Table 2M

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

	$f=\bar{A} \bar{B} D+A B \bar{C}+B C D+A \bar{B} \bar{D}$	Circuit diagram 2M
c) Ans.	Explain the working of EPROM. (Note: Any other answer shall be considered) An EPROM, or erasable programmable read-only memory, is a type of memory chip that retains its data when its power supply is switched off. Computer memory that can retrieve stored data after a power supply has been turned off and back on is called non-volatile. It is an array of floating-gate transistors individually programmed by an electronic device that supplies higher voltages than those normally used in digital circuits. Once programmed, an EPROM can be erased by exposing it to strong ultraviolet light source . Each storage location of an EPROM consists of a single field-effect transistor. Each field-effect transistor consists of a channel in the	4M Explana tion 4M

MODEL ANSWER

SUMMER - 2018 EXAMINATION

| | semiconductor body of the device. Source and drain contacts are
 made to regions at the end of the channel. An insulating layer of
 oxide is grown over the channel, then a conductive (silicon or
 aluminum) gate electrode is deposited, and a further thick layer of
 oxide is deposited over the gate electrode. The floating-gate electrode
 has no connections to other parts of the integrated circuit and is
 completely insulated by the surrounding layers of oxide. A control
 gate electrode is deposited and further oxide covers it. ${ }^{\text {[2] }}$ |
| :---: | :---: | :--- |
| To retrieve data from the EPROM, the address represented by the | |
| values at the address pins of the EPROM is decoded and used to | |
| connect one word (usually an 8-bit) of storage to the output buffer | |
| amplifiers. Each bit of the word is a 1 or 0, depending on the storage | |
| transistor being switched on or off, conducting or non-conducting. | |
| The switching state of the field-effect transistor is controlled by the | |
| voltage on the control gate of the transistor. Presence of a voltage on | |
| this gate creates a conductive channel in the transistor, switching it | |
| on. In effect, the stored charge on the floating gate allows the | |
| threshold voltage of the transistor to be programmed. | |
| The programming process is not electrically reversible. To erase the | |
| data stored in the array of transistors, ultraviolet light is directed onto | |
| the die. Photons of the UV light cause ionization within the silicon | |
| oxide, which allow the stored charge on the floating gate to dissipate. | |
| Since the whole memory array is exposed, all the memory is erased at | |
| the same time. The process takes several minutes for UV lamps. | |$|$

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

		Fig: Circuit diagram of MOD 6 asynchronous counter	
5.	a) Ans.	Attempt any four of the following: How many flip-flops are required to construct the following modulus counters? i) 27 ii) 83 iii) 95 iv) 9 The Number of flip flops are calculated from the formula: $2^{n} \geq m$ Where $\mathrm{n}=$ no of flip flops and m is the number of states. i) $27=5$ ii) $83=7$ iii) $95=7$ iv) $9=4$	16 $\mathbf{4 M}$ 1M each
	b) Ans.	Draw logic diagram of S-R Flip-Flop with negative edge triggering and write its truth table.	$4 \mathrm{M}$ Diagram 2M

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

	The 74LS47 display decoder receives the BCD code and generates the necessary signals to activate the appropriate LED segments responsible for displaying the number of pulses applied. As the 74LS47 decoder is designed for driving a common-anode display, a LOW (logic-0) output will illuminate an LED segment while a HIGH (logic-1) output will turn it "OFF". For normal operation, the LT (Lamp test), BI/RBO (Blanking Input/Ripple Blanking Output) and RBI (Ripple Blanking Input) must all be open or connected to logic-1 (HIGH). The functions of the pins are: - LT (Lamp test): This is used to check the segments of LED. If it is connected to logic 0 all the segments of the display connected to the decoder will be ON. For normal decoding this terminal is to be connected to logic 1 level.	Functio 2M		
- RBI (Ripple Blanking Input): It is to be connected to logic 1 for				
normal decoding operations. If it is connected to logic 0 the				
segment outputs will generate data for normal 7 segment decoding				
of all BCD inputs except zero. Whenever the BCD input				
correspond to zero, the 7 segment display switches off. This is				
used for blanking out leading zeros in multi digit displays.			\quad	- BI (Blanking input): If it is connected to 0 level, the display is
:---				
switched off irrespective of BCD inputs. That is used for				
conserving power in multiplexed displays.				
- RBO (Ripple Blanking output): This output which is normally at				
logic 1 goes to logic 0 during the zero blanking interval. This is				
used for cascading purpose and is connected to RBI of succeeding				
stages.				

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

SUMMER - 2018 EXAMINATION

		The Johnson counter designed with D flip flop is shown below. It has four stages i.e. four flip flops connected in series type or cascaded. Initially zero / Null is fed to the Johnson counter and on applying the clock signal, outputs will change to " 1000 ", "1100", "1110", "1111", " $0111 ", " 0011 ", " 0001 ", " 0000 "$ in a sequence and the sequence will repeat for next clock signal. The Johnson counter produces a special pattern by passing four 0's and then four 1's and thus it produces a special pattern by counting up down.	Timing diagram 1M Explana tion 1M
6.	a) Ans.	Attempt any four of the following: Explain successive approximation method of ADC with neat diagram.	$\begin{gathered} 16 \\ 4 M \end{gathered}$

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

		type A/D converter. This method uses a clock source, a counter and a D/A converter. An analog input is applied to one input of an OP AMP which is used as a voltage comparator. A start or convert pulse is applied to the set input of the flip-flop through a mono stable multivibrator (i.e. control logic) and also to the reset input of the binary counter. This pulse resets the binary counter and makes it ready for counting. As the counter resets, output of the D/A converter reduces to zero and thus with positive analog input to the voltage comparator, the output of the comparator goes low, which makes $\mathrm{R}=0$. The start pulse also triggers the mono stable multivibrator, which introduces the desired delay in the action of the other circuits. Thus the output of the mono stable multivibrator goes high. This makes $S=1$, while R was already made 0 . The RS flip-flop sets and the Y output goes high. The AND gate is enabled \& the counter starts the counting the clock pulses. The output of the counter is fed to n D/A converter which produces an analog output in response to the digital signal as its input. This binary output starts increasing continuously with time. The output of the D/A converter also starts increasing in steps. The analog output is a staircase signal as shown in fig. This D/A output is fed to the reference voltage for the comparator. The staircase signal (i.e. digital output) is compared by the comparator with the analog voltage. So long as the input signal, Vs is greater than the digital output the gate remains enabled and clock pulses are counted by the counter, thus continuously raising the digital output. But as soon as the staircase digital output exceeds the given analog input, the output of the comparator changes from a low to a high level. This makes $\mathrm{R}=1$, while S is at 0 . Thus, the flip-flop resets and Y output goes low. Hence the AND gate is disabled and no clock pulses can now reach the counter. This stops the counting and the binary output of the counter represents the final digital output. The staircase ramp or counter method is simple and least expensive. It is faster as compared to dual slope method. It needs longer time for conversion because of the following of the reasons (a) The counter starts after it is reset to zero, (b) The rate of clock pulses also decides the conversion time, and (c) Conversion time is different for analog voltages of different magnitudes.	

MODEL ANSWER
SUMMER - 2018 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

