

3 Hours/100	Marks		Seat	No.								
Instru	(2) Figures t) Mobile Pl	ions are co i o the right i hone, Pagei hication devi	indica r and	ate f any	f ull r v othe	er Ele	ectro				
		Examina		0030	ai e i	ίοι μ		13311				
											Ma	RKS
1. a) Atter	npt any six :											12
i) V	Vhat is positiv	e logic and	l negative lo	ogic i	n di	gital	syste	em ?				
ii) E	Define fan in a	nd noise m	argin.									
iii) C	Draw symbol a	and truth ta	ble of 3 i/p (OR g	ate.							
iv) S	State DeMorga	an's theore	n.									
v) (Convert the fo	lowing :										
	a) (156) ₁₀ →	(?) _{BCD} and	l (?) ₂									
vi) L	ist any four B	oolean law	s.									
vii) E	Define encode	r. Write the	number of I	Cus	ed a	s de	cima	l to B	SCD e	enco	der.	
viii) E	Define any two	specificat	ions of ADC).								
b) Atter	npt any two :											8
-	Compare TTL ower dissipat						s of p	ropa	gatio	n de	lay,	
ii) C	Design OR an	d AND gate	e using NOF	R gate	e on	ly.						
iii) F	Perform the fo	llowing bina	ary subtract	ion u	sing	g 2's	com	plem	ent:			
	1) (54) ₁₀ –(3	3) ₁₀ = ?										
:	2) (48) ₁₀ – (6	8) ₁₀ = ?										

-2-

Marks

16

Ā

- 2. Attempt any 4:
 - a) Draw X-OR gate using NAND gate only. Also write O/P of each gate.
 - b) Simplify the following equation using boolean laws and realize it using basic gates only. $Y = ABC + A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C$.
 - c) Perform the following BCD arithmetic :
 - 1) $(630)_{10} + (468)_{10}$
 - 2) $(245)_{10} + (186)_{10}$.
 - d) Simplify the following equation using k-map and realize it using logic gates. $Y = \Sigma m(0, 1, 2, 3, 8, 10) + \Sigma d(5, 7).$
 - e) Design Half adder using k-map and basic gates.
 - f) Draw block diagram of decimal to BCD encoder and write its truth table.

3. Attempt any four :

- a) Simplify using DeMorgans theorem and realize it using basic gates. $Y = \overline{(A\overline{B} + \overline{A}\overline{B})(AB + \overline{A}B)}.$
- b) Design 8 : 1, MUX using 2 : 1 MUX and 4 : 1 MUX.
- c) Minimize the following equation using k-map.
 - 1) $Y = \Sigma m(0, 1, 2, 4, 5, 6)$
 - 2) $Y = \prod m(0, 2, 4, 5)$.
- d) Design 1:8 demux using basic gates.
- e) Explain different triggering methods used in f.f.
- f) Explain working of PIPO with neat logic diagram and timing diagram.

16

17333

4.	Attempt any four :	
	a) Explain working of 2 bit asynchronous counter with the help of neat diagram,	

- truth table and timing diagram.
- b) Explain successive approximation type ADC with neat diagram.
- c) Describe working of RS ff using NANP gates only.
- d) What is race around condition ? How to eliminate it ?
- e) Define memory. Give classification of memory. Compare PROM and EPROM (any 2 pts.).
- f) What is the need of data converters ? List specifications of DAC.

5. Attempt **any four** :

- a) Convert the following :
 - 1) $(366.54)_8 \rightarrow (?)_{10}$ and
 - 2) $(2015.32)_{10} \rightarrow (?)_{16}$.
- b) Compare combinational logic circuit and sequential logic circuit (any 4 pts.)
- c) Simplify the following and realize it. $Y = A + \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C} + ABC + \overline{A} \overline{B}.$
- d) Explain working of 3 bit synchronous counter with the help of neat logic diagram, timing diagram and truth table.
- e) Describe block diagram of digital comparator and write truth table of 2 bit comparator.
- f) Compare synchronous and asynchronous counter. (any 4 pts.)

6. Attempt any two :

- a) i) Convert the following SOP equation into standard SOP equation. **2** $Y = AB + \overline{A}B + A\overline{B}\overline{C}.$
 - ii) List any four applications of multiplexer and implement the following logic expression using 16:1 MUX. $Y = \Sigma m(0, 3, 5, 6, 7, 10, 13).$

16

16

16

17333

-4-

Marks

b)	i)	Draw symbol and truth table of negative edge triggered D.FF and positive edge triggered JK FF.	2
	ii)	What is modulus of counter ? Show the method to determine the no. of flip flops for a mod-52 counter.	4
İ	iii)	Draw only logic diagram of SIPO.	2
c)	i)	A DAC has a full scale analog O/P of 10V and accepts 4 binary bits as i/ps. Find the voltage corresponding to each analog step.	4
	ii)	Describe working of R-2R Ladder type DAC.	4