

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.N	Sub	Answer	Marking
0.	Q.N.		Scheme
1.	a)	Attempt any six of the following:	12
	i)	Define w.r.t. digital IC's	<i>2M</i>
		1) Nosie Immunity	
		2) Propagation delay.	
	Ans.	1) Noise Immunity: The ability of a digital circuit to tolerate noise	Noise
		signals is called as noise immunity of a circuit.	Immunit
			у 1М
		2) Propagation delay: Propagation delay is the average transition	Propaga
		delay time for the signal to propagate from input to output when the	tion
		signals change in value. It is expressed in ns.	delay
			<i>1M</i>
	ii)	State advantages of digital systems (any 4).	<i>2M</i>
	Ans.	Advantages of digital systems:	
		• The devices used in digital systems generally operate in one of	Any
		the two states, known as ON and OFF resulting in a very simple	four
		operation.	advanta
		• A large number of ICs are available for performing various	ges
		operations. These are highly reliable, accurate, small in size and	<i>1/2M</i>
		the speed of operation is very high. A number of programmable.	each
		ICs are also available.	
		• The effect of fluctuations in the characteristics of the components,	

WINTER - 2016 EXAMINATION

Model Answer Subject Code:

e: 17333

Distributive Law $A(BC) = (AB)C$ 4BooleAND Laws $A \cdot I = A$ G $I/2M$ AND Laws $A \cdot I = A$ G $I/2M$ OR Laws $A \cdot a = A$ G G OR Laws $A + 0 = A$ $I0$ $A + A = A$ $I1$ $A + A = A$ $I2$ <t< th=""><th>iii) Ans.</th><th colspan="9">State any 4 Boolean laws. Boolean laws:</th></t<>	iii) Ans.	State any 4 Boolean laws. Boolean laws:								
Commutative Laws $A \cdot B = B \cdot A$ 2 Associative Laws $A + (B+C) = (A+B) + C$ 3 Any Distributive Law $A(B+C) = AB + AC$ 4 $Boolea$ AND Laws $A \cdot I = A$ 6 $I/2M$ OR Laws $A \cdot A = A$ 6 $I/2M$ OR Laws $A + 0 = A$ 10 $A + A = A$ 11 $A + A = A$ 12 $A + A = A$ 12 $A + A = A$ 11 $A + A = A$ 12 $A + A = A$			Theorem	Theorem No.						
Associative Laws $A. B = B. A$ $A + (B + C) = (A + B) + C$ $A(BC) = (AB)C$ $A(BC) = AB + AC$ 2 3 4 Boole. 		Commutative Laws	A + B = B + A	1						
A(BC) = (AB)C4BooletDistributive Law $A(B+C) = AB + AC$ 5 $Iaws$ AND Laws $A. 1 = A$ 6 $I/2M$ OR Laws $A. A = A$ 7 $each$ OR Laws $A+0 = A$ 10 $A+A = A$ 11 $A+A = A$ 15 $A+A = A$ 15 $A+A = A$ 16Other Laws $A+A = A$ 17 $(A+B)(A+C) = A + BC$ 18 $AB + A = A$ 19De Morgan's Theorem $AB + A = A$ 20 $AB = A + B$ 21		Commission of Same		2						
Distributive Law AND Laws $A(B+C) = AB + AC$ $A \cdot 1 = A$ $A \cdot A = A$ $A = A$ 5 $A \cdot A = A$ $A \cdot A = A$ $A \cdot 0 = 0$ $A \cdot \overline{A} = 0$ Ideal B $A \cdot A = A$ $A \cdot 0 = 0$ $A + 0 = A$ $A + 1 = 1$ $A + A = A$ $A + 1 = 1$ $A + A = 1$ 10 $A + A = A$ $A = A + B$ $A + A = A$ $A = A + B$ $A = A$ $A = A$ $A = A + B$ $A = A$ $A = A$ $A = A = A$ A		Associative Laws		3	Any -					
AND Laws $A. 1 = A$ 6 $1/2N$ AND Laws $A. A = A$ 7 $1/2N$ OR Laws $A. \overline{A} = 0$ 9 OR Laws $A+0 = A$ 10 $A+A = A$ 11 $A+A = A$ 15 $A+A = A$ 16 Other Laws $A+\overline{A}B = A + B$ $A+\overline{A}B = A$ 16 $AB + \overline{A}\overline{B} = A$ 19 $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21		and the second second second second		4 .	Booled					
A. $A = A$ 7172 N $A. A = A$ $A \cdot A = A$ $A \cdot 0 = 0$ 8 $A \cdot A = 0$ $A \cdot 0 = A$ 10 $A + 0 = A$ 10 $A + A = A$ 11 $A + A = A$ 11 $A + A = A$ 12 $A + \overline{A} = 1$ 13Double Inversion Law $\overline{A} = A$ 14Absorption Laws $A(A + B) = A$ 15 $A + \overline{A} = A$ 16Other Laws $A + \overline{A} = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21		Distributive Law	A(B+C) = AB + AC	, 5	laws					
OR Laws $A \cdot 0 = 0$ 8Part of the term $A + 0 = A$ $A + 0 = A$ 10 $A + 0 = A$ 10 $A + a = A$ 11 $A + A = A$ 11 $A + A = A$ 11 $A + A = A$ 13Double Inversion Law $\overline{A} = A$ 14Absorption Laws $A(A + B) = A$ 15 $A + \overline{A} = A$ 16Other Laws $A + \overline{A} = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21		AND Laws		7	1/2M					
OR Laws $A \cdot \overline{A} = 0$ 9 $A + 0 = A$ 10 $A + A = A$ 11 $A + A = A$ 11 $A + A = A$ 12 $A + \overline{A} = 1$ 13Double Inversion Law $\overline{A} = A$ 14Absorption Laws $A(A + B) = A$ 15Other Laws $A + \overline{A}B = A$ 16Other Laws $A + \overline{A}B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + \overline{AB} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				8	each					
OR Laws $A + 0 = A$ 10 $A + A = A$ 11 $A + A = A$ 11 $A + 1 = 1$ 12 $A + \overline{A} = 1$ 13Double Inversion Law $\overline{A} = A$ 14Absorption Laws $A(A + B) = A$ 15 $A + AB = A$ 16Other Laws $A + \overline{A}B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				9						
OR Laws $A + A = A$ 11 $A + A = A$ 12 $A + A = 1$ 13Double Inversion Law $\overline{A} = A$ 14Absorption Laws $A(A + B) = A$ 15Other Laws $A + \overline{A} B = A + B$ 16Other Laws $A + \overline{A} B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19 $AB + \overline{AB} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				10						
Double Inversion Law Absorption Laws $A + 1 = 1$ $\overline{A} = A$ 12 13Double Inversion Law Absorption Laws $\overline{\overline{A}} = A$ $A + AB = A$ 14 15 A + AB = AOther Laws $A(A + B) = A$ $A + \overline{A}B = A + B$ $(A + B)(A + C) = A + BC$ $AB + \overline{AB} = A$ 16 17 18 19 $AB + A\overline{B} = A$ De Morgan's Theorem $AB + A\overline{B} = A$ $\overline{AB} = \overline{A} + \overline{B}$ 21		OR Laws		STORE THE REPORT OF A DURING THE PARTY OF A						
Double Inversion Law Absorption Laws $\overline{A} = 1$ 13Double Inversion Law Absorption Laws $\overline{A} = A$ 14Other Laws $A(A + B) = A$ 15 $A + \overline{A}B = A$ 16 $A + \overline{A}B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19 $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				12						
Double inversion Law $A(A + B) = A$ 15Absorption Laws $A(A + B) = A$ 16Other Laws $A + \overline{A}B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				13						
Double inversion bar $A(A + B) = A$ 15Absorption Laws $A(A + B) = A$ 16Other Laws $A + \overline{A}B = A + B$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21		and the second second		11						
Absorption Laws $A(A + D) = A$ 16Other Laws $A + \overline{A}B = A$ 17 $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21										
Other Laws $A + \overline{A}B = A + B$ 17 $(A + \overline{B})(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21		Absorption Laws								
Other Laws $(A + B)(A + C) = A + BC$ 18 $AB + \overline{AB} = A$ 19 $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21										
De Morgan's Theorem $AB + \overline{AB} = A$ $AB + A\overline{B} = A$ $\overline{AB} = \overline{A} + \overline{B}$ $\overline{AB} = \overline{A} + \overline{B}$ 21		Other Laws		18						
De Morgan's Theorem $AB + A\overline{B} = A$ 20 $\overline{AB} = \overline{A} + \overline{B}$ 21				19						
$\overline{AB} = \overline{A} + \overline{B} $ 21		D. Margara Theorem		20						
		De Morgan s Theorem	and the second second second	01. 2. 000						
			AB = A + B,	21						
	iv)				2M					
	Ans.	Symbol of NOR gate:								
Ans. Symbol of NOR gate:					-					
Symb					of NC					

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

e: 17333

	Truth table of NOR gate:	
	InputsOutputABY	Truth table of
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NOR gate 1M
v)	Convert the following:	2M
Ans.	$(AB8C)_{16} = ()_2$ $(AB8C)_{16} = (1010\ 1011\ 1000\ 1100)_2$	2M
vi)	Derive OR gate using NAND gates only.	2M 2M
Ans.	$\overline{\overline{A} \cdot \overline{B}} = \overline{\overline{A}} + \overline{\overline{B}} = \overline{A} + B$	2M
vii)	Draw the functional block diagram of ALU 74181.	2M
Ans.	$A_{0} - A_{3} \longrightarrow F_{0} - F_{3}$ $B_{0} - B_{3} \longrightarrow 74181$ $A = B \text{ Equality output}$ $A = B \text{ Equality output}$ $G = \text{ Generate output}$ $P = \text{ Propagate output}$ $* \text{ Open-collector output}$	Correct diagram 2M
	Block diagram of ALU 74181	
viii)	Define the following w.r.t. to DAC. Resolution Conversion time 	2M
Ans.	1) Resolution: This is the smallest possible change in output voltage as a fraction or percentage of the full scale output range. OR	1M

WINTER – 2016 EXAMINATION

		WINTER – 2016 EXAMINATION		
		Model Answer Subject Code:	17333	
		 The number of bits accepted at the input can itself be used as the resolution. For example, an 8-bit D/A converter has an 8-bit resolution. 2) Conversion time: Total time required to convert analog input 	11.	1
		signal into corresponding digital output.		
1.	b)	Attempt any two of following:	8	
	i) Ans.	Subtract using 2's complement method 1) (10110) ₂ - (10001) ₂ 2) (1101) ₂ - (11010) ₂ 1) (10110) ₂ - (10001) ₂ :	4M	[
	Alls.	Step1: obtain 1's complement of $(10001)_2$ 1's complement of 10001_2 2's complement is 01110 2's complement 01110 2's complement 01111 Step 2: Add 10110 & 2's complement obtained in step1 10110 01111 10110 01111 Hence carry is 1 Answer is in positive form. Discarding carry	21	ſ
		11ence carry is 1 Answer is in positive form. Discarding carry $(10110)_2 - (10001)_2$: 2) $(1101)_2 - (11010)_2$: Make no. of bits equal 01101-11010 Step 1: Find 2's complement of $(11010)_2$ 1's complement of $1 1 0 1 0$ is $0 0 1 01$ 2's complement is $0 0 1 01$ 2's complement $\frac{+1}{00110}$ Step 2: Add $(01101)_2$ & 2's complement of (11010) from step 1.	21	ſ
		Step 2: Add $(01101)_2 & 2$'s complement of (11010) from step 1. $0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ $		

WINTER - 2016 EXAMINATION

	WINTER – 2016 EXAMINATION <u>Model Answer</u> Subject Code: 173	33
	Final carry is 0. Hence answer is in negative form & in 2's complement form. \therefore 2's complement of 1 0 0 1 1 1's complement 0 1 1 0 1 2's complement is $(0 1 1 0 1)_2$ Result= (-01101) ₂	
ii) Ans.	State and prove Demorgan's theorems. De Morgan's first law: "Complement of the sum of variables is equal to the product of complement of the variables" $\overline{A + B} = \overline{A} \cdot \overline{B}$ Proof by perfect Induction method Truth Table:	4M 1M
	Truth TableAB \overline{A} \overline{B} \overline{A} \overline{B} \overline{A} \overline{B} \overline{A} \overline{B} OOOIIOIIOIIOIIOOIOOIIOOIIOIIOO	1M
	De Morgan'ssecond law: "Complement of the product of variables is equal to the sum of complement of variables" $\overline{AB} = \overline{A} + \overline{B}$ Truth Table: Truth Table:	1M
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M
iii)	Convert the following: 1) $(498.25)_{16} = ()_{10}$ 2) $(10110101)_2 = ()_{16}$ 3) $(B689D)_{16} = ()_{8}$ 4) $(110110111)_2 = ()_{10}$	<i>4M</i>

WINTER - 2016 EXAMINATION

Model Answer

Subject Code: 1'

		Function Table o	of 7485:						
		Comparing inputs	Ca	scading inj	outs		Outputs	Sec. 1	
		<i>A</i> , <i>B</i>	A > B	A = B	A < B	A > B	A = B	A < B	
		A > B	×	×	×	1	0	0	Truth
		Alley wight this		0	0	1	0	0	
		A = B	× 0	1 0	× 1	0	1 0	0 1	table 1M
		A = D	0	0	0	1	0	1	
		A 5	1	0	1	0	0	0	
		A < B	×	×	×	0	0	1	
		 Explanation of F 1. For comparing the output wil 2. For comparing inputs. a. If cascad b. If cascad c. If cascad 3. For comparing 	g inputs l be A> g inputs ling inp ling inp ling inp	A>B, in B. A=B, th uts are A uts are A uts are A	respectiv ae output A>B then A=B then A <b th="" then<=""><th>e of the c depends output w output w output w</th><th>on the ca vill be Ax vill be A= vill be A</th><th>ascading >B. =B. <b.< th=""><th>Explana tion 1M</th></b.<></th>	e of the c depends output w output w output w	on the ca vill be Ax vill be A= vill be A	ascading >B. =B. <b.< th=""><th>Explana tion 1M</th></b.<>	Explana tion 1M
		the output wi							
3.		Attempt any four				hadia dat	0.7		16 4M
	a)	Implement the lo	-	xpressio	n using i	Dasic gat	es.		<i>41</i> 11
		$\mathbf{Y} = \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}} +$	AC						
	Ans.								
		Y= AB+AT	B+AC	. 2	A	18			
						3.1			
		A B	C						
		To To			DAR	-	6		Simplifi cation: 2M, Impleme

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Subject Code:

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

WINTER – 2016 EXAMINATION

Model Answer S

Subject Code:

4.	a) Ans.	the "master" "slave" flip f are reflected edge or pulse Then, the cir	flip flop lop and o on the ou cuit accep he data t four of t gical dia ith truth g Mod-11	o are fed n the "Hig tput of the d. ots input d o the out the follow gram of table. Counter 4	through gh-to-Low e "slave" ata when put on th ing: MOD -11	to the ga v" transiti- making th the clock e falling- l counter		of the nputs of flop GH", clock be its	16 4M		
		Clock		Output b	it Pattern		Decimal				
		Count	Q ₃	Q ₂	Q1	Q_0	Value		Designi		
		1	0	0	0	0	0		ng: 2M, Operatio		
		2	0	0	0	1	1		n: 2M		
		3	0	0	1	0	2				
		4	0	0	1	1	3				
		5	0	1	0	0	4				
		6	0	1	0	1	5				
		7	0	1	1	0	6				
		8	0	1	1	1	7				
		9	1	0	0	0	8				
		10 1 0 0 1 9									
		11 1 0 1 0 10									
		12	Cou	inter Rese	ts its Outp	outs back	to Zero				

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

b)	State any four specification of ADC	<i>4M</i>	
Ans.	Resolution: The resolution refers to the finest minimum change in the signal which is accepted for conversion and it is decided with respect to number of bits. It is given as $1/2n$, where n is the number of bits in the digital output word. As it is clear, that the resolution can be improved by increasing the number of bits or the number of bits representing the given analog input voltage. Resolution can also be defined as the ratio of change in the value of input voltage V _i , needed to change the digital output by 1 LSB.	Any 4 Specific	
	It is given as	ations:	
	Resolution = $Vi_{FS} / (2^n - 1)$	1M each	
	Where 'V _{iFS'} is the full-scale input voltage.		
	'n' is the number of output bits.		
	Quantization error: If the binary output bit combination is such that for all the values of input voltage V_i between any two voltage levels, there is a unavoidable uncertainty about the exact value of Vi when the output a particular binary combination. This uncertainty is termed as quantization error.		
	It is given as,		
	$Q_E = V_{i_{FS}} / 2(2^n - 1)$		
	Where ' Vi_{FS} ' is the full-scale input voltage		
	'n' is the number of output bits.		
	Linearity Error: It is defined as the measure of variation in voltage step size. It indicates the difference between the transitions for a minimum step of input voltage change. This is normally specified as fraction of LSB.		
	DNL (Differential Non-Linearity) Error: The analog input levels that trigger any two successive output codes should differ by 1 LSB. Any deviation from this 1 LSB value is called as DNL error.		
	INL (Integral Non-Linearity Error: The deviation of characteristics of an ADC due to missing codes causes INL error. The maximum deviation of the code from its ideal value after nulling the offset and		

WINTER - 2016 EXAMINATION

Model Answer

Subject Code:

	gain errors	is call	ed as 1	Integra	l Non	I-Line	arity E	Error.		
		an acc							the that an A/D voverflow in its	
c)	Describe th Write truth				eset ai	nd cle	ar ter	minals	s in JK flipflop.	<i>4M</i>
Ans.				TRU	TH TA	BLE				
				INPUTS	\$		OUTI	PUTS		
		PR	CLR	CLK	J	К	Q	Q		
		0	1	Х	Х	Х	1	0		
		1	0	Х	Х	Х	0	1		
		0	0	Х	Х	Х	X	X		Truth
		1	1	Ļ	0	0	Q	$\overline{\mathbf{Q}}_{0}$		table:
		1	1	Ļ	1	0	1	0		2M
		1	1	Ļ			0	1		2111
		1	1	Ļ	1	1		gle		
		1	1	1	Х	Х	Q	$\overline{\mathbf{Q}}_{0}$		
<u></u> d)	 the flip-f When Cl flip-flop If both p states be If both p is contro 	lop is lear in is reset a comes reset a lled b	set to put is et to 0 and cle s X. (I and cle y cloc	1, ind low (s , indep ear is 1 Don't C ear is h k and .	epend ince a bender ow at Care) high at JK inp	ent of active nt of c the sa t the s puts.	clock low si lock p me tir ame ti	pulse. gnal), tulse. ne, the me, the	the output of the o/p of flip flop e o/p of flip flop	Functio ns: 2M
d)	Draw the n Write trutl			m of c	locke	d SR 1	flip flo	op usir	ng NAND gates.	<i>4M</i>
Ans.	S <u>CLK</u> R	Fig	: Cloc))~_ 2ked S	R Flij	p-Floj)) p usin	g NAN	ĪD	Diagram : 2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

17333

		Ī		Q	State			
Image:		1	1	Previo	us State	No change		table:
e) Ans. Differentiate between RAM and ROM – (any four points) RAM Random Access Memory or RAM is a form of data storage that can be accessed randomly at any time, in any order and from any physical location, allowing quick access and manipulation RAM allows the computer to read data quickly to run applications. It allows reading make the computer. It only allows reading. RAM is volatile i.e. its contents are lost when the device is powered off. MAM AM AM AM AM AM AM AM AM A		1	0		0	Reset		2M
e) Ans. Differentiate between RAM and ROM – (any four points) RAM is a form of data storage that can be accessed randomly at any time, in any order and from any physical location, allowing quick access and manipulation RAM allows the computer to read data quickly to run applications. It allows reading and writing. RAM is volatile i.e. its contents are lost when the device is powered off. AM AM AM AM AM AM AM AM AM AM		0	1		1	Set		
ns.RAMROMRandom Access Memory or RAM is a form of data storage that can be accessed randomly at any time, in any order and from any physical location, allowing quick access and manipulationRead-only memory or ROM is also a form of data storage that cannot be easily altered or reprogrammed.Any 4 points: IM each are hardwiredRAM allows the computer to read data quickly to run applications. It allows reading and writing.ROM stores the program reading.IM each are retained even when the govered off.		0	0		?	Forbidden		
RAM is a form of data storage that can be accessed randomly at any time, in any order and from any physical location, allowing quick access and manipulationalso a form of data storage that cannot be easily altered or reprogrammed. Stores instructions that are not necessary for re-booting up to make the computer operate when it is switched off. They are hardwiredAny 4 points:RAM allows the computer to read data quickly to run applications. It allows reading and writing.ROM stores the program reading.IM each are initially boot the computer. It only allows reading.RAM is volatile i.e. its contents are lost when the device is powered off.It is non-volatile i.e. its contents are retained even when the device is powered off.				M and	ROM – (4M
The true weight toward of DAM and The true of DOM include	RAM that a at an from allow man RAM read appli and RAM are	A is a form of can be acces y time, in an any physica ving quick a ipulation A allows the data qui ications. It writing. A is volatile lost when	of data str sed rand ny order al locatio ccess and ne comp ickly t allows i.e. its c	orage omly and on, d uter to o run reading contents	also a fe cannot reprogra instructi necessar make when it are hard ROM required compute reading. It is non are reta	orm of data stora be easily alter ammed. ons that are ry for re-booting the computer is switched off wired stores the p l to initially bo er. It only	ige that red or Stores e not g up to operate E. They rogram pot the allows	Any 4 points: IM each

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

WINTER - 2016 EXAMINATION Subject Code: **Model Answer** Draw the block diagram of BCD to 7-segement decoder. Write its M e) truth table. Ans. BCD Input A Circuit в а diagram b BCD to с 2M 7-Segment D d Decoder e f g 7-Segment display 7-Segment Display **Binary Inputs Decoder Outputs** Outputs Truth D С В А а b c f с е g table 2M f) Draw the block diagram of SISO shift register and describe its 4Moperation. The diagram shows four flip-flops connected to form a SERIAL IN, Ans. SERIAL OUT shift register. Upon the arrival of a clock pulse, data at Explana the D input of each flip-flop is transferred to its Q output. At the start, tion 1M the contents of the register can be set to zero by means of the CLEAR line. If a 1 is applied to the input of the first flip-flop, then upon the arrival of the first clock pulse, this 1 is transferred to the output of flip-flop 1 (input of flip-flop 2). After four clock pulses this 1 will be at the output of flip-flop 4. In

WINTER – 2016 EXAMINATION

Model Answer

Subject Code:

e: 17333

WINTER - 2016 EXAMINATION

Model Answer

b)

6.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER - 2016 EXAMINATION

Model Answer

Subject Code: 1

: 17333

••	i)	Differe	ntiate combinational and	l sequential logic circuits (2pts).	<i>2M</i>					
	Ans.	Sr.	Combinational	Sequential circuits						
		No.	circuits							
		1	In combinational circuits, the output	In sequential circuits, the output variables depends upon the	Any 2					
			circuits, the output variables depends on	variables depends upon the present inputs as well as on the	points					
			the combinational of	past output.	1M each					
			input variables.	r r r						
		2		Memory unit is required in these						
			required in these	circuits to store the previous						
			circuits.	output.						
		3	These circuits are faster	Sequential circuits are slower						
			in speed because the delay between the input	than the combinational circuits.						
			and output is due to the							
			propogation delay.							
		4	These are easy to	These are complex in designing.						
			design.							
		5	Ex: Parallel Adder.	Ex: Serial Adder.						
	ii)		ne applications of shift re	gisters.	<i>2M</i>					
	Ans.		temporary data storage.		4 2					
			multiplication and division	l.	Any 2 applicati					
		• Ring counter.								
	iii)	Draw t	he block diagram of 4-b	it PIPO shift register and explain	each 4M					
			king with timing diagran							
	Ans.			ven in parallel and the output also	Explana					
			-	(CLR) signal and clock signals are	tion 1M					
				Data is given as input separately for						
		each flip flop and in the same way, output also collected individually from each flip flop.								
		nom et	Parallel data inpu	uts						
			$\begin{bmatrix} A_3 & A_2 \\ A_3 & A_2 \end{bmatrix}$	$\hat{\mathbf{h}}_{1}^{1}$ $\hat{\mathbf{h}}_{0}^{0}$						
					Logical					
			┍╼҇҈Ѹ		diagram					
		CP -			<i>2M</i>					
			Q ₃	$\begin{vmatrix} & & \\ Q_2 & Q_1 & Q_0 \end{vmatrix}$						
				Parallel data outputs						
		1								

WINTER – 2016 EXAMINATION

