MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Digital Techniques

Subject Code: 17333

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

	Applications	Amplifiers, Operational Amplifiers, telephones	Logic gates, microcontrollers, Computers	
$\begin{gathered} \text { iii) } \\ \text { Ans. } \end{gathered}$	State any two Boolean laws with expression. Boolean laws: $\begin{aligned} & A+1=1 \\ & A+0=A \end{aligned}$ A. $1=\mathrm{A}$ $\text { A. } 0=0$ $\mathrm{A}+\mathrm{A}=\mathrm{A}$ $\mathrm{A} \cdot \mathrm{~A}=\mathrm{A}$ $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ $\mathrm{A} \cdot \mathrm{~B}=\mathrm{B} \cdot \mathrm{~A}$ $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ (A B) $\mathrm{C}=\mathrm{A}(\mathrm{B} \mathrm{C})$ $\begin{aligned} & A(B+C)=A B+A C \\ & A+(B C)=(A+B)(A+C) \end{aligned}$			2M Any 2 1M each
iv) Ans.	$\begin{array}{r} \hline \text { Perform "BCI } \\ 237 \\ + \\ 493 \\ + \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$			$\begin{gathered} 2 \mathrm{M} \\ \\ \text { Correct } \\ 2 M \end{gathered}$
$\begin{gathered} \mathbf{v}) \\ \text { Ans. } \end{gathered}$	State the diffe Half adder is a A full adder is	rence between Half and circuit that adds 2 binary a circuit the adds 3 bits (2	adder. along with carry)	2M Each 1M

MODEL ANSWER

SUMMER - 2017 EXAMINATION

vi) Ans.	Write any four applications of counter. Applications of counters: 1. Frequency counters 2. Digital clocks 3. Analog to digital convertors. 4. With some changes in their design, counters can be used as frequency divider circuits. The frequency divider circuit is that which divides the input frequency exactly by ' 2 '. 5. In time measurement. That means calculating time in timers such as electronic devices like ovens and washing machines. 6. We can design digital triangular wave generator by using counters.	$\begin{aligned} & \text { 2M } \\ & \text { Any } \\ & \text { four } \\ & 1 / 2 M \\ & \text { each } \end{aligned}$
vii) Ans.	State application of MUX and De-MUX. Application of MUX: 1. Implementing multi output combinational logic circuit 2. Multiplexer allow the process of transmitting different type of data such as audio, video at the same time using a single transmission line. 3. In telephone network, multiple audio signals are integrated on a single line for transmission with the help of multiplexers. 5. Multiplexers are used to implement huge amount of memory into the computer, at the same time reduces the number of copper lines required to connect the memory to other parts of the computer circuit. 6. Multiplexer can be used for the transmission of data signals from the computer system of a satellite or spacecraft to the ground system using the GPS (Global Positioning System) satellites. Application of De-MUX: 1. Decoder 2. Demultiplexer is used to connect a single source to multiple destinations. 3. In an ALU circuit, the output of ALU can be stored in multiple registers or storage units with the help of demultiplexer. 4. Serial data from the incoming serial data stream is given as data input to the demultiplexer at the regular intervals.	2M Any two applica tion 1M each
viii) Ans.	Draw symbol of J-K flip-flop and write its truth table. Symbol of flip-flop:	2M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

		Truth Table:	$\begin{aligned} & 1 M \\ & J_{-} K \\ & \text { flip- } \\ & \text { flop } \end{aligned}$ Truth Table 1M
1.	(B) i) Ans.	Attempt any two: List types of digital to analog converters and state specifications of ADC (any four). Types of Digital to Analog converters and specifications 1. Weighted resistor D to A converter 2. $R-2 R D$ to A converter Specifications of ADC: 1. Resolution 2. Accuracy 3. Conversion time 4. Linearity 5. Analog input voltage 6. Format of digital output	$4 \times 2=8$ 4M Types 2M Any four specific ations $1 / 2 \boldsymbol{M}$ each
	ii) Ans.	Describe classification of memories. Classification of Memories:	4M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Implement the following logic expression using 16:1 MUX Y = \(\sum\) \(\mathrm{m}(0,3,5,6,7,10,13)\). \\
Logic 1
\end{tabular} \& \(4 M\)

$4 M$

\hline | d) |
| :--- |
| Ans. | \& | Draw block diagram of decimal to BCD encoder and write its truth table. |
| :--- |
| Block Diagram of Decimal to BCD encoder | \& | 4M |
| :--- |
| Diagra |
| m 2M |

\hline
\end{tabular}

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

		used for setting resetting the bits at the output of the programmer/ This output is converted into equivalent analog voltage from which the offset voltage is subtracted and then applied to the inverting input terminal of the comparator. It should be noted that the offset weight was added on the side of the unknown weight, and therefore, it is to be subtracted from the known weight side for getting the equivalent effect. The outputs of the programmer will change only when the clock pulse is present. To start conversion, the programmer sets the MSB to 1 and all other bits to 0 . This is converted into analog signal by the D/A converter and the comparator compares it with the analog input voltage. If the analog input voltage $V_{a} \geq V_{i}$, the output voltage V_{O} of the comparator is HIGH which sets the next bit also. On the other hand, if $V_{a}<V_{i}$, then V_{O} is LOW which resets the MSB and sets the next bit. Thus, a 1 is tried in each bit of the D/A converter until the binary equivalent of the analog input voltage is obtained. Successive-approximation A/D converter.	Explan ation 2M Diagra m 2M
3.	a) Ans.	Attempt any four: Perform binary subtraction using 2's complements of following: i) $(63)_{10}-(20)_{10}$ ii) $(\mathbf{3 4})_{10}-(48)_{10}=$? i) $(63)_{10}-(20)_{10}$:	$\begin{gathered} 4 \times 4=16 \\ 4 M \end{gathered}$

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
f) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
State advantages and disadvantages of (i) Ramp type ADC (ii) Dual slope type ADC. \\
(i) Ramp type ADC: \\
Advantages of Ramp type ADC: \\
1. It is very simple in construction. \\
2. It is easy to design. \\
3. It is last expensive. \\
4. Its speed can be adjusted by adjusting the clock frequency \\
5. It is faster than a dual slope ADC. \\
Disadvantages of Ramp type ADC: \\
1. It is comparatively very slow. \\
2. The conversion time does not remain constant. \\
3. The conversion time can be as long as clock cycle period for high input voltages. \\
4. It needs longer conversion time. \\
(ii) Dual slope type ADC: \\
Advantages of Dual slope type ADC:: \\
1. It is simple and relatively inexpensive. \\
2. It has high conversion accuracy. \\
3. It is more stable and of low cost. \\
4. It is not affected by time, temperature and input voltage. \\
5. It does not require crystal oscillator for stability. \\
6. It is less sensitive to noise. \\
Disadvantages of Dual slope type ADC: \\
1. It has large conversion time as compared to any other ADC. \\
2. It has very low speed of conversion.
\end{tabular} \& 4M

Any
two
advant
ages
and
disadva
ntages
of
Ramp
type
ADC
each
1M
Any
two
advant
ages
and
disadva
ntages
of Dual
slope
type
ADC
each
1M

\hline 4. \& | a) |
| :--- |
| Ans. | \& Attempt any four: Construct 16:1 multiplexer using 4:1 multiplexer. Draw diagram. \& \[

$$
\begin{gathered}
4 \times 4=16 \\
4 M
\end{gathered}
$$
\]

\hline
\end{tabular}

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

Ans. | Draw R-2R ladder digital to analog converter and explain its |
| :--- |
| working. |
| R -2R ladder DAC uses two resistors R \& $2 R$. The input is applied |
| through digitally controlled switches. |
| For example if the digital input is 001 | 4M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2017 EXAMINATION

	The analog output voltage for a given digital input is given by$\begin{aligned} & \begin{aligned} \mathrm{V}_{\text {out }} & =-\left(\left(\mathrm{R}_{\mathrm{F}} / 3 \mathrm{R}\right) \mathrm{V}_{\mathrm{R}} \times \mathrm{b}_{0} / 2^{3}+\mathrm{R}_{\mathrm{F}} / 3 \mathrm{R} \mathrm{~V}_{\mathrm{R}} \times \mathrm{b}_{1} / 2^{2}+\mathrm{R}_{\mathrm{F}} / 3 \mathrm{R} \mathrm{~V}_{\mathrm{R}} \times\right. \\ & =-\left(\mathrm{R}_{\mathrm{F}} / 3 \mathrm{R}\right)\left(\mathrm{V}_{\mathrm{R}} / 2^{3}\right)\left(2^{2} \mathrm{~b}_{2}+2^{1} \mathrm{~b}_{1}+2^{0} \mathrm{~b}_{0}\right) \\ & =-\left(\mathrm{R}_{\mathrm{F}} / 3 \mathrm{R}\right)\left(\mathrm{V}_{\mathrm{R}} / 2^{3}\right)\left(4 \mathrm{~b}_{2}+2 \mathrm{~b}_{1}+\mathrm{b}_{0}\right) \end{aligned} \end{aligned}$					
e) Ans.	Describe following number systems with respect to their base/radix, digits/symbols and its example. (i) Octal number (ii) Hexadecimal number.					4M Each 2M
	Binary	$\begin{aligned} & \hline \text { Base/ } \\ & \text { Radix } \\ & \hline \end{aligned}$	Digits		Example	
	Octal number	8	0, 1, 2, 3		$(3567.25)_{8}$	
	Hexadecimal number	16	$\begin{gathered} 0,1,2,3, \\ 6,7,8,9, \\ \text { B, C, D, E } \end{gathered}$		$(3 \mathrm{FA} 9.56)_{16}$	
$\begin{gathered} \text { f) } \\ \text { Ans. } \end{gathered}$	What is modulus counter? Design MOD-7 counter using IC 7490. Modulus of a counter. Number of states through which the counter passes during its operation. A flip flop has 02 states. Thus the group of ' N ' flip flops will have 2^{n} states. This means it is possible to make a module 2^{n} counter using ' n ' flip-flops. However it is desired to have a module m counter the no. of FF's required is determined by the following equation. $\mathrm{m} \leq 2^{\mathrm{N}}$ N - Minimum value of N which satisfies the equation.					

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

5.	a) Ans.	Attempt any four: Compare CMOS and TTL Logic families.				$\begin{gathered} 4 \times 4=16 \\ 4 M \end{gathered}$
		Sr No.	Parameters	TTL	CMOS	
		1	Basic gates	NAND	NOR or NAND	Any 4 points 1M each
		2	Fan-in	8	10	
		3	Fan-out	10	>50	
		4	Power dissipation per gate	10 mW	0.01 mW	
		5	Noise margin (immunity)	0.4 V good	5 V (excellent)	
		6	Propagation delay	10 ns	70 ns	
		7	Speed-power product	100	0.7	
		8	Clock rate for flip-flop	35 MHz	10 MHz	
		9	Available function	Very large	Large	
		10	Packing Density	Lower	Larger	
		11	Cost	Low	Very low.	
	b) Ans.	Draw and explain working of Hex to Binary encoder with truth table. Hexadecimal to Binary Encoder can be constructed by using two octal to binary encoder IC 74148. The lower 8-bits are applied to inputs of IC-1 where as higher 8 -bits are applied to inputs of IC-2. The enable inputs are so connected that only one IC is enabled at a time. To achieve this EO of the IC-2 is connected to EI of IC-1. The binary outputs of both these ICs are applied as inputs to IC 74157 which is a Quad 2:1 multiplexer. GS output of IC 74148 is connected to select input of 74157. GS o/p will go low when one of its input is active. The low signal at select				$\begin{gathered} \hline 4 \mathrm{M} \\ \\ \text { Explan } \\ \text { ation } \\ 1 M \end{gathered}$

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

	 $\mathrm{S}_{0}-\mathrm{S}_{3}$	Block diagra m 4M
e) Ans.	Draw circuit diagram and explain working principle of dual- slope type ADC. The block diagram of this method is shown in Fig. It has 4 major blocks: an integrator, comparator, a binary counter \& a switch driver.	4M Diagra m 2M

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
f) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Draw proper labeled diagram of parallel in parallel out (4 bit) shift register and explain its working. \\
The four bit binary input A3- A0 is applied to the data inputs D3 to D0 respectively of the four flip flops. \\
As soon as the negative clock edge is applied the input binary bits will be loaded into the flip flops simultaneously. The loaded bits will appear simultaneously at the output side, only one clock pulse is essential to load all the bits.
\end{tabular} \& \begin{tabular}{l}
4M \\
Diagra \\
m 2M \\
Explan \\
ation \\
\(2 M\)
\end{tabular} \\
\hline 6. \& a)

Ans. \& \begin{tabular}{l}
Attempt any two:

Reduce following Boolean expression using laws and theory of Boolean algebra.

i) $\mathrm{A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$.

ii) $\mathrm{Y}=(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\mathrm{B})$.
$$
\begin{aligned}
& \text { 1. } \quad A+B C=(A+B)(A+C) \\
& \begin{aligned}
L H S= & (A+B)(A+C) \\
(A+B) & (A+C)=A(A+C)+B(A+C) \\
& =A \cdot A+A C+A B+A C \\
& =A+A C+A B+B C \\
& =A(1+C+B)+B C \\
& =A+B C=R H S
\end{aligned}
\end{aligned}
$$

 \&

$$
\begin{gathered}
8 \times 2=16 \\
8 M
\end{gathered}
$$

$4 M$
\end{tabular}

\hline
\end{tabular}

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

	$\begin{aligned} & \text { 2. } \quad Y=(A+\bar{B})(\bar{A}+B)(A+B) \\ & =[A(\bar{A}+B)+B(\bar{A}+B)](A+C) \\ & =[A . \bar{A}+A B+\bar{A} B+B \cdot B](A+C) \\ & =[0+A B+\bar{A} B+B](A+C) \\ & =[B(A+\bar{A})+B](A+C) \\ & =(B .1+B)(A+C) \\ & =(B+B)(A+C) \\ & =B(A+C) \end{aligned}$	4M
b) Ans.	i) Implement $1: 16$ demultiplexer using $1: 8$ demultiplexer.	

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333
b) ii) Explain working of full substractor with circuit diagram.

Ans. A full substractor is used for performing multibit substraction where the borrow from the previous bit position is available. This circuit has three inputs An (minuend), Bn (subtrahend) and Bn-1 (borrow from previous stage) and two outputs Difference (Dn) and Borrow (Cn).

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code: 17333

(ISO/IEC - 27001-2005 Certified)
MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Digital Techniques
Subject Code:
17333

