MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)
SUMMER - 2018 Examinations
Model Answer
Subject Code: 17331 (ETG)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance. (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

Subject Code: 17331 (ETG)

1 (A) Attempt any SIX of the following:

1 (A) (a)Define the term loop and node.
Ans:
Loop: A closed path for flow of current in an electrical circuit is called loop.
1 Mark
Node: A point or junction where two or more than two elements of network are connected together is called node.

1 Mark
1 (A) (b)State Kirchhoff's voltage law. Also mention the conventions adopted.
Ans:
Kirchhoff's Voltage Law (KVL):
It states that, in any closed path in an electric circuit, the algebraic sum of the emfs and products of the currents and resistances is zero.
i.e $\Sigma \mathrm{E}-\Sigma \mathrm{IR}=0$ or $\Sigma \mathrm{E}=\Sigma \mathrm{IR}$

OR

It states that, in any closed path in an electrical circuit, the total voltage rise is equal
 to the total voltage drops.
i.e Voltage rise $=$ Voltage drop

Referring to the circuit, by KVL we can write,
$\left(\mathrm{E}_{1}-\mathrm{E}_{2}+\mathrm{E}_{3}\right)=\left(\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{I}_{3} \mathrm{R}_{3}-\mathrm{I}_{4} \mathrm{R}_{4}\right)$

Sign convention:

While tracing the loop or mesh, the voltage rise is considered as positive and 1 Mark voltage drop is considered as negative.
1 (A) (c)Three resistances of $10 \Omega, 15 \Omega$ and 20Ω are connected in parallel across 100 V .
Find: (i) Total resistance
(ii) Current in each resistor.

Ans:
Here $\mathrm{R}_{1}=10 \Omega, \quad \mathrm{R}_{2}=15 \Omega, \quad \mathrm{R}_{3}=20 \Omega, \quad \mathrm{~V}=100 \mathrm{~V}$

Equivalent Resistance:

The equivalent resistance of parallel connected resistances is given by,

$$
\begin{gathered}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
=\frac{1}{10}+\frac{1}{15}+\frac{1}{20}=\frac{65}{300} \\
\boldsymbol{R}_{\text {eq }}=4.615 \Omega
\end{gathered}
$$

Branch Currents:

$$
\begin{aligned}
& I_{1}=\frac{V}{R_{1}}=\frac{100}{10}=10 \mathrm{~A} \\
& I_{2}=\frac{V}{R_{2}}=\frac{100}{15}=\mathbf{6 . 6 7 A} \\
& I_{3}=\frac{V}{R_{3}}=\frac{100}{20}=5 \mathrm{~A}
\end{aligned}
$$

1 Mark for
R_{eq}

1 Mark for branch currents

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
1(A)(d)State Lenz's Law.
Ans:
Lenz's Law:
It states that the direction of electromagnetically induced emf is such that it always
2 Marks opposes the main cause of its production.
1(A) (e)Define the following terms:
(i) Amplitude
(ii) Frequency of an AC.

Ans:
i) Amplitude:

It is defined as the maximum or peak value attained by an alternating 1 Mark quantity during its positive or negative half cycle.
ii) Frequency of an AC:

It is defined as the number of cycles completed by an alternating quantity in one second.
1 (A) (f)For star connected load, state numerical relationship between
(i) Line current \& phase current
(ii) Line voltage \& phase voltage

Ans:
For star connected load,

$$
\begin{aligned}
\text { Line current } & =\text { Phase current } & 1 \text { Mark } \\
\text { i.e } \quad \mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{ph}} & \\
\text { Line voltage } & =\sqrt{3}(\text { Phase Voltage }) & 1 \text { Mark } \\
\text { i.e } \mathrm{V}_{\mathrm{L}} & =\sqrt{3} \mathrm{~V}_{\mathrm{ph}} &
\end{aligned}
$$

1 (A) (g)State necessity of fuse in the circuit.

Ans:

Necessity of fuse in the circuit:

The fuse is provided in an electric circuit to protect the apparatus connected to it from being damaged due to excessive current. If no fuse is provided in the circuit then a dangerous situation would be created on developing of faults such as over load, short-circuit or earth faults. In case of overload, short circuit and heavy earth faults, a heavy current flows through the cables or wires, apparatus etc. So these will get heated and finally damaged. The fire may also take place. Therefore, to prevent the damage from the excessive current, fuse is necessary. The fuse melts when excessive current flows through it and interrupts the current.
1 (A)(h)State any two effects of electric shocks.
Ans:
Effects of electric shocks:

1) Burns: Electric shock can result in superficial burns on the surface of the skin, also internal burns leading to organ burns affecting the heart.
2) Neurological effects: Electric shock can interfere with the nervous control especially on the heart and lungs.

2 Marks
3) Effect on the chest: Electric shock can result in ventricular fibrillation. any two
4) Severe muscle contractions: Electric shock can result in fractures, loss of $=2$ Marks consciousness or dislocation of joints.
5) Effect on respiratory system: The respiratory system can be paralyzed and
the heartbeat can either become very fast and irregular or can completely stop beating.
6) Death of tissues: Electric shock can cause death of tissues at the entry and the exit points of the current.
7) Kidney failure: A drop in blood pressure, disturbance in fluid and electrolyte balance can cause the release of myoglobin and result in kidney failure.
8) Fatal accident: Electrical shock can cause fatal accident resulting death of person.

1 (B) Attempt any TWO of the following:

1 (B) (a)Draw a neat diagram of constructional details and state the principle of transformer.
Ans:
Constructional details of Transformer:

Principle of Transformer:

Transformer works on the principle of electromagnetic induction. When primary winding is connected to AC supply, an alternating current flows through it and alternating magnetic flux is produced in the core. This changing flux then links with the secondary winding and also with primary winding. According to Faraday's laws of electromagnetic induction, when changing flux links with a conductor, an emf is induced in it. Therefore, an emf is induced in both primary winding as well as secondary winding. If load is connected to secondary winding, the secondary winding induced emf can deliver current and hence power to load.
1 (B) (b)List any four types of 1-phase induction motor. State any one application of each.
Ans:

Type of 1- ϕ Induction Motor	Applications
1. Split-phase Induction motor	Air-conditioning fans, Washing machines, Floor polishers, Mixer, Grinders, Blowers, Centrifugal pumps, Drilling and lathe machines
2. Capacitor-start, Induction-run motor	Pumps, Compressors, Refrigerator motor, Air-conditioner compressor, Conveyors and machine tools

1 Mark each $=4$ Marks
$1 / 2$ Mark for type and $1 / 2$ Mark for application $=1$ Mark each (Any four)

3. Capacitor-start, Capacitor-run motor	Pumps, Refrigerators, Air compressors
4. Permanent Split Capacitor motor	Fans and blowers in heaters and air conditioners, Refrigerator compressors, Office machinery
5. Shaded-pole Induction motor	Small table fans, Exhaust fan motors, dispensing machines, Hair dryers, photo-copying machines, Air- conditioning \& refrigeration equipment

1 (B) (c)Mention types of earthing. Draw a neat labelled diagram of any one of it.
Ans:
Data Given:
Types of Earthing:
i) Pipe Earthing
ii) Plate Earthing

Pipe Earthing

Plate Earthing

2 Attempt any FOUR of the following:
2(a) Compare series and parallel circuit.
Ans:
Comparison between series and parallel circuit:

| Sr. No. | Series Circuit | Parallel Circuit |
| :---: | :---: | :---: | :---: |
| 1 | A series circuit is that circuit in | A parallel circuit is that circuit in |

	which the current flowing through each circuit element is same.	which the voltage across each circuit element is same.
3	The sum of the voltage drops in series resistances is equal to the applied voltage V . $\therefore \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$	The sum of the currents in parallel resistances is equal to the total circuit current I . $\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
4	The effective resistance R of the series circuit is the sum of the resistances connected in series. $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	The reciprocal of effective resistance R of the parallel circuit is the sum of the reciprocals of the resistances connected in parallel. $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots$
5	Resultant resistance $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	Resultant conductance $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\cdots$
6	Different resistors have their individual voltage drops.	Different resistors have their individual currents.
7	Example: Fuse connection	Example: Connection of various lamps \& appliances

1 Mark for each of any four points $=4$ Marks

2(b) Find the current in each branch by Nodal analysis.

Ans:

By applying KCL to Node A

$$
\begin{aligned}
& \mathrm{I}_{3}=\mathrm{I}_{1}+\mathrm{I}_{2} \\
& \frac{\mathrm{~V}_{\mathrm{A}}}{2}=\frac{10-\mathrm{V}_{\mathrm{A}}}{3}+\frac{5-\mathrm{V}_{\mathrm{A}}}{6} \\
& \frac{\mathrm{~V}_{\mathrm{A}}}{2}+\frac{\mathrm{V}_{\mathrm{A}}}{3}+\frac{\mathrm{V}_{\mathrm{A}}}{6}=\frac{10}{3}+\frac{5}{6} \\
& \frac{6 \mathrm{~V}_{\mathrm{A}}}{6}=\frac{25}{6} \\
& V_{A}=4.17 \text { volts }
\end{aligned}
$$

Current flowing through resistance $3 \Omega=I_{1}=\frac{10-V_{\mathrm{A}}}{3}=\mathbf{1 . 9 4} \mathbf{A m p}$
Current flowing through resistance $6 \Omega=I_{2}=\frac{5-V_{\mathrm{A}}}{6}=\mathbf{0 . 1 4} \mathbf{A m p}$

1 Mark for
Voltage
equation

1Mark for
V_{A}
1 Mark for currents
1 Mark for Current marking on circuit

Current flowing through resistance $2 \Omega=I_{3}=\frac{\mathrm{V}_{\mathrm{A}}}{2}=2.08 \mathrm{Amp}$

SUMMER - 2018 Examinations
 Model Answer

2(c) In given Fig. 150V are applied to the terminal AB. Determine
(i) The resistance between the terminal A and B.
(ii) The current I.

Ans:

(i) The resistance between the terminal A and B:

Converting three star connected 80Ω resistors in to equivalent delta,

$$
\mathrm{R}_{12}=\mathrm{R}_{23}=\mathrm{R}_{31}=R_{3}+R_{1}+\frac{R_{3} R_{1}}{R_{2}}=80+80+\frac{(80)(80)}{80}=240 \Omega
$$

The equivalent circuit is as shown in the figure below.

There are two parallel combinations of $240 \Omega \& 80 \Omega$ resistors. The equivalent of these parallel combinations is given by,
$\mathrm{R}_{\text {eq }}=(240)(80) /(240+80)=60 \Omega$
The equivalent circuit is shown below.

The resistance between terminals A \& B is given by,
$\mathrm{R}_{\mathrm{AB}}=240\|(60+60)=240\| 120=(240)(120) /(240+120)$

(ii) The current I:

Current $I=V / R_{A B}=150 / 80$

$$
\mathrm{I}=1.875 \mathrm{~A}
$$

2(d) When a sinusoidal voltage is applied to the circuit containing resistance only:
(i) Draw circuit diagram.
(ii) Write voltage and current equation.
(iii) Draw waveforms of voltage and current.

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
(iv) Draw phasor diagram.

Ans:
i) Circuit Diagram:

ii) Voltage and Current Equations:

$$
\begin{aligned}
& v=V_{m} \sin (\omega t) \\
& i=I_{m} \sin (\omega t)
\end{aligned}
$$

1 Mark for each bit
$=4$ Marks
iii) Waveform of Voltage \& Current:

iv) Phasor Diagram:

2(e) Explain phenomenon of resonance in R-L-C circuit.
Ans:
RLC series resonance circuit:

A series circuit containing resistance, inductance and capacitance, is said to be resonant when the circuit power factor is unity, $\left(\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}\right)$ i.e. applied voltage and current are in phase. This condition is termed as series resonance.

1 Mark for circuit diagram

2 Marks
for explanatio n

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
Consider phasor diagram, here in resonance condition voltage across inductance $\left(\mathrm{V}_{\mathrm{L}}\right)$ is equals to voltage across capacitance $\left(\mathrm{V}_{\mathrm{C}}\right)$ and cancells each other being 180° out of phase. The applied voltage V becomes equal to voltage across resistor, V_{R} and is in phase with resultant current I.
Similarly, inductive reactance and capacitive reactance are equal and get cancelled making circuit impedance Z equal to circuit resistance R.
2(f) Draw circuit diagram for measurement of single phase power using dynamometer type wattmeter.
Ans:
Circuit diagram for measurement of single phase power using dynamometer
2 Marks type wattmeter:

3 Attempt any FOUR of the following:
3(a) Define:
(i) Inductive reactance
(ii) Capacitive reactance
(iii) Impedance
(iv) Power factor

Ans:
i) Inductive Reactance:

The opposition offered by an inductor to the alternating current flowing through it, is called as Inductive reactance.

Inductive reactance $X_{L}=2 \pi f L$
where, f is the frequency of current or voltage in hertz (Hz),
1 Mark for each bit

ii) Capacitive Reactance:

The opposition offered by capacitor to the alternating current flowing through it, is called as Capacitive reactance.

Capacitive reactance $X c=\frac{1}{2 \pi f C}$
where, f is the frequency of current or voltage in hertz (Hz),
C is the capacitance in farad (F).

iii) Impedance:

The total opposition offered by circuit or device to the alternating current flowing through it, is called as Impedance.

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
Impedance $\mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)$
Where, R is the resistance,
X_{L} is the inductive reactance,
X_{C} is the capacitive reactance.

iv) Power Factor:

It is the cosine of the angle between the applied voltage and the resulting current.
Power factor $=\cos \phi$
where, ϕ is the phase angle between applied voltage and current.

OR

It is the ratio of true or effective or real power to the apparent power.
$\begin{gathered}\text { Power factor }=\frac{\text { True Or Effective Or Real Power }}{\text { Apparent Power }} \\ \text { OR }\end{gathered}=\frac{\mathrm{VIcos} \varnothing}{\mathrm{VI}}=\cos \emptyset$
It is the ratio of circuit resistance to the circuit impedance.
Power factor $=\frac{\text { Circuit Resistance }}{\text { Circuit Impedance }}=\frac{R}{Z}=\cos \emptyset$
3(b) Draw the phasor diagram of following AC:
(i) $\mathrm{I}_{1}=10 \sin \omega \mathrm{t}$
(ii) $\mathrm{I}_{2}=15 \sin \left(\omega \mathrm{t}+20^{\circ}\right)$
(iii) $\mathrm{I}_{3}=20 \sin \left(\omega \mathrm{t}-45^{\circ}\right)$
(iv) $\mathrm{I}_{4}=15 \sin \omega t$

Ans:
Phasor Diagram:

1 Mark for
each
phasor

1 Mark for each of any three points

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)

given by Lenz's law.	is given by Fleming's Right hand rule.
Two types: Self-induced emf Mutually induced emf	No such further classification
e.g. emf induced in transformer windings	e.g emf induced in Generator, Alternator armature windings

3(d) Define:
(i) Form factor
(ii) Peak factor

Ans:
i) Peak factor:

The peak factor of an alternating quantity is defined as the ratio of its maximum value to the RMS value.
Peak factor $=\frac{\text { Maximum value }}{\text { RMS value }}$
ii) Form factor:

The form factor of an alternating quantity is defined as the ratio of the RMS value to the average value.

2 Marks
Form factor $=\frac{\text { RMS value }}{\text { Average value }}$
3(e) The voltage and current equations in an AC circuit are given by $\mathrm{v}=120 \sin \omega \mathrm{t}$ and i $=2.5 \sin (\omega t+\pi / 2)$. Find the RMS value of current and voltage. Also state type of circuit.
Ans:
i) Voltage:

Standard equation of sinusoidal voltage is $v=V_{m} \sin (\omega t \pm \emptyset)$ volt.

On comparing the given voltage with standard equation, we get
Maximum Value $V_{m}=120 \mathrm{~V}$
RMS value $V=\frac{V_{m}}{\sqrt{2}}=\frac{120}{\sqrt{2}}=84.85$ volt
½ Mark for V_{m} 1 Mark for V
ii) Current:

Standard equation of sinusoidal current is $i=I_{m} \sin (\omega t \pm \emptyset) a m p$.
On comparing the given current with standard equation, we get
Maximum Value $I_{m}=2.5 \mathrm{~A}$
RMS value $I=\frac{I_{m}}{\sqrt{2}}=\frac{2.5}{\sqrt{2}}=1.77 \mathrm{~A}$
iii) Type of Circuit:

Argument of sin function in voltage equation: ($\omega \mathrm{t}$)
Argument of sin function in current equation: ($\omega \mathrm{t}+\pi / 2$)

3 (f) State types of power. Give their expressions and show them on power triangle.
Ans:
(i) Apparent Power :

SUMMER - 2018 Examinations
 Model Answer

Apparent power (S) is simply the product of RMS voltage and RMS current. $\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z}$ volt-amp.
(ii) Active power:

Active power (P) is the product of voltage, current and the cosine of the phase angle between voltage and current. OR
It is the power actually utilized in the circuit, hence called real or true power.
$P=V I \cos \emptyset=I^{2} R$ watt.
(iii) Reactive Power:

Reactive power (Q) is the product of voltage, current and the sine of the phase angle between voltage and current.
$\mathrm{Q}=\mathrm{VIsin} \varnothing=\mathrm{I}^{2} \mathrm{X}$ volt-amp-reactive.

4 (a) In the circuit given in Fig. calculate the current in 7Ω resistance using Kirchhoff's law.

Ans:

By applying KVL to loop ABDEFA,

$$
100-100 I_{1}-7 I_{2}=0
$$

$$
\begin{equation*}
100 I_{1}+7 I_{2}=100 \tag{1}
\end{equation*}
$$

1 Mark
By applying KVL to loop BDCB

$$
\begin{gather*}
-7 I_{2}+12\left(I_{1}-I_{2}\right)=0 \\
12 I_{1}-19 I_{2}=0 \tag{2}
\end{gather*}
$$

1 Mark
Multiply eq (1) by 12 and eq (2) by 100, we get
$1200 \mathrm{I}_{1}+84 \mathrm{I}_{2}=1200$
$1200 \mathrm{I}_{1}-1900 \mathrm{I}_{2}=0$
1 Mark
Subtracting eq (4) from eq (3), we get

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
$1984 \mathrm{I}_{2}=1200$
$\therefore \mathrm{I}_{2}=\frac{1200}{1984}=\mathbf{0 . 6 0 5} \mathrm{A}$
The current through 7Ω is $\mathrm{I}_{2}=\mathbf{0 . 6 0 5} \mathrm{A}$
4 (b) Define the following terms with waveforms:
(i) Phase difference
(ii) Lagging phase difference
(iii) Leading phase difference
(iv) Out of phase

Ans:

i) Phase difference:-

Phase difference between two alternating quantities is the angular distance between their respective zero or maximum values.
In the following figure, it is seen that the angular distance between corresponding zero values is θ, hence phase difference between them is θ.

ii) Out of Phase: When two quantities do not attain their respective zero or peak values simultaneously, then the quantities are said to be out-of-phase quantities. OR
If phase difference between two alternating quantities is non-zero, then they are called as "Out-of- phase" quantities.
In the above diagram, it is seen that the voltage v and current i do not attain their respective zero values simultaneously, hence they are out of phase quantities with phase difference of θ.
iii) Leading Phase difference:

The quantity which attains the respective zero or peak value first, is called 'Leading Quantity’.
In the above diagram, the voltage attains its zero or positive peak first and after an angle of θ, the current attains its respective zero or positive peak value, hence voltage is said to be leading the current by an angle of θ.
iv) Lagging Phase difference:

The quantity which attains the respective zero or peak value later, is called 'Lagging Quantity’.
In the above diagram, the current attains its zero or positive peak later than the voltage after an angle of θ, hence current is said to be lagging the voltage by an angle of θ.
4 (c) For R-C circuit
(i) Draw the circuit diagram
(ii) Write the voltage and current equation
(iii) Draw the vector diagram
(iv) Draw the impedance triangle

Ans:

i) Circuit Diagram:

(a) Circuit Diagram
ii) Voltage \& Current Equations:
$v=V_{m} \sin (\omega t)$
$i=I_{m} \sin (\omega t+\emptyset)$
where, phase angle $\emptyset=\tan ^{-1}\left(\frac{X_{C}}{R}\right)$
iii) Vector Diagram:

iv) Impedance Triangle:

4 (d) A coil having 10Ω resistance and 0.1 H inductance is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Calculate impedance, current, power factor, power absorbed by the coil.
Ans:
Data Given: Resistance $\mathrm{R}=10 \Omega$, Inductance $\mathrm{L}=0.1 \mathrm{H}$
Supply Voltage $\mathrm{V}=230 \angle 0^{\circ} \mathrm{V}, \quad$ Supply frequency $\mathrm{f}=50 \mathrm{~Hz}$,
(i) Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)(0.1)=\mathbf{3 1 . 4 \Omega}$
(ii) Impedance of series circuit

$$
\begin{aligned}
Z & =R+j X_{L}=10+j 31.4 \\
& =\mathbf{3 2 . 9 5} \angle 72.33^{\circ} \Omega
\end{aligned}
$$

1 Mark for
Each of
Z,
I,
pf,
P
(iii) Current $I=\frac{V}{Z}=\frac{230 \angle 0^{\circ}}{32.95 \angle 72.33^{\circ}}=\mathbf{6 . 9 8} \angle-\mathbf{7 2 . 3 3}{ }^{\circ} \mathbf{A}$
(iv) Power factor $\cos \varnothing=\cos \left(72.33^{\circ}\right)=\mathbf{0 . 3 0 3 5}$ lagging

1 Mark for each bit
(v) Power absorbed by coil i.e Active power

$$
P=V I \cos \varnothing=(230)(6.98)(0.3035)=487.24 \text { watt }
$$

Any other method of computation may please be considered and marks be alloted

SUMMER - 2018 Examinations
 Model Answer

Subject Code: 17331 (ETG)
4 (e) State the working principle of capacitor start single phase induction motor.

Ans:
 Working principle of Capacitor-start Single phase Induction Motor:

When single-phase ac supply is given to single-phase stator winding of motor, a magnetic field is produced in the air gap between stator and rotor. However, this magnetic field is not rotating in nature, rather it is pulsating or oscillating in nature. So torque is not developed and motor cannot start itself. Thus single-phase induction motor is not self-starting.
To make the motor self-starting, it is essential that rotating magnetic field must be produced in the air gap between stator and rotor. For that, the single phase winding is split into two parts (windings) and such two windings are placed in stator core with 90° displacement. To obtain large phase difference (close to 90° in time phase) between their currents, a capacitor is inserted in series with one winding. This winding is referred as Starting or Auxiliary winding. Other winding is the Main or Running winding. These two windings when connected in parallel across singlephase supply, two currents of large phase difference flow through these windings and rotating magnetic field is produced. The rotating magnetic field is cut by short circuited rotor conductors, which then carry current. Due to interaction between rotor current and stator magnetic field, force is exerted on rotor and rotor rotates. Once motor picks up the speed nearly 75% of rated speed, the centrifugal switch get opened and starting winding is disconnected from supply. The motor then continues to run with only main winding in the circuit and its pulsating magnetic field. Since a capacitor is used in series with the auxiliary winding to produce starting torque and to start the motor, it is referred as Capacitor-start motor.

4 (f) Explain voltage ratio, current ratio and transformer ratio of a transformer with a neat sketch of it, showing all voltages and currents.
Ans:
i) Voltage Ratio:

The ratio of secondary load voltage V_{2} to the primary supply voltage V_{1} is known as the voltage ratio.
Voltage Ratio $=\frac{V_{2}}{V_{1}}$
ii) Current Ratio:

The ratio of secondary current I_{2} to the primary current I_{1} is known as the current ratio.
Current Ratio $=\frac{I_{2}}{I_{1}}$
iii) Transformation Ratio:

In general, the turns ratio or emf ratio is called as transformation ratio.
The ratio of secondary emf E_{2} to the primary emf E_{1} is known as the transformation ratio.
Also the ratio of secondary turns N_{2} to the primary turns N_{1} is known as the transformation ratio.
Transformation Ratio $=\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}$

4 Marks
For correct answer

1 Mark for
each ratio
$=3$ Marks
$+$
1 Mark for diagram

5 Attempt any FOUR of the following
5(a) The equation of an alternating voltage $\mathrm{v}=282.8 \sin 314 \mathrm{t}$. determine
(i) Peak voltage
(ii) RMS value
(iii) Frequency
(iv) Time period

Ans:

Standard equation of sinusoidal voltage is $v=V_{m} \sin (\omega t)$ volt.
On comparing the given voltage with standard equation, we get
(i) Peak or Maximum Value $V_{m}=\mathbf{2 8 2 . 8}$ volt

1 Mark for each bit
(ii) RMS value $V=\frac{V_{m}}{\sqrt{2}}=\frac{282.8}{\sqrt{2}}=\mathbf{1 9 9 . 9 7} \cong \mathbf{2 0 0}$ volt
(iii) Angular frequency $\omega=314 \mathrm{rad} / \mathrm{sec}=2 \pi \mathrm{f}$
\therefore frequency $\mathrm{f}=\frac{314}{2 \pi}=49.97 \cong \mathbf{5 0 H z}$
(iv) Time period $\mathrm{T}=1 / \mathrm{f}=1 / 50=0.02 \mathrm{sec}=\mathbf{2 0}$ millisecond

5b) For a delta connected balanced system, state
(i) Relation between line and phase voltage.
(ii) Relation between line and phase current.
(iii) Power in terms of phase and line voltage
(iv) Draw phasor diagram.

Ans:
i) Relation Between Line and Phase Voltage in Delta Connected Balanced System:
Line voltage $=$ Phase voltage

$$
\mathbf{V}_{\mathbf{L}}=\mathbf{V}_{\mathbf{p h}}
$$

ii) Relation Between Line and Phase Current in Delta Connected Balanced System:
Line current $=\sqrt{3}($ Phase Current $)$

$$
I_{L}=\sqrt{3} I_{p h}
$$

iii) Power Equations:

Three-phase Apparent power $S=3 V_{p h} I_{p h}=\sqrt{3} V_{L} I_{L}$ volt-amp
Three-phase Active power $P=3 V_{p h} I_{p h} \cos \varnothing=\sqrt{3} V_{L} I_{L} \cos \emptyset$ watt 1 Mark
Three-phase Reactive power $Q=3 V_{p h} I_{p h} \sin \emptyset=\sqrt{3} V_{L} I_{L} \sin \emptyset \mathrm{VAr}$
Where, \varnothing is the phase angle between phase voltage and phase current.
iv) Phasor Diagram:

SUMMER - 2018 Examinations
Model Answer

Subject Code: 17331 (ETG)

1 Mark

2 Marks for each of any two points
$=4$ Marks

5d) Three inductive coils, each with a resistance of 15Ω and inductance of 0.3 H are connected in star to a three-phase, 400 V supply. Calculate the phase current, line current and total power absorbed.
Ans:
Data Given: Line Voltage $\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}$, Assuming Frequency f $=\mathbf{5 0} \mathbf{~ H z}$
Resistance $\mathrm{R}=15 \Omega$, Inductance $\mathrm{L}=0.3 \mathrm{H}$
\therefore Inductive reactance per phase $X_{L}=2 \pi f L=2 \pi(50)(0.3)=94.26 \Omega$
\therefore Impedance per phase $Z=R+j X_{L}=15+j 94.26=12.89 \angle 21.43^{\circ} \Omega$

$$
Z=\sqrt{\left(R^{2}+X_{L}^{2}\right)}=\sqrt{15^{2}+(94.26)^{2}}=95.44 \Omega
$$

In star-connected system, phase voltage $V_{p h}=\frac{1}{\sqrt{3}}$ Line voltage $=\frac{400}{\sqrt{3}}=230.94 \mathrm{~V}$
\therefore Phase current $I_{p h}=\frac{V_{p h}}{Z}=\frac{230.94}{95.44}=\mathbf{2 . 4 1 9} \mathrm{A}$

1 Mark
1 Mark

1 Mark

2 Marks each $=4$ Marks

Ans:

Construction of Autotransformer:

Autotransformer has only one winding, part of the winding is common for primary and secondary, as shown in the figure. This single winding is placed on Spiral core. The facility is provided to change the no. of secondary turns. It is done by movable contact whose position can be changed by rotating the knob. Their exists electrical connection between primary and secondary.

Working of Autotransformer:

When supply is given to the winding, the primary current I_{P} flows and the core get

SUMMER - 2018 Examinations
 Model Answer

magnetized with changing flux. The changing flux links with full winding turns and according to Faraday's laws of electromagnetic induction, emf is induced in it. The emf induced in common winding delivers the load current as shown in the figure above. Since the primary and secondary windings are electrically connected, the power from primary to load is transferred partly conductively and inductively.

6 Attempt any FOUR of the following

6a) For a circuit given in Fig. find Inductive reactance, Impedance, Current, Phase difference between V and I.

Ans:

Data Given:

Resistance $\mathrm{R}=20 \Omega$, Inductance $L=0.5 \mathrm{H}$, Supply Voltage $\mathrm{V}=110 \mathrm{~V}$ and $\mathrm{f}=50 \mathrm{~Hz}$.
(i) Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)(0.5)=\mathbf{1 5 7 . 0 8} \Omega$
(ii) Impedance of series circuit $\mathrm{Z}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=20+\mathrm{j} 157.08$

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}\right)^{2}}=\sqrt{20^{2}+(157.08)^{2}} \\
& =\mathbf{1 5 8 . 3 5 \Omega}
\end{aligned}
$$

1 Mark for each
$=4$ Marks
(iii) Current $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{110}{158.35}=0.695 \mathrm{~A}$.
(iv) Phase difference: $\phi=\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)=\tan ^{-1}(157.08 / 20)=82.74^{\circ}$

6b) For the circuit given below in Fig., calculate
(i) Total impedance in the circuit
(ii) Current in the circuit.

Ans:

Data Given:

Resistance $\mathrm{R}=10 \Omega$, Inductance $\mathrm{L}=0.25 \mathrm{H}$, Capacitance $\mathrm{C}=25 \mu \mathrm{~F}=25$
$\times 10^{-6} \mathrm{~F}$
Supply Voltage $V=230 \mathrm{~V}$ and $\mathrm{f}=50 \mathrm{~Hz}$.
Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)(0.25)=78.54 \Omega \quad 1$ Mark
Capacitive reactance $X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(50)\left(25 \times 10^{-6}\right)}=\mathbf{1 2 7 . 3 2} \Omega \quad 1$ Mark
(i) Impedance of series circuit

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{10^{2}+(78.54-127.32)^{2}} \\
& =49.79 \Omega
\end{aligned}
$$

(ii) Current $\quad \mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{230}{49.79}$

1 Mark

$$
=4.62 \mathrm{~A}
$$

6c) Define the following for polyphase circuit:
(i) Balanced load
(ii) Unbalanced load
(iii) Balanced supply
(iv) Unbalanced supply

Ans:
i) Balanced Load:

Balanced three phase load is defined as star or delta connection of three equal impedances having equal real parts and equal imaginary parts.

Example circuit:

1 Mark

1 Mark

1 Mark
e.g $\mathrm{V}_{\mathrm{a}}=230 \angle 0^{\circ}$ volt, $\mathrm{V}_{\mathrm{b}}=230 \angle-120^{\circ}$ volt, $\mathrm{V}_{\mathrm{c}}=230 \angle 120^{\circ}$ volt represents balanced supply.
iv) Unbalanced supply:

If a supply does not satisfy the condition of balance it is called as unbalanced supply. OR
Unbalanced supply is defined as three phase supply voltages having unequal magnitude and/or unequal displacement from each other.

6d) A single phase transformer of 50 Hz has maximum flux in the core as 0.21 Wb , the number of turns of primary being 460 and that on secondary is 52. Calculate emf induced in primary and secondary windings of a transformer.
Ans:

Data Given:

Primary turns $\mathrm{N}_{1}=460 \quad$ Secondary turns $\mathrm{N}_{2}=52$

SUMMER - 2018 Examinations
 Model Answer

Frequency $\mathrm{f}=50 \mathrm{~Hz} \quad \phi_{\mathrm{m}}=0.21 \mathrm{~Wb}$
$\mathrm{E}_{1}=4.44 \emptyset_{\mathrm{m}} \mathrm{fN}_{1}$
$=4.44 \times 0.21 \times 50 \times 460$
$=21445.2 \mathrm{~V}$
$\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{52}{460}$

$$
E_{2}=\frac{21445.2}{460} \times 52=2424.24 \mathrm{~V}
$$

6e) Write down three different formulae for transformation ratio k of transformer. What do you understand if value of k
(i) $\mathrm{k}<1$
(ii) $\mathrm{k}>1$

Ans:

Transformation Ratio:
$\mathrm{k}=\frac{\text { Secondary emf }}{\text { Primaryemf }}=\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}$
$\mathrm{k}=\frac{\text { Secondary No. of turns }}{\text { Primary No. of turns }}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}$
1 Mark for each formula
$\mathrm{k}=\frac{\text { Secondary voltage }}{\text { Primary voltage. }}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$=3$ Marks
$\mathrm{k}=\frac{\text { Primary current. }}{\text { Secondary current }}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$
$\begin{array}{lll}\text { i) } & \mathrm{k}<1 & \text { Step down Transforme } \\ \text { ii) } & \mathrm{k}>1 & \text { Step up Transformer }\end{array}$
6f) State any four precautions to be taken against electric shock.
Ans:

Precautions to be taken against electric shock:

1) While using any electrical device, put on rubber sole footwear and keep your hands dry.
2) Always switch off main switch before replacing a blown fuse.
3) Ensure that the electrical equipment is properly earthed.

1 Mark for any four
4) Keep earth connection in good condition.
5) Replace broken or damaged switches, plugs etc.
6) A plug point should never be disconnected by pulling the flexible cable.
7) Make plug point connection by plug tops and not by bare wires.
8) Check for proper working of safety devices.
9) Keep electrical hand tools in proper condition.
10) Don't wear loose clothes while working on installation.

