MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17333

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{gathered} \text { Q.N } \\ \text { o. } \end{gathered}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	a) i) Ans.	Attempt any six of the following: Define w.r.t. digital IC's 1) Nosie Immunity 2) Propagation delay. 1) Noise Immunity: The ability of a digital circuit to tolerate noise signals is called as noise immunity of a circuit. 2) Propagation delay: Propagation delay is the average transition delay time for the signal to propagate from input to output when the signals change in value. It is expressed in ns.	12 $2 M$ Noise Immunit y $1 M$ Propaga tion delay $1 M$
	ii) Ans.	State advantages of digital systems (any 4). Advantages of digital systems: - The devices used in digital systems generally operate in one of the two states, known as ON and OFF resulting in a very simple operation. - A large number of ICs are available for performing various operations. These are highly reliable, accurate, small in size and the speed of operation is very high. A number of programmable. ICs are also available. - The effect of fluctuations in the characteristics of the components,	2M Any four advanta ges 1/2M each

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17333

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

		The number of bits accepted at the input can itself be used as the resolution. For example, an 8-bit D/A converter has an 8-bit resolution. 2) Conversion time: Total time required to convert analog input signal into corresponding digital output.	1M
1.	b) i) Ans.	Attempt any two of following: Subtract using 2's complement method 1) $(\mathbf{1 0 1 1 0})_{2}-(10001)_{2}$ 2) $(1101)_{2}-(11010)_{2}$ 1) $(\mathbf{1 0 1 1 0})_{2}-(10001)_{2}$: Step1: obtain 1's complement of $(10001)_{2}$ 1's complement of 10001 is 01110 2's complement is 01110 2 's complement ${ }^{+} \frac{1}{01111}$ Step 2: Add 10110 \& 2's complement obtained in step1 Hence carry is 1 Answer is in positive form. Discarding carry $(\mathbf{1 0 1 1 0})_{2}-(10001)_{2}:(00101)_{2}$ 2) $(1101)_{2}-(11010)_{2}$: Make no. of bits equal 01101-11010 Step 1: Find 2's complement of $(11010)_{2}$ 1 's complement of 11010 is 00101 2's complement is 00101 2 's complement $\frac{+\quad 1}{00110}$ Step 2: Add $(01101)_{2} \& 2$'s complement of (11010) from step 1.	8 $4 M$

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

		Final carry is 0 . Hence answer is in negative form \& in 2's complement form.	
	$\begin{gathered} \text { ii) } \\ \text { Ans. } \end{gathered}$	State and prove Demorgan's theorems. De Morgan's first law: "Complement of the sum of variables is equal to the product of complement of the variables" $\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}$ Proof by perfect Induction method Truth Table: De Morgan'ssecond law: "Complement of the product of variables is equal to the sum of complement of variables" $\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ Truth Table:	$4 M$ $1 M$
	iii)	Convert the following: 1) $(498.25)_{16}=(\quad)_{10}$ 2) $(10110101)_{2}=(\quad)_{16}$ 3) $(\text { B689D })_{16} \quad=(\quad)_{8}$ 4) $(110110111)_{2}=(\quad)_{10}$	4M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

	Ans.	$\begin{aligned} & \text { 1) }(498.25)_{16}=(\quad) 10 \\ & \begin{aligned} & 498.25= 4 \times 16^{2}+9 \times 16^{1}+8 \times 16^{0}+2 \times 16^{-1}+ \\ & 5 \times 10^{-2} \\ & 1024+144+8+0.125+0.0195 \\ &=1176.145 \end{aligned} \end{aligned}$ 2) $(1.0110101)_{2}=C$ >16 $10110101=(135)^{16}$ 3) $(B 689 \quad D)_{16}=C>8$ $\begin{aligned} (B 689 D)_{16} & =10110 \frac{110100010011101}{10} \frac{110}{6} \frac{110}{6} \frac{100010}{4235} \frac{011}{101} \\ & \left(\frac{010}{2}\right. \\ & =(2664235)_{8} \end{aligned}$ $\text { 4) } \begin{aligned} (110110111)_{2} & =() 10 \\ (110110111)_{2} & =1 \times 2^{8}+1 \times 2^{7}+0 \times 2^{6}+1 \times 2^{5} \\ & +1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\ & =439 \end{aligned}$	1M for each bit
2.	a) Ans.	Attempt any four of the following: Derive AND gate and OR gate using NOR gates only.	16 4M $2 M$ $2 M$

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333
b) Simplify the following Boolean expressions using Boolean laws:

4M
i) $\overline{(\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \overline{\mathbf{B}})(\mathbf{A B}+\overline{\mathbf{A} B})}$
ii) $\bar{A} B+A B D+A \bar{B} C \bar{D}+B C$

Ans. i)
i)

$$
\begin{aligned}
& (A \bar{B}+\bar{A} \bar{B})(A B+\bar{A} B) \\
& =(\bar{A} \bar{B}+\bar{A} \bar{B})+(\bar{A} B+\bar{A} B) \\
& =(\overline{A \bar{B}} \cdot \overline{\bar{A} \bar{B}})+C \overline{A B} \cdot \overline{\overline{A B}}) \\
& =(\bar{A}+B) \cdot(A+B)+(\bar{A}+\bar{B})=(A+\bar{B}) \\
& =\sqrt{A}+\bar{A} B+A B+B B+A \hat{/}^{6}+\bar{A} \bar{B}+A \bar{B}+ \\
& =\bar{A} B+A B+B+\bar{A} \bar{B}+A \bar{B}+\bar{B} \\
& =B(\bar{A}+A+1)+\bar{B}(\bar{A}+A+1) \\
& =(B+\bar{B})(\bar{A}+A+1) \\
& =1
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \bar{A} B+A B D+A \bar{B} C \bar{D}+B C \\
& \bar{A} B+A B D+A \bar{B} C \bar{D}+A B C+\bar{A} B C \\
& \bar{A} B+A C(B+\bar{B} \bar{D})+A B D \\
& B(\bar{A}+A D)+A C(B+\bar{D}) \\
& B C \bar{A}+D D+A C(B+\bar{D}) \\
& \bar{A} B+B D+A B C+A C \bar{D} \\
& B C \bar{A}+A C D+B D+A C \bar{D} \\
& B C \bar{A}+C)+B D+A C \bar{D} \\
& Y=\bar{A} B+B C+B D+A C \bar{D}
\end{aligned}
$$

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17333

	OR circuit diagram with universal gates may also be given marks OR	Logical diagram 1M
f) Ans.	Draw block diagram of digital comparator IC 7485 and explain with the help of truth table. Block diagram of digital comparator IC 7485:	4M Block diagram 2M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17333

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333
e)

Explain different triggering methods.
Ans. There are four types of pulse-triggering methods:
1.Positive (High) Level Triggering: When a flip flop is required to respond at its HIGH state a HIGH level triggering method is used. It is mainly identified from the straight lead from the clock input. Take a look at the symbolic representation shown below.

2. Negative (Low) Level Triggering: When a flip flop is required to respond at its LOW state, a LOW level triggering method is used. It is mainly identified from the clock input lead along with a low state indicator bubble. Take a look at the symbolic representation shown below.

Low Level Triggering
3. Positive Edge Triggering: When a flip flop is required to respond at a LOW to HIGH transition state, POSITIVE edge triggering method is used. It is mainly identified from the clock input lead along with a triangle. Take a look at the symbolic representation shown below.

4M

WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17333

		4. Negative Edge Triggering: When a flip flop is required to respond during the HIGH to LOW transition state, a NEGATIVE edge triggering method is used. It is mainly identified from the clock input lead along with a low-state indicator and a triangle.	
	$\begin{gathered} \text { f) } \\ \text { Ans. } \end{gathered}$	Explain Master-Slave JK flip-flop with neat diagram. Master-Slave JK Flip-flop: It is two gated SR flip-flops connected together in a series configuration with the slave having an inverted clock pulse. The outputs from Q and Q from the "Slave" flip-flop are fed back to the inputs of the "Master" with the outputs of the "Master" flip flop being connected to the two inputs of the "Slave" flip flop. The input signals J and K are connected to the gated "master" SR flip flop which "locks" the input condition while the clock (Clk) input is "HIGH" at logic level "1". As the clock input of the "slave" flip flop is the inverse (complement) of the "master" clock input, the "slave" SR flip flop does not toggle. The outputs from the "master" flip flop are only "seen" by the gated "slave" flip flop when the clock input goes "LOW" to logic level " 0 ". When the clock is "LOW", the outputs from the "master" flip flop are latched and any additional changes to its inputs are ignored. The gated "slave" flip flop now responds to the state of its inputs passed over by the "master" section.	Diagram $: 2 M$ Explana tion: 2M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

		Then on the "Low-to-High" transition of the clock pulse the inputs of the "master" flip flop are fed through to the gated inputs of the "slave" flip flop and on the "High-to-Low" transition the same inputs are reflected on the output of the "slave" making this type of flip flop edge or pulse-triggered. Then, the circuit accepts input data when the clock signal is "HIGH", and passes the data to the output on the falling-edge of the clock signal.						
4.	a) Ans.	Attempt any four of the following: Draw the logical diagram of MOD - $\mathbf{1 1}$ counter and describe its operation with truth table. For designing Mod-11 Counter 4 Flip-Flops (4 bits) will be required. Mod-11 Counter Truth Table						$\begin{gathered} 16 \\ 4 M \end{gathered}$
		Clock		utpu	Patte		Decimal	
		Count	Q3	Q_{2}	Q_{1}	Q_{0}	Value	$\begin{aligned} & \text { Designi } \\ & \text { ng: } 2 M \text {, } \end{aligned}$
		1	0	0	0	0	0	Operatio
		2	0	0	0	1	1	$n: 2 M$
		3	0	0	1	0	2	
		4	0	0	1	1	3	
		5	0	1	0	0	4	
		6	0	1	0	1	5	
		7	0	1	1	0	6	
		8	0	1	1	1	7	
		9	1	0	0	0	8	
		10	1	0	0	1	9	
		11	1	0	1	0	10	
		12	C	er R	is O	bac	Zero	

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Subject Code:
17333

WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333
b) State any four specification of ADC

Ans. Resolution: The resolution refers to the finest minimum change in the signal which is accepted for conversion and it is decided with respect to number of bits. It is given as $1 / 2 n$, where n is the number of bits in the digital output word. As it is clear, that the resolution can be improved by increasing the number of bits or the number of bits representing the given analog input voltage. Resolution can also be defined as the ratio of change in the value of input voltage V_{i}, needed to change the digital output by 1 LSB .

It is given as

$$
\begin{aligned}
& \text { Resolution }=\mathrm{Vi}_{\mathrm{FS}} /\left(2^{\mathrm{n}}-1\right) \\
& \text { Where ' } \mathrm{V}_{\mathrm{iFS}} \text { ' is the full-scale input voltage. } \\
& \text { ' } \mathrm{n} \text { ' is the number of output bits. }
\end{aligned}
$$

Quantization error: If the binary output bit combination is such that for all the values of input voltage V_{i} between any two voltage levels, there is a unavoidable uncertainty about the exact value of Vi when the outputis a particular binary combination. This uncertainty is termed as quantization error.

It is given as,

$$
\begin{aligned}
& \mathrm{QE}=\mathrm{ViFS}_{\mathrm{FS}} / 2\left(2^{\mathrm{n}}-1\right) \\
& \text { Where ' } \mathrm{Vi}_{\mathrm{FS}} \text { ' is the full-scale input voltage } \\
& \quad \text { ' } \mathrm{n} \text { ' is the number of output bits. }
\end{aligned}
$$

Linearity Error: It is defined as the measure of variation in voltage step size. It indicates the difference between the transitions for a minimum step of input voltage change. This is normally specified as fraction of LSB.

DNL (Differential Non-Linearity) Error: The analog input levels that trigger any two successive output codes should differ by 1 LSB. Any deviation from this 1 LSB value is called as DNL error.

INL (Integral Non-Linearity Error: The deviation of characteristics of an ADC due to missing codes causes INL error. The maximum deviation of the code from its ideal value after nulling the offset and
(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code:
17333

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

		\therefore Convert Invalid to walid by adding (6) BCD $_{\text {ic }}$ (0110) $\begin{aligned} \therefore & 11010001 \\ + & \frac{0110}{0110} \\ \frac{0001}{1} \frac{001}{3} & \frac{111}{7} \\ 1 & (78)_{B C D}+(59)_{B C D}=(137)_{B C D} \end{aligned}$ ii) $(86)_{B C D}+(36)_{B C D}$: Method 1:- Using a's complement method:- Step i) obtain d's complement of (36) $B C D$ \Rightarrow substract each digit from 9 $\begin{aligned} & \quad 99 \\ & \\ & \hline \frac{36}{(63)}=9 \text { 'c complement of } 26 \end{aligned}$ Step ii) Add $(86)_{B C D}$ to 9 's complement of 36 $\begin{aligned} & (86)_{B C D}=10000110 \\ & (63)=\frac{0110}{\frac{1110}{\frac{1}{\text { INalid }}} \begin{array}{l} \text { BCD } \end{array}} \frac{0111}{\frac{1001}{\text { Valid }} \text { BCD }} \end{aligned}$ stepiii) Add (\&) BCD $^{\text {to }}$ Invalid BCD $\begin{aligned} & 11101001 \\ & +\quad 01100000 \\ & \hline 10100 \end{aligned}=(49)_{B C D}$ ent around Cy step iv) Add end around carry $\begin{aligned} & 4 q \\ & +\quad 1 \\ & \hline(50)_{B C D} \end{aligned}$	$2 M$

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

	methed 2s Using lo's complement method stepi) optain to's complement of $(36)_{B C D}$ \rightarrow obtain q's comptement \rightarrow add I to q's complement $\begin{aligned} \text { o's complement }= & \frac{99}{} \\ & \frac{36}{63} \\ \text { lo's comp }= & \frac{1}{(64)} \end{aligned}$ Stepii) Add (86) to lo's comptement of (36) $B C D$ Stepiii) Convert Invelid to ralid by adding (6) BCD $\begin{aligned} & \therefore \quad \begin{array}{l} 1110: 1010 \\ \\ +\frac{0110}{010 \phi} \\ \end{array} \frac{0110}{\frac{10000}{0}} \end{aligned}$ $\therefore(86)_{B C D}-(36)_{B C D}=(50)_{B C D}$	
b) Ans.	Draw the logic diagram of D. flipflop using NAND gates. Write its truth table.	4M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:
17333
HIGH, logic " 1 " allowing the flip-flop to toggle on every clock pulse. Then the synchronous counter follows a predetermined sequence of states in response to the common clock signal, advancing one state for each pulse.
The J and K inputs of flip-flop FFB are connected directly to the output Q_{A} of flip-flop FFA, but the J and K inputs of flipflops FFC and FFD are driven from separate AND gates which are also supplied with signals from the input and output of the previous stage. These additional AND gates generate the required logic for the JK inputs of the next stage.
If we enable each JK flip-flop to toggle based on whether or not all preceding flip-flop outputs (Q) are "HIGH" we can obtain the same counting sequence as with the asynchronous circuit but without the ripple effect, since each flip-flop in this circuit will be clocked at exactly the same time.
Then as there is no inherent propagation delay in synchronous counters, because all the counter stages are triggered in parallel at the same time, the maximum operating frequency of this type of frequency counter is much higher than that for a similar asynchronous counter circuit.

Timing diagram 1M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17333

		this manner, a four bit number can be stored in the register. After four more clock pulses, this data will be shifted out of the register. $\underline{\text { Shift Left: }}$	Logical diagram 2M Timing diagram 1M
6.	$\begin{gathered} \text { a) } \\ \text { i) } \\ \text { Ans. } \end{gathered}$	Attempt any two of the following: State any two applications of counters. - In digital clock. - In the frequency counters. - In time measurement. - In digital voltmeters. - In the frequency divider circuits.	$\begin{gathered} 16 \\ 2 M \\ \\ \text { Any } 2 \\ \text { applicati } \\ \text { ons } 1 M \\ \text { each } \end{gathered}$
	ii) Ans.	Design full adder circuit using K-map. Implement using logic gates. In Half adder there is no provision to add the carry generated by lower bits while adding present inputs that is when multibit addition is performed. Hence a third input is added and this circuit is used to add A_{n}, B_{n} and C_{n-1} where A_{n}, B_{n} are present state inputs and C_{n-1} is the last state output that is previous carry. This circuit is known as Full Adder	6M Definitio n 1M

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

An	Bn	Cn-1	Sum Sn	Carry Cn
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

For the sum output

(a) : K-map for sum output

For carry output

Fig. 6.3.6(b) : K-map for carry output
Logic diagram for full adder :

Truth
table 1M

K-map
sum 1M
k-map carry 1M

Logical circuit 2M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

6.	$\begin{gathered} \text { b) } \\ \text { i) } \\ \text { Ans. } \end{gathered}$	Differentiate combinational and sequential logic circuits (2pts).			2M Any 2 points 1M each
		Sr. No.	Combinational circuits	Sequential circuits	
		1	In combinational circuits, the output variables depends on the combinational of input variables.	In sequential circuits, the output variables depends upon the present inputs as well as on the past output.	
		2	Memory unit is notrequired in circuits.these	Memory unit is required in these circuits to store the previous output.	
		3	These circuits are faster in speed because the delay between the input and output is due to the propogation delay.	Sequential circuits are slower than the combinational circuits.	
		4	These are easy to design.	These are complex in designing.	
		5	Ex: Parallel Adder.	Ex: Serial Adder.	
	$\begin{gathered} \text { ii) } \\ \text { Ans. } \end{gathered}$	State the applications of shift registers. - For temporary data storage. - For multiplication and division. - Parallel to serial converter. - Ring counter.			$2 M$ Any 2 applicati ons 1M each
	iii) Ans.	Draw the block diagram of 4-bit PIPO shift register and explain its working with timing diagram. In this register, the input is given in parallel and the output also collected in parallel. The clear (CLR) signal and clock signals are connected to all the 4 flip flops. Data is given as input separately for each flip flop and in the same way, output also collected individually from each flip flop.			4M Explana tion 1M Logical diagram 2M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code:
17333

			Timing diagram 1M
6.	$\begin{gathered} \text { c) } \\ \text { i) } \\ \text { Ans. } \end{gathered}$	Describe specification of DAC. 1. Resolution: This is the smallest possible change in output voltage as a fraction or \% of the full scale output range. The resolution can be given as: $\begin{gathered} \text { Resolution }=2^{n} \\ O R \end{gathered}$ Resolution is also defined as "the ratio of change in analog output voltage resulting from a change in 1 LSB at the digital input. $\text { Resolution }=\frac{V_{F S}}{2^{n}-1}$ 2. Linearity: In a D/A converter, equal increments in the numerical significance of the digital input should result in equal increments in the analog output voltage. In an actual circuit, the input-output relationship is not linear. This is due to the error in resistor values and voltages across the switches. The linearity of a converter is a measure of precision with which linear I-O relationship is satisfied. 3. Accuracy: The accuracy of a D/A converter is a measure of the difference between the actual output voltage and the expected output	$4 M$ Any 4 1M each

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17333

		voltage. It is specified as a \% of full-scale or maximum output voltage. 4. Settling time: When the digital input to a D/A converter changes, the analog output voltage does not change abruptly. The time required for the analog output to settle to within LSB of the final value after a change in the digital input is usually specified by the manufacturers \& is called as settling time. 5. Temperature Sensitivity: The analog output voltage for any fixed digital input varies with temperature. This is due to the temperature sensitivities of the reference voltage source, resistors, OP AMP etc.	
	ii) Ans.	Describe the working of successive approximation type A to D converter with neat diagram. The successive approximation A/D converter is as shown in fig. An analog voltage $\left(\mathrm{V}_{\mathrm{a}}\right)$ is constantly compared with voltage Vi , using a comparator. The output produced by comparator $\left(\mathrm{V}_{\mathrm{o}}\right)$ is applied to an electronic Programmer. * If $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{i}}$, then $\mathrm{V}_{\mathrm{o}}=0$ \& then no conversion is required. The programmer displays the value of Vi in the form of digital O / P. $*$ But if $\mathrm{V}_{\mathrm{a}} \neq \mathrm{V}_{\mathrm{i}}$, then the O / P is changed by the programmer. $>$ If $\mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{i}}$, then value of V_{i} is increased by 50% of earlier value. $>$ But if $\mathrm{V}_{\mathrm{a}}<\mathrm{V}_{\mathrm{i}}$, then value of V_{i} is decreased by 50% of earlier value. This new value is converted into analog form, by D/A converter so as to compare it with V_{a} again. This procedure is repeated till we get $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{i}}$. As the value of V_{i} is changed successively, this method is called as successive-approximation A/D converter.	4 M Explana tion 2M Diagram 2M

