Winter - 2016 Examinations

Model Answer
Subject Code: 17331 (ETG)

Important Instructions to examiners:

1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3. The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4. While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6. In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7. For programming language papers, credit may be given to any other program based on equivalent concept.

Winter - 2016 Examinations

Model Answer
Subject Code: 17331 (ETG)
1 (A) Attempt any SIX of the following:
1 A) a) State Ohm's law with equation
Ans:
Ohm's law:
As long as physical conditions (such as dimensions, pressure and temperature) are

Ohm's law
1 Mark
Equation
1 Mark
i.e $\mathrm{V} \alpha \mathrm{I}$ or $\mathrm{V}=\mathrm{RI}$
where $\mathrm{R}=$ constant of proportionality, called as the resistance of the conductor
1 A) b)State Kirchhoff's current law with an example.

Ans:

Kirchhoff's laws:

Kirchhoff's Current Law (KCL):
It states that in any electrical network, the algebraic sum of the currents meeting at a node (point or junction) is zero.
i.e $\Sigma \mathrm{I}=0$

At junction point $\mathrm{P}, \quad \mathrm{I}_{1}-\mathrm{I}_{2}-\mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{5}-\mathrm{I}_{6}=0$
Sign convention:

Statement of
KCL
1 Mark

Example/
Diagram
1 Mark

1 A) c) Write formula for conversion of star to delta conversion.
Ans:
Formula for conversion of star to delta conversion:

2 Marks.

$$
\begin{aligned}
& R_{A B}=R_{A}+R_{B}+\frac{R_{A} R_{B}}{R_{C}} \\
& R_{B C}=R_{B}+R_{C}+\frac{R_{B} R_{C}}{R_{A}} \\
& R_{C A}=R_{A}+R_{C}+\frac{R_{A} R_{C}}{R_{B}}
\end{aligned}
$$

OR Equivalent formula

1 A) d)State Faraday's law of electromagnetic induction.

Winter - 2016 Examinations

Model Answer
Subject Code: 17331 (ETG)

Ans:
 Faraday's Laws of Electromagnetic Induction:
 First Law:

Whenever a changing magnetic flux links with a conductor, an emf is induced in that conductor.

OR

When a conductor cuts across magnetic field, an emf is induced in that conductor. 1 Mark

Second Law:

The magnitude of induced emf is directly proportional to the rate of change of flux 1 Mark linking with the conductor or the rate of flux cut by the conductor.

1 A) e)Compare between statically \& dynamically induced emf. (any two points).
Ans:
Comparison between statically $\&$ dynamically induced emf:

Statically induced emf	Dynamically induced emf
Emf is induced without any relative motion between conductor and magnetic field.	Emf is induced due to relative motion between conductor and magnetic field.
Emf is induced when changing magnetic field links with a conductor.	Emf is induced when conductor cuts the magnetic field due to relative motion between them.
Direction of statically induced emf is given by Lenz's law.	Direction of dynamically induced emf is given by Fleming's Right hand rule.
Two types: Self-induced emf Mutually induced emf	No such further classification
e.g. emf induced in transformer windings	e.g emf induced in Generator, Alternator armature windings

Any 2 points 1 Mark each

1 A) f) Write the relation between
i) Phase and line current
ii) Phase and line voltage , for star and delta connection.

Ans:
For star connection,

$$
\begin{array}{rlr}
\text { Line current } & =\text { Phase current } & \\
\text { i.e } I_{L} & =I_{\text {ph }} & \\
\text { Line voltage } & =\sqrt{3} \text { (Phase Voltage) } & \\
\text { i.e } V_{L} & =\sqrt{3} V_{p h} &
\end{array}
$$

For delta connection,

Line current $=\sqrt{3}$ Phase current

```
i.e \(\quad I_{L}=\sqrt{3} I_{p h}\)
        Line voltage \(=\) Phase Voltage
    i.e \(V_{L}=V_{p h}\)
```

1A g) Classify fuses and also draw the characteristics of fuse.
A:

Classification of fuses:

i. Semi enclosed or rewireable type
ii. Totally enclosed or cartridge type
iii. Drop out fuse

Any 2 types
iv. Expulsion fuse 1 Mark
v. H.R.C fuse
vi. Striker fuse
vii. Switch fuse
viii. Metal clad fuse

1 Mark

1A h) Explain need of earthing.

Ans:

Need of earthing:
i) Earthing is needed for safety of working personnel, safety of equipment. Any 2 points
ii) For protection, as under such circumstances, the low resistance path results 1 Mark each in heavy current drawn from supply which is sensed to trip the circuit or blow fuses.
iii) Earthing is also needed in electrical installations of substations to hold the neutral voltage to very low values so that fault on one phase does not affect the other (neutral earthing).
iv) Earthing is required for balancing system voltages.

1 B) Attempt any TWO from the following:

Winter - 2016 Examinations
 Model Answer

Subject Code: 17331 (ETG)
1 B) a)Compare auto transformer with two winding transformer.
Ans:
Comparison of auto transformer with two winding transformer:

	Autotransformer	Two winding Transformer			
1	Only one winding, part of the winding is common for primary and secondary.	There are two separate windings for primary and secondary.			
2	Movable contact exist	No movable contact between primary and secondary			
3	Electrical connection between primary and secondary.	Electrical isolation between primary and secondary windings.			
4	Comparatively lower losses.	Comparatively more losses			
5	Efficiency is more as compared to two winding transformer.	Efficiency is less as compared to autotransformer.			
6	Copper required is less, thus copper is saved.	Copper required is more.	$	$	Core
:---					

Any 4 points 1 Mark each

1 B) b)Explain principle of working of induction motor (single phase) with its operation.

Ans:

Principle of working and operation of single phase induction motor:

The stator of single phase Induction motor is provided with an auxiliary or starting winding in addition to main or running winding. The starting winding is located 90° electrical from main winding \& operates only during the brief period when the motor starts up. The starting winding has high resistance \& relatively low reactance. While the main winding has low resistance \& large reactance.
When these two stator windings which are connected in parallel are energized from single phase supply, they draw the currents. The current drawn by main winding \& starting winding have reasonable phase angle between them. Consequently, revolving field approximating to that of two phase machine is produced which starts the motor.
When motor reaches about 75% of synchronous speed, the centrifugal switch opens the staring winding \& motor runs with main winding.

1 B) c)Explain pipe earthing with neat diagram.

Ans:
 Pipe Earthing:

Diagram
2 Marks

Explanation:

Here GI pipe of 38 mm diameter \& 2.5 m length is embedded vertically in the ground as shown in figure. The earth wires are fastened to the top section of the pipe with nut bolts. The length of pipe depends upon condition of soil \& moisture. The pit area around GI pipe is filled with alternate layer of charcoal \& salt for improving earthing system.
Water pouring arrangement from top section is provided as shown in figure.
The earthing resistance has to be checked time to time accordingly.

2 a) Compare series and parallel circuit with four points.
Ans:
Comparison between series and parallel circuit:

Sr. No.	Series Circuit	
2	A series circuit is that circuit in which the current flowing through each circuit element is same.	A parallel circuit is that circuit in which the voltage across each circuit element is same.
3	The sum of the voltage drops in series resistances is equal to the	The sum of the currents in parallel resistances is equal to the total

	applied voltage V. $\therefore \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$	circuit current I. $\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
4	The effective resistance R of the series circuit is the sum of the resistances connected in series. $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	The reciprocal of effective resistance R of the parallel circuit is the sum of the reciprocals of the resistances connected in parallel. $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots$
5	Resultant resistance $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	Resultant conductance $\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\cdots$
6	Different resistors have their individual voltage drops.	Different resistors have their individual currents.
7	Example: Fuse connection	Example: Connection of various lamps \& appliances

Any 4 points 1 Mark each

Figure-1

Ans:

Current through 2Ω resistor using mesh loop:
Assign mesh currents I_{1} and I_{2} to meshes ABDA and BCDB as shown in following fig.

Consider Loop/ Mesh ABDA and apply KVL to it

$$
\begin{aligned}
& -3 \mathrm{I}_{1}-2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+5=0 \text { OR } \\
& -3 \mathrm{I}_{1}-2 \mathrm{I}_{1}+2 \mathrm{I}_{2}=-5 \quad \text { OR } \\
& -5 \mathrm{I}_{1}+2 \mathrm{I}_{2}=-5 \quad \text { OR } \\
& 5 \mathrm{I}_{1}-2 \mathrm{I}_{2}=5--\cdots-----------(1)
\end{aligned}
$$

Consider Loop/ Mesh BCDB and apply KVL to it

$$
\begin{array}{lc}
-5 \mathrm{I}_{2}-10-2\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0 & \text { OR } \\
-5 \mathrm{I}_{2}-10-2 \mathrm{I}_{2}+2 \mathrm{I}_{1}=0 & \text { OR } \\
-7 \mathrm{I}_{2}-10+2 \mathrm{I}_{1}=0 & \text { OR }
\end{array}
$$

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

$$
\begin{equation*}
2 \mathrm{I}_{1}-7 \mathrm{I}_{2}=10 \tag{2}
\end{equation*}
$$

Multiply eq (1) by 2 and eq (2) by 5 , We get

$$
\begin{equation*}
10 I_{1}-4 I_{2}=10 \tag{3}
\end{equation*}
$$

$10 \mathrm{I}_{1}-35 \mathrm{I}_{2}=50$
Subtracting eq (3) from eq (4), We get

$$
-31 \mathrm{I}_{2}=40 \therefore \mathrm{I}_{2}=\frac{40}{-31}=-1.290 \mathrm{~A}
$$

Putting this value of I_{2} in eq. (1 or 2), we get

$$
\mathrm{I}_{1}=0.484 \mathrm{~A}
$$

Hence current through 2Ω resistance is,

$$
\mathrm{I}_{1}-\mathrm{I}_{2}=0.484-(-1.290)=\mathbf{1 . 7 7 4} \mathrm{A} \quad(\text { from } \mathbf{B} \text { to } \mathbf{D})
$$

2 c) Simplify given circuit using star-delta conversion and find resistance across AB (fig.2)

Figure-2

Ans:

Resistance across AB:

Converting three 3Ω resistances in star into equivalent delta as shown in fig $2 \mathrm{C}-1$

Fig. 2 C- 1
$R_{12}=R_{1}+R_{2}+\frac{R_{1} R_{2}}{R_{3}}=3+3+\frac{3 \times 3}{3}=9 \Omega$
$R_{23}=R_{2}+R_{3}+\frac{R_{2} R_{3}}{R_{1}}=3+3+\frac{3 \times 3}{3}=9 \Omega$
$R_{31}=R_{3}+R_{1}+\frac{R_{3} R_{1}}{R_{2}}=3+3+\frac{3 \times 3}{3}=9 \Omega$
The circuit becomes as below;

Winter - 2016 Examinations

Model Answer
Subject Code: 17331 (ETG)

Fig. 2 C- 2

Fig. 2 C- 3
In Fig. 2 C- $3,5 \Omega$ resistance is parallel with 9Ω and also 4Ω with 9Ω
$\therefore 5 \| 9=\frac{5 \times 9}{5+9}=3.214 \Omega$ and $4 \| 9=\frac{9 \times 4}{9+4}=2.769 \Omega$
Now circuit becomes as shown in fig. $2 \mathrm{C}-4$ wherein 3.214Ω is in series with 2.769
Ω

Fig. 2 C- 4
$\therefore 3.214+2.769=5.983 \Omega$ which is in parallel with 9Ω

Fig. 2 C- 5
$\therefore 9 \| 5.983=\frac{9 \times 5.983}{9+5.983}=\frac{53.8515}{14.9832}=3.594 \Omega$
1 Mark
The circuit becomes as below;

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

1 Mark
Fig. 2 C- 6
Ultimately,

Fig. 2 C- 7
$\therefore \mathrm{R}_{\mathrm{AB}}=1+3.593=4.593 \Omega$
2 d) Draw phasor representation for
i) In phase current
ii) Lagging current
iii) Leading current with respect to sinusoidal voltage. Define phase difference.

Ans:
Phasor representation for applied voltage (V) and resultant current (I):
i) In phase current:

1 Mark
ii) Lagging current:

1 Mark

1 Mark

Phase Difference:

When two alternating quantities of same frequency attain their respective zero values at different instants of time, then they are said to have phase difference \& the angular distance between their corresponding zero values is the angle of phase difference.

2 e) Define power triangle with active, reactive and apparent power formulas.

Ans:

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

Power Triangle:

The power triangles for inductive circuit and capacitive circuit are shown in the fig. (a) and (b) respectively.

Three sides of power triangle are Active power (P), Reactive power (Q) and Apparent power (S).

(a)

> Power Triangles
(b)

Hence

$$
\begin{array}{ll}
S^{2}=P^{2}+Q^{2} & O R \\
S=\sqrt{ }\left(P^{2}+Q^{2}\right) & O R \\
S=P \pm j Q &
\end{array}
$$

Apparent power (S) is given by simply the product of voltage \& current.

$$
\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z} \text { volt }-\mathrm{amp}
$$

Active power (P) is given by the product of voltage, current and the cosine of the phase angle between voltage and current.

$$
\mathrm{P}=\mathrm{VI} \cos \emptyset=\mathrm{I}^{2} \mathrm{R} \text { watt }
$$

Reactive power (Q) is given by the product of voltage, current and the sine of the phase angle between voltage and current.

$$
\mathrm{P}=\mathrm{VI} \sin \varnothing=\mathrm{I}^{2} \mathrm{X} \text { volt-amp-reactive }
$$

2 f) Explain measurement of single phase power measurement using dynamometer type wattmeter.
Ans:
Measurement of single phase power using dynamometer type wattmeter:

In a dynamometer type wattmeter a fixed coil (current coil) is connected in series with the load. This coil is divided in two parts (essentially two coils), each having
thick cross section with less number of turns. They are connected in series or
parallel depending upon the current range. The moving coil (pressure coil) is connected across load. It is thin in cross section and has more number of turns. It is

Explanation
3 Marks mounted in between fixed coils, also a non-inductive high resistance is connected in series with it. When wattmeter is connected for measurement of power consumed by single phase load, The reading of wattmeter is given by multiplication of voltage across pressure coil (V), Current through current coil (I) and cosine of angle between V \& I.
Hence,

$$
\mathrm{P}=\mathrm{V} \mathrm{I} \cos \Phi \text { watts }
$$

3 Attempt any FOUR from the following:

3 a) Draw waveform of voltage and current for ac circuits containing
i) Resistance only
ii) Capacitance only
iii) Inductance only
iv) Capacitance and resistance

Ans:

i) Waveform of voltage and current for ac circuits containing Resistance only

1 Mark

1 Mark

1 Mark
iv) Waveform of voltage and current for ac circuits containing Capacitance and resistance:

1 Mark

3 b) Sinusoidal waveform completes a cycle within 0.02 sec time period. Find cycles completed in 1 minute and frequency of AC supply.
Ans:
Given:
Time period, $\mathrm{T}=0.02 \mathrm{sec}$,
Time period, $\mathrm{T}=0.02 \mathrm{sec}=$ time taken to complete one cycle
Cycles completed in one minute i.e. 60 sec are

$$
=\frac{60}{0.02}=3000 \text { cycles. }
$$

Frequency ,f $=\frac{1}{T}=\frac{1}{0.02}=\mathbf{5 0} \mathbf{~ H z}$ or $\mathbf{5 0} \mathbf{~ c y c l e s} / \mathrm{sec}$
3 c) Define RMS value and Average value.
Ans:
RMS Value of Sinusoidal AC Waveform:
The RMS value is the Root Mean Square value. It is defined as the square root of the mean value of the squares of the alternating quantity over one cycle.

2 Marks

And/OR

For an alternating current, the RMS value is defined as that value of steady current (DC) which produces the same heat or power as is produced by the alternating current during the same time under the same conditions.

Average Value of Sinusoidal AC Waveform:

The average value is defined as the arithmetical average or mean value of all the values of an alternating quantity over one cycle.

And/OR

For an alternating current, the average value is defined as that value of steady current (DC) which transfers the same charge as is transferred by the alternating current during the same time under the same conditions.

3 d) Explain dynamically induced emf with its diagram. Write applications of dynamically induced emf.
Ans:
Dynamically induced emf:

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

(a)
(b)

Explanation
2 Marks

The emf induced in coil or conductor when field/ flux is of constant magnitude and conductor cuts the flux when there is relative motion between conductor $\&$ flux, is called as dynamically induced emf.
Consider the figure, here the conductor having effective length 1 meters moving at right angle to unifrom magnetic field of flux density $B \mathrm{wb} / \mathrm{m}^{2}$ with a velocity of v m / s. Hence emf induced in the conductor is

$$
\mathrm{e}=\mathrm{Blv} \text { volts }
$$

and if the conductor moves with an angle Θ then emf induced in the conductor is $\mathrm{e}=\mathrm{Blvsin} \Theta$ volts.

Apllications of dynamically induced emf:

i) DC Generator
ii) Alternator

3 e) A capacitor of $100 \mu \mathrm{~F}$ is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase supply.
Calculate:
i) The reactance of the capacitor.
ii) Rms value of current and
iii) The maximum value of current.

Ans:
Given: $\quad \mathrm{C}=100 \mu \mathrm{~F}=100 \times 10^{-6} \mathrm{~F}, \quad \mathrm{~V}=200 \mathrm{~V}, \quad \mathrm{~F}=50 \mathrm{~Hz}$
i) The reactance of the capacitor

$$
X c=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 50 \times 100 \times 10^{-6}}=31.8309 \Omega
$$

ii) $\quad \mathrm{Rms}$ value of current

$$
\text { Irms }=\frac{V}{X_{C}}=\frac{200}{31.8309}=6.2832 \mathrm{~A}
$$

iii) The maximum value of current.

$$
\mathrm{I}_{\max }=\sqrt{ } 2 \times \mathrm{I}_{\mathrm{rms}}=\sqrt{ } 2 \times 6.2832=8.8857 \mathrm{~A}
$$

3 f) Explain power factor with its significance.

Ans:

Power Factor $\&$ its significance:
Power Factor: It is the cosine of the angle between the applied voltage and the

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)
resulting current.
Power factor $=\cos \phi$
where, ϕ is the phase angle between applied voltage and current.
OR
It is the ratio of True or effective or real power to the apparent power.
1 Mark
Power factor $=\frac{\text { True Or Effective Or Real Power }}{\text { Apparent Power }}=\frac{\text { VIcos } \varnothing}{\mathrm{VI}}=\cos \varnothing$
OR
It is the ratio of circuit resistance to the circuit impedance.
Power factor $=\frac{\text { Circuit Resistance }}{\text { Circuit Impedance }}=\frac{\mathrm{R}}{\mathrm{Z}}=\cos \emptyset$

Significance of Power Factor:

The apparent power drawn by a circuit has two components:
i) Active power \& ii) Reactive power

Active power should be as large as possible because it is the component which does useful work in the circuit and is possible if reactive power component is small and power factor is approaching to unity.
Thus power factor of a circuit is a measure of its effectiveness in utilizing the apparent power drawn by it. Higher the power factor, higher is the utilization of apparent power.

Attempt any FOUR of the following:
4 a) Simplify following circuit using node voltage method and find out voltage across 5Ω resistor. (fig 3).

Figure-3
Ans:

At node A

$$
\begin{gathered}
\mathrm{I}_{2}+\mathrm{I}_{3}=\mathrm{I}_{1} \\
\frac{V_{A}}{2}+\frac{V_{A}-V_{B}}{5}=\frac{3-V_{A}}{2}
\end{gathered}
$$

Multiplying by 10 to both sides
$\left(\frac{V_{A}}{2} \times 10\right)+\left(\frac{V_{A}-V_{B}}{5}\right) \times 10=\left(\frac{3-V_{A}}{2}\right) \times 10$
$5 \mathrm{~V}_{\mathrm{A}}+2 \mathrm{~V}_{\mathrm{A}}-2 \mathrm{~V}_{\mathrm{B}}=15-5 \mathrm{~V}_{\mathrm{A}}$
$5 \mathrm{~V}_{\mathrm{A}}+5 \mathrm{~V}_{\mathrm{A}}+2 \mathrm{~V}_{\mathrm{A}}-2 \mathrm{~V}_{\mathrm{B}}=15$
$12 \mathrm{~V}_{\mathrm{A}}-2 \mathrm{~V}_{\mathrm{B}}=15$
At node B

$$
\begin{gather*}
\mathrm{I}_{4}+\mathrm{I}_{5}=\mathrm{I}_{3} \tag{1}\\
\frac{V_{B}}{2}+\frac{V_{B}-5}{2}=\frac{V_{A}-V_{B}}{5}
\end{gather*}
$$

Multiplying by 10 to both sides
$\left(\frac{V_{B}}{2} \times 10\right)+\left(\frac{V_{B}-5}{2}\right) \times 10=\left(\frac{V_{A}-V_{B}}{5}\right) \times 10$
$5 \mathrm{~V}_{\mathrm{B}}+5 \mathrm{~V}_{\mathrm{B}}-25=2 \mathrm{~V}_{\mathrm{A}}-2 \mathrm{~V}_{\mathrm{B}}$
$5 \mathrm{~V}_{\mathrm{B}}+5 \mathrm{~V}_{\mathrm{B}}+2 \mathrm{~V}_{\mathrm{B}}-2 \mathrm{~V}_{\mathrm{A}}=25$
$12 \mathrm{~V}_{\mathrm{B}}-2 \mathrm{~V}_{\mathrm{A}}=25$ OR $-2 \mathrm{~V}_{\mathrm{A}}+12 \mathrm{~V}_{\mathrm{B}}=25$
Multiplying eq. (1) by 2 and eq. (2) by 12
Adding both we get,

$$
\begin{array}{r}
24 \mathrm{~V}_{\mathrm{A}}-4 \mathrm{~V}_{\mathrm{B}}=30 \\
+24 \mathrm{~V}_{\mathrm{A}}+144 \mathrm{~V}_{\mathrm{B}}=300 \\
140 \mathrm{~V}_{\mathrm{B}}=330
\end{array}
$$

$$
\therefore \mathrm{V}_{\mathrm{B}}=2.357 \text { volts }
$$

Putting this in eq(1), we get
$12 \mathrm{~V}_{\mathrm{A}}-2 \times 2.357=15$

$$
\begin{array}{ccc}
\therefore V_{A}=1.642 \text { volts } & & 1 / 2 \text { Mark } \\
\text { Voltage across } \mathbf{5 \Omega} \text { resistance }=V_{\mathbf{B}}-\mathrm{V}_{\mathbf{A}}=\mathbf{0 . 7 1 5} \text { volts. } & (\text { with } \mathbf{B} \text { positive w. r. } \mathbf{t} \text {. A) } & 1 \text { Mark }
\end{array}
$$

4 b) Compare electric circuit and magnetic circuit.
Ans:
Comparison between electric and magnetic circuit:
A)Similarities:

Sr. No.	Electric circuit	Magnetic circuit
1	Current: flow of electrons through conductor is current, it is measured in amp.	Flux: lines of magnetic force through medium from N pole to S pole form flux. It is measured in weber.
2	EMF: It is driving force for current, measured in volts.	MMF: It is driving force for flux, measured in amp-turn.
3	Resistance: It is opposition of conductor to current, measured in ohms	Reluctance: It is opposition offered by magnetic path to flux, measured in AT/wb.
4	Resistance is directly proportional to length of conductor.	Reluctance is directly proportional to length of magnetic path.
5	For electric circuit, we define the conductivity.	For magnetic circuit, we define permeability.
6	Electric circuit is closed path for current.	Magnetic circuit is closed path for magnetic flux.

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

7	For electric circuit I = EMF/resistance	For magnetic circuit $\Phi=$ MMF/reluctance
8	Voltage $=$ IR	$\mathrm{M} \mathrm{M} \mathrm{F}=\Phi \mathrm{S}$
9	Resistivity	Reluctivity
10		

b)Dissimilarities:

Sr. No.	Electric circuit	Magnetic circuit
1	Electric current flows.	Flux does not actually flow.
2	Energy is needed continuously for the flow of current	Energy is only needed for establishment of field(flux)
3	Current cannot pass through the insulator	Flux can pass through almost all materials including air
4	Electrical insulator is available	Magnetic insulator does not exits

4 c) Explain RLC series circuit and series resonance with phasor diagram.
Ans:
RLC series resonance circuit:

1 Mark

1 Mark the circuit power factor is unity, $\left(\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}\right)$ i.e. applied voltage and current are in phase.
This condition is termed as series resonance.
Phasor diagram of RLC series resonance circuit:

1 Mark

Winter - 2016 Examinations
 Model Answer

Subject Code: 17331 (ETG)
Consider phasor diagram, here in resonance condition voltage across inductance $\left(\mathrm{V}_{\mathrm{L}}\right)$ is equals to voltage across capacitance $\left(\mathrm{V}_{\mathrm{C}}\right)$ and cancells each other being 180° out of phase, applied voltage V (or V_{R}) is in phase with resultant current I .
Similarly, inductive reactance and capacitive reactance are equal and out of phase hence cancells out and circuit impedance Z becomes equal to circuit resistance R .

4 d) How reactive power can be minimized in inductive circuit to make unity power factor?
Ans:

Methods of reactive power minimization in inductive circuit to make unity power factor:

In inductive circuit, the ohmic value of inductive reactance is X_{L}, and it is equal to $2 \pi f L$ ohms.
i) When we connect a capacitor in series with inductor in such a way that $\mathrm{X}_{\mathrm{C}}\left(=\frac{1}{2 \pi f C}\right)$ becomes equals to X_{L}. Then $\mathrm{X}_{\mathrm{C}} \& \mathrm{X}_{\mathrm{L}}$ being equal get cancelled with each other. Then circuit becomes series resonant circuit and circuit impedance becomes equal to circuit resistance, circuit power factor becomes unity.
ii) When we connect a capacitor in parallel with inductive branch, then the value of capacitor is so chosen that the capacitor branch current I_{C} equals to $\mathrm{I}_{\mathrm{L}} \sin \Phi_{\mathrm{L}}$ (where Φ_{L} is angle between applied voltage and inductor branch current) then circuit becomes parallel resonant circuit and circuit power factor becomes unity.
iii) For making unity power factor for inductive circuit, connect capacitor in series (or parallel) and make it series (or parallel) resonant circuit by adjusting the input frequecy as resonant frequency.

OR any equivalent method may be considered.
4 e) Explain working principle of shaded pole motor.
Ans:
Shaded pole single-phase induction motor:
When single phase supply is applied across the stator winding, an alternating field is created. The flux distribution is non uniform due to shading bands on the poles. The shading band acts as a single turn coil and when links with alternating flux, emf is induced in it. The emf circulates current as it is simply a short circuit. The current produce the magnetic flux in the shaded part of core to oppose the cause of its production which is the change in the alternating flux produced by the winding of motor. Now consider three different instants of time t_{1}, t_{2}, t_{3} of the flux wave to examine the effect of shading band as shown in the fig below. The

1 Mark

Any one method with explanation 4 Marks

Explanation 3Marks magnetic neutral axis shifts from left to right in every half cycle, from non-shaded area of pole to the shaded area of the pole. This gives to some extent a rotating field effect which may be sufficient to provide starting torque to squirrel cage rotor and rotor rotates.

4 f) Explain construction and working principle of transformer.
Ans:

Construction
2 Marks

Construction of single phase transformer:

Single-phase transformer essentially consists of following components:
i) Windings: Two windings generally of copper are placed round the core and are insulated from each other and also from the core.
ii) Core: Magnetic core is made up of thin silicon steel laminations which act as a magnetic circuit.
For big size transformers, tank is used to accommodate the core-winding assembly.

Winter - 2016 Examinations
 Model Answer

Subject Code: 17331 (ETG)
In fact, the core-winding assembly is kept immersed in oil in the tank. The oil acts as a cooling medium and also the insulating medium. The terminals are taken out of the tank using bushings. The supply is connected to primary winding and load is connected to secondary winding.

Working of single phase transformer:

Transformer works on the principle of Mutual electromagnetic induction. When AC voltage is applied to the primary winding, it produces alternating flux in the core. This flux links with the secondary winding and according to Faraday's law of electromagnetic induction, an emf is induced in the secondary winding and the current flows in the secondary circuit if load is connected.

5 Attempt any FOUR from the following:

5 a) A capacitor of $10 \mu \mathrm{~F}$ is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase supply.
Calculate:
i) The reactance of the capacitor.
ii) rms value of current
iii) The maximum current.
iv) Maximum power for one complete cycle

Ans:
Given:
$\mathrm{C}=100 \mu \mathrm{~F}=100 \times 10^{-6} \mathrm{~F}, \mathrm{~V}=200 \mathrm{~V}, \mathrm{f}=25 \mathrm{~Hz}$
i) The reactance of the capacitor.

$$
X c=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 25 \times 100 \times 10^{-6}}=636.6197 \Omega
$$

1 Mark
ii) Rms value of current

Irms $=\frac{V}{X_{c}}=\frac{200}{636.6197}=0.31415 \mathrm{~A}$
iii) The maximum current.

$$
\mathrm{I}_{\max }=\sqrt{ } 2 \times \mathrm{I}_{\mathrm{rms}}=\sqrt{ } 2 \times 0.31415=0.44428 \mathrm{~A}
$$

iv) Maximum power for one complete cycle:

Instantaneous power is given by $p=v . i=V_{m} \sin (\omega t) \cdot I_{m} \sin \left(\omega t+90^{\circ}\right)$
$\therefore p=V_{m} I_{m} \frac{1}{2}\left\{\cos \left(-90^{\circ}\right)-\cos \left(2 \omega t+90^{\circ}\right)\right\}=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}}\left\{-\cos \left(2 \omega t+90^{\circ}\right)\right\}$
$\therefore p=P_{\text {max }}\left\{-\cos \left(2 \omega t+90^{\circ}\right)\right\}$
\therefore Maximum Power $P_{\max }=\frac{V_{m} \times I_{m}}{2}=V_{r m s} I_{r m s}$
\therefore Maximum Power $P_{\max }=200 \times 0.31415=62.83$ watt
But average power over one cycle in pure capacitive circuit is Zero
5 b) State advantages of three phase circuits over single phase circuits.
Ans:
Advantages of three phase circuits over single phase circuits:
i. Three phase transmission line requires less conductor material for same power transfer at same voltage.
ii. For same frame size, three phase machine gives more output.
iii. For same rating, three phase machines have small size.

1 Mark
iv. Three phase motors produce uniform torque.

1 Mark for each of any four

Winter - 2016 Examinations
 Model Answer

Subject Code: 17331 (ETG)
v. Three phase induction motors are self-starting.
vi. For same rating, three phase motors have better power factor.
dii. Three phase transformers are more economical. Power capacity to weight ratio is more.
iii. Three phase machines have higher efficiencies.
ix. Three phase system is more economical with regards to generation, transmission and distribution of power.
x. Three phase system requires less maintenance and it increases the life of the system.
xi. In three phase system rotating magnetic field is produced rather than the pulsating field produced by single phase system.

5 c) Define phase sequence in 3ϕ supply with waveform. What is correct phase sequence?

Ans:

Phase Sequence:

Phase sequence is defined as the order in which the voltages (or any other alternating quantity) of the three phases attain their positive maximum values.
In the shown waveforms, it is seen that the R -phase voltage attains the positive maximum value first, and after angular distance of 120°, Yphase voltage attains its positive maximum and further after 120°, Bphase voltage attains its positive maximum value. So the phase sequence is $\mathrm{R}-\mathrm{Y}-\mathrm{B}$.
Correct phase sequence is R-Y-B.

Definition
2 Marks

Diagram
1 Mark

Correct
phase
sequence
1 Mark

5 d) Define
i) Balanced load
ii) Balanced supply
iii) Unbalanced load
iv) Unbalanced supply

Ans:

i) Balanced Load:

Balanced three phase load is defined as star or delta connection of three equal impedances having equal real parts and equal imaginary parts.
e.g Three impedances each having resistance of 5Ω and inductive reactance of 15Ω
connected in star or delta

1 Mark for
each
definition

ii) Balanced Supply:

Balanced supply is defined as three phase supply voltages having equal magnitude but displaced from each other by an angle of 120° in time phase.
e.g $\mathrm{V}_{\mathrm{a}}=230 \angle 0^{\circ}$ volt, $\mathrm{V}_{\mathrm{b}}=230 \angle-120^{\circ}$ volt, $\mathrm{V}_{\mathrm{c}}=230 \angle 120^{\circ}$ volt represents balanced supply.
iii) Unbalanced Load:

Winter - 2016 Examinations
 Model Answer

Subject Code: 17331 (ETG)
If a load not satisfies the condition of balance it is called as unbalanced load. OR
When the magnitudes and phase angles of three impedances are differ from each other, then it is called as unbalanced load.
iv) Unbalanced supply:

If a supply does not satisfy the condition of balance it is called as unbalanced supply. OR
Unbalanced supply is defined as three phase supply voltages having unequal magnitude and/or unequal displacement from each other.

5 e) Explain: "How current in 3ϕ load can be limit using different connections".
Ans:
Method of limiting current in 3ϕ load:
i) By converting delta connected load into star connection, the load current can be reduced or limited to $\frac{1}{\sqrt{3}}$ times.
ii) By connecting resistors in series with each phase of load, the load current can be reduced or limited as per the value of resistances.
iii) By connecting appropriate rated fuses in series with each phase of load, the load current is not permitted to rise above certain value and thus limited.
iv) By using 3 фauto- transformers or by applying reduced voltage technique, the load current can be reduced or limited.

OR equivalent method may be considered.
5 f) Compare autotransformer with two winding transformer.
Ans:
Comparison of auto transformer with two winding transformer:

	Autotransformer	Two winding Transformer
1	Only one winding, part of the winding is common for primary and secondary.	There are two separate windings for primary and secondary.
2	Movable contact exist	No movable contact between primary and secondary
3	Electrical connection between primary and secondary.	Electrical isolation between primary and secondary windings.
4	Comparatively lower losses.	Comparatively more losses
5	Efficiency is more as compared to two winding transformer.	Efficiency is less as compared to autotransformer.
6	Copper required is less, thus copper is saved.	Copper required is more.
7	Spiral core construction	Core type or shell type core construction
8	Special applications where variable voltage is required.	Most of the general purpose transformers where fixed voltage is required.
9	Cost is less	Cost is more
10	Better voltage regulation	Poor voltage regulation

Any two methods 2 mark each $=4$ Marks

Any four points 1 Mark each

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)

Symbol of Autotransformer	Symbol of Two winding transformer	

Attempt any FOUR of the following:
a) A $3 \phi, 200 \mathrm{~kW}, 50 \mathrm{~Hz}$, delta connected induction motor is supplied from $3 \phi 440 \mathrm{~V}$, 50 Hz ac supply. The efficiency and p.f. is $91 \% \& 0.86$ respectively. Calculate i) current in each phase ii) the line current iii) active \& reactive components of phase current iv) phasor diagram.
Ans:
Given:
$P_{\text {out }}=200 \mathrm{~kW}=200 \times 10^{3} \mathrm{~W}, \mathrm{~V}_{\mathrm{L}}=440 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}, \eta=0.91 \%$, p.f. $=\cos \phi=0.86$
O / P power of motor $=200 \times 10^{3} \mathrm{~W}$
I / P power of motor $=\frac{200 \times 10^{3}}{0.91}=219780.2198 \mathrm{watts}$
$\mathrm{P}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$
\therefore Line current $\mathrm{I}_{\mathrm{L}}=\frac{P}{\sqrt{3} \times V_{L} \cos \phi}=\frac{219780.2198}{\sqrt{3} \times 440 \times 0.86}=335.333 \mathrm{~A} \quad 1$ Mark
As motor is delta-connected,
Phase current $=\frac{I_{L}}{\sqrt{3}}=\frac{335.333}{\sqrt{3}}=193.6048 \mathrm{~A}$
Active componenet of Phase current $=\mathrm{I}_{\mathrm{ph}} \cos \phi=193.6048 \times 0.86$

$$
=166.500 \mathrm{~A}
$$

1/2 Mark
as $\cos \phi=0.86 \quad \phi=30.68 \quad \therefore \sin \phi=0.5102$
Reactive componenet of Phase current $=I_{p h} \sin \phi$

$$
=193.6048 \times 0.5102
$$

$$
=98.785 \mathrm{~A}
$$

6 b) Explain RLC series resonance with frequency and current, voltage characteristics.
Ans:
The curve between circuit current and the frequency of the applied voltage is shown in figure. It shows the resonance curve of a typical R-L-C series circuit. Here current reaches its maximum value at the resonant frequency (f_{r}), falling off on either side of that point. It is because if the frequency is below $f_{r}, X_{C}>X_{L}$ and the net reactance is no longer zero. If the frequency is above fr, then $X_{L}>X_{C}$ and the net reactance is again not zero. In both cases the circuit impedance will be more

Explanation 3 Marks than the impedance $Z_{r}(=R)$ at resonance. The result is that the magnitude of circuit current decreases rapidly as the frequency changes from resonant frequency.

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)
Also the smaller is the resistance; the greater is the current at resonance and sharper the curve.

In series resonance voltage across inductance and voltage across capacitance are equal in magnitude and 180° out of phase hence cancels each other and applied voltage appears across circuit resistance.

Diagram
1 Mark

1 Mark each
for Circuit
Diagram \&
Phasor
diagram
$=2$ Marks

Consider the connections of two wattmeter method for three phase balance load as shown in circuit diagram and its Phasor diagram.
Referring these two diagrams,
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{RB}}=\mathrm{V}_{\mathrm{YB}}, \quad \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{Y}}$

Derivation
2 Marks
$\emptyset=$ phase angle between voltage and current of the phases.

$$
\begin{aligned}
\text { Reading } \mathrm{W}_{1} & =\mathrm{V}_{\mathrm{RB}} \mathrm{I}_{\mathrm{R}} \cos (30-\emptyset) \\
& =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos (30-\emptyset) \\
\& \mathrm{~W}_{2} & =\mathrm{V}_{\mathrm{YB}} \mathrm{I}_{\mathrm{Y}} \cos (30+\emptyset) \\
& =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos (30+\emptyset) \\
\therefore \mathrm{W}_{1}+\mathrm{W}_{2} & =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\{\cos (30-\emptyset)+\cos (30+\emptyset)\} \\
& =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\{(\cos 30 \cos \emptyset+\sin 30 \sin \emptyset)+(\cos 30 \cos \emptyset-\sin 30 \sin \emptyset)\}
\end{aligned}
$$

Winter - 2016 Examinations
Model Answer
Subject Code: 17331 (ETG)
$=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\{\cos 30 \cos \emptyset+\sin 30 \sin \emptyset+\cos 30 \cos \emptyset-\sin 30 \sin \emptyset\}$
$=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\{2 \cos 30 \cos \emptyset\}$
$=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\{2(\sqrt{ } 3 / 2) \cos \varnothing\}$
$\therefore \mathrm{W}_{1}+\mathrm{W}_{2}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \emptyset$
\therefore Total active power $P=\left(W_{1}+W_{2}\right)=\sqrt{ } 3 V_{L} I_{L} \cos \boldsymbol{\theta}$
In this way the two wattmeters read the power intake by a three phase circuit.
6 d) Explain working of universal motor. State its applications.
Ans:
Working of universal motor:

Diagram
1 Mark

Working 2 Marks

- When motor is connected to supply current flows through field winding and current.
- When current carrying conductor placed in magnetic field it experiences a mechanical force and motor starts running.
- The force is directly proportional to the product of main flux and armature Current. F (or torque) α (flux)(Armature current)
Applications of universal motor:

1) Vacuum cleaners

Any two
2) Mixers
3) Dryers
4) Sewing machines
5)Electric shavers

6 e) Classify transformer w.r.t. i) voltage level ii) construction iii) supply used iv) application.
Ans:
Classification of Transformer:
i) Voltage level:- Step-up and Step Down

Any two
ii) Construction:- Core type, Shell type , Berry type and amorphous core type
iii) Supply used:- Single phase and Three phase

Any
$1 / 2$ Mark each
iv) Application:- Power transformer, Distribution transformer, Isolation $=4$ Marks Transformer, Testing Transformer, Auto-transformer

6 f) i) Classify fuses.
ii) Compare fuse and MCB

Ans:

i) Classification of fuses:

Winter - 2016 Examinations

Model Answer
Subject Code: 17331 (ETG)

1. Semi enclosed or rewireable type
2. Totally enclosed or cartridge type
3. Drop out fuse
4. Expulsion fuse
5. H.R.C fuse

Any four
types
2 Marks
6. Striker fuse
7. Switch fuse
8. Metal clad fuse
ii) Comparison of Fuse and MCB:

Sr. No.	Fuse	MCB
1	Needs replacement after every operation.	Can be reused after successful operation.
2	Fuse melts/fuses in case of excessive load (due to increase in temperature).	MCB trips off in case of excessive load (works on bimetal expansion or induced magnetism).
3	Less safe as compared to MCB.	More safe than fuse.
4	Relatively economical than MCB.	Relatively costlier than fuse.
5	Cannot take complete care of single phasing	Can take care of single phasing.

Any two points 2 Marks

