

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 1 of 23

Important Instructions to examiners:

Subject Code : 17331 (ETE)

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure/figures drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept

Subject	Code: 17331 (ETE)	Summer – 2010 <u>Model Ar</u>	6 Examinations nswer	Page No: 2 of	23
1 A)	Attempt any six of the fol	lowing:			12
1 A) a)	State potential difference a Ans: Potential Difference: The difference between the electrical circuit is known a Unit:- volt (V)	nd its unit. ne electrical pot as potential differ	entials at any two grence between those	given points in the points.	1 mark for definition 1 mark for unit
1 A) b)) If the two resistances of 24 of 24Ω, find the equivalent Ans: Equivalent resistance of se Equivalent resistance of pa	Ω in series are contracts and contracts are consistence. ries combination rallel combination	onnected in parallel w $R_1 = 24 + 24 = 48$	with two resistances βΩ	1 mark
	$\frac{1}{R_{AB}} = \frac{1}{48} + \frac{1}{24} + \frac{1}{$	$\frac{1}{24} = 0.02083 + $	-0.04167 + 0.04167	7 = 0.1042	1 mark
		$\therefore R_{AB} =$	9.612		
I A) C	Ans: Reluctance: The opposition offered by a called 'Reluctance' of mate Unit: ampere-turns/weber	material to the m material to the flux. or AT/wb or A/w	agnetic flux to set up	o through it, is	1 mark for valid definition 1 mark for unit
1 A) d)) Draw impedance triangle a Ans:	nd label it.			
	Impedance Z ¢ Resistance R	Inductive Reactance X _L	Resistance R	Capacitive Reactance X _C	Any one labeled triangle 2 marks
	Impedance triangle for R-L series c	ircuit	Impedance triangle for R-C so	eries circuit	
1 A) e)	 State any four applications Ans: Application of 3 phase cin 1] Power and distribution s 2] Large generators 3] 3 phase motors like indu 4] Low power industrial ap 5] For large building loads 6] For transmission of bulk 	of 3-phase circu reuit: ystem action and synchr plications like cr	it. ronous motors ranes, conveyors, fur er over the lines.	naces.	¹ /2 mark for each of any four application s
1 A) f)	 State the concept of balance Ans: Balanced load: If all the p identical in respect of maging phase load. 	ed load. hase impedances nitude and their r	s of the three phase lo nature, then it is calle	oad are exactly a Balanced three	1 mark

	Summer – 2016 Examinations		
Subject Code : 17331 (ETE)	Model Answer	Page No: 3 of 2	23
e.g Balanced load: (3+j4) Unbalanced load: (3+ angles are different.), (3+j4), (3+j4) all impedances = 5∠5 +j4), (3-j4), (4+j3) all impedance mag	53.13°Ω nitudes are 5Ω but	1 mark
1 A) g) Define the voltage regula	ation of single phase transformer.		
Ans: Voltage Degulation:			1 mark for
The change in secondary fraction of no load volta is called voltage regulation Let $V_{NL} = No$ load second	terminal voltage from no load to full ge or full load voltage, with primary v on. lary voltage	load expressed as voltage kept constant,	definition
V_{FL} = Full load second	dary voltage		1 mark for
So % Voltage Regulation % Voltage Regulation-do	$h-up = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$ $hown = \frac{V_{NL} - V_{FL}}{V_{NL}} \times 100$		equation
1 A) h) State the basic difference	between fues and MCB.		
Ans: Basic difference betwee FUSE:	en fuse and MCB:		
 Performs both fur Fuse melts/fuses i Needs replacement 	nctions: detection and interruption in case of excessive load (due to incre nt after it is blown away once.	ease in temperature)	1 mark for each of any two differences
 Performs Interrup MCB trips off in induced magnetis Can be reused aft 	otion only. Detection is made by relay case of excessive load (works on bim sm)	system. etal expansion or	
1 A) i) State the need of earthing	a in electrical systems		
Ans:-	3 in ciccurcar systems.		
 Earthing is needer property so that a grounded (connect For protection as heavy current dra fuses. 	d for safety of working personnel, saf ny live part touching the body of the o eted to zero volts); under such circumstances the low res	ety of animals and equipment must be istance path results in ip the circuit or blow	1 mark each for any two
3. Earthing is also n neutral voltage to the other (neutral	eeded in electrical installations of sub very low values so that fault on one j earthing)	ostations to hold the phase does not affect	
1B) Attempt any two of the	following:		8
1 B) a) State the following terms i) Inductive reactance State the relation of frequ Ans:	and write the formula. e ii) Capacitive reactance uency for both the terms.		

1. Inductive Reactance:-

Inductive reactance is defined as the opposition offered by inductance to the $\frac{1}{2}$ mark for

		Summer – 2016 Ex	aminations		
Subject Code : 1	7331 (ETE)	Model Answ	<u>er</u>	Page No: 4 of 23	3
2.	flow of an alternatin Inductive Reactanc Capacitive Reacta Capacitive reactanc the flow of an altern	ng current. e is expressed as nce : e is defined as the op nating current.	$X_L = 2\pi f L \ ohm$ pposition offered by c	apacitance to	definition of each = 1 mark 1 mark for
2	Capacitive Reactant where, L is the indu- C is the cap f is the free	ce is expressed as actance in henry, acitance in farad, puency in Hz	$X_C = \frac{1}{2\pi fC} ohm$		each equation of X =2 marks
5.	The inductive react	ance (X _L) is directly $X_L \propto X_C$ is inverse $X_C \propto X_C$	proportional to freque f ely proportional to frec $c \frac{1}{f}$	ency (f). quency (f).	¹ /2mark for each relation = 1 mark
1 B) b) For the magnitude	given circuit as sho ide of p.f.	wn in the figure 1B	(b) find the current flo	wing and the	
	1	-www	-11		

Ans:

Data Given: Resistance R = 20Ω , Inductance L = 15 mH, Capacitance C = 2μ F Supply Voltage V = $120\angle 0^{\circ}$

Assuming supply frequency $f = 50Hz$,	¹ / ₂ mark for
(i) Inductive reactance $X_L = 2\pi f L = 2\pi (50)(15 \times 10^{-3}) = 4.71\Omega$	each X
(ii) Capacitive reactance $X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi (50)(2 \times 10^{-6})} = 1591.55\Omega$	= 1 mark
(iii) Impedance of series circuit	1
$Z = R + jX_L - jX_C = 20 + j4.71 - 1591.55 = 1586.97 \angle -89.28^{\circ}\Omega$	1 mark
(iv) Current $I = \frac{V}{Z} = \frac{120 \angle 0^{\circ}}{1586.97 \angle -89.28^{\circ}} = 0.0756 \angle 89.28^{\circ} \text{ A}$	1 mark
(v) Power factor $\cos\phi = \cos(89.28^{\circ}) = 0.01257$ leading	1 mark
) Explain the working principle of shaded pole single-phase induction motor.	

1 B) c) Explain the working principle of shaded pole single-phase induction m Ans:

Shaded pole single-phase induction motor:

When single phase supply is applied across the stator winding an alternating field is created. The flux distribution is non uniform due to shading bands on the poles. The shading band acts as a single turn coil and when links with alternating flux, emf is induced in it. The emf circulates current as it is simply a short circuit. The current produce the magnetic flux the shaded part of core to oppose the cause of its production which is the change in the alternating flux produced by the winding of motor. Now consider three different instants of time t_1 , t_2 , t_3 of the flux wave to examine the effect of shading band as shown in the fig below. The magnetic neutral

2 Marks for

Summer – 2016 Examinations Model Answer

Page No: 5 of 23

axis shifts from left to right in every half cycle, from non-shaded area of pole to the shaded area of the pole. This gives to some extent a rotating field effect which may be sufficient to provide starting torque to squirrel cage rotor and rotor rotates.

working principle

2 Marks for diagram

2 a) Applying mesh loop current method, find current flowing through 12 Ω connected between terminals A and B (Refer fig. 2(a)).

16

	Su	ımmer – 2016 Examinations		
Subject Code	e:17331 (ETE)	Model Answer	Page No : 6 of 23	3
i)	There are two meshes in th	ne network.		
ii)	Mesh currents I_1 and I_2 are	marked anticlockwise as show	vn.	1 mark for
iii)	The polarities of voltage drage drag	rops across resistors are also sl	hown with reference to	mesh identificati
iv)	By tracing mesh 1 clockwi \therefore I ₁ = 20 A By tracing mesh 2 anticloc -8I = 30 - 4I = 12(I	se, we can write 		on and marking
v)	$3I_2 - 30 - 4I_2 - 12(I_2)$ $\therefore 12I_1 - 24I_2 = 30 \dots \dots$ Substituting eq.(1) in to (2) $12(20) - 24I_2 = 30$ $-24I_2 = 30 - 240 = -22$	- 1 ₁) = 0 	2)	1 mark for I ₁ 1 mark for mesh
vi)	$\therefore I_2 = 8.75 \text{ A} \dots \dots \dots \dots$ Current through 12Ω is $I = I = 20 - 8.75 = 11.25 \text{A}$ fro	$= (I_1 - I_2) \text{ flowing from B to } A$	A	equation 1 mark for
				final solution

2 b) State Kirchhoff's laws, with sign convention concept. How KVL is different than mesh loop method?

Ans:

Kirchhoff's laws:

1) Kirchhoff's Current Law (KCL):

It states that in any electrical network, the algebraic sum of the currents meeting at a node (point or junction) is zero. i.e $\Sigma I=0$

At junction point P, I_1 - I_2 - I_3 + I_4 + I_5 - I_6 = 0 Sign convention:

Incoming current at the node is considered to be positive and outgoing current to be negative.

2) Kirchhoff's Voltage Law (KVL):

It states that, in any closed path in an electric circuit, the algebraic sum of the emfs and products of the currents and resistances is zero.

i.e
$$\Sigma E - \Sigma IR = 0$$
 or $\Sigma E = \Sigma IR$
OR

It states that, in any closed path in an electrical circuit, the total voltage rise is equal to the total voltage drops.

i.e Voltage rise = Voltage drop

Refering to the circuit, by KVL we can write,

$$E_1 - E_2 + E_3) = (I_1 R_1 - I_2 R_2 + I_3 R_3 - I_4 R_4)$$

Sign convention:

While tracing the loop or mesh, the voltage rise is considered as positive

1 mark for KCL

¹∕2 mark for sign convention

1 mark for KVL

¹∕2 mark for sign convention

Subjec	t Code : 1	7331 (ETE)	Summer – 2016 Examinations <u>Model Answer</u>	Page No: 7 of 2	3
		and voltage drop i	s considered as negative.		
		Difference betwee In mesh loop met branch currents an equations. In KVL method, written in terms o	en Mesh Loop Method and KVL hod, the mesh/loop currents are m re expressed in terms of mesh currents the branch currents are marked an f it.	: arked first and then the ents to write the voltage d voltage equations are	1 mark for difference
2 c)	An alte Find: (i voltage	rnating voltage is r) rms value (ii) av	represented by $v = 114.8 \sin(314t)$ erage value (iii) maximum value	t) <i>volt</i> . (iv) frequency of	
	Ans:				
	Standar	d equation of sinu	solidal quantity is $v = V_m \sin(\omega t)$	volt. On comparing	
	the give	en voltage with sta	ndard equation, we get		1 mark for
	(i)	Maximum Value	$V_m = 114.8 \text{ volt}$		each point
	(ii)	RMS value $V = \frac{V}{V}$	$\frac{m}{\sqrt{2}} = \frac{114.8}{\sqrt{2}} = 81.175 \ volt$		
	(iii)	Average value (ov	ver full cycle) = 0 volt		
		Average value (ov	Ver half cycle) $V_{av} = 0.637 V_m = 0.$ = 73.13 volt	.637 × 114.8	
	(iv)	Angular frequency	$y \omega = 314 \text{ rad/sec} = 2\pi f$		
		\therefore frequency $f = \frac{3}{2}$	$\frac{14}{2\pi} = 49.97 \cong 50$ Hz		
2 d)	State th (i) (ii) (iii) (iv)	e following terms: Phase Phase differen In-phase quant Out-of-phase c	ce ity juantity		
	Ans: i)	Phase:-			
	,	It is the angula passed through maximum valu In the followin is $\emptyset = 90^{\circ}$.	r distance covered by an alternating is last zero value while increasing ie. In figure the phase of quantity at po	g quantity since it g towards positive ositive maximum value	1 mark for each term

ii) Phase difference:-

Phase difference between two alternating quantities is the angular

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 8 of 23

distance between their respective zero or maximum values. In the following figure, it is seen that the angular distance between corresponding zero values is \emptyset , hence phase difference between them is \emptyset .

iii) In phase quantity:-

If phase difference between two alternating quantities is zero then they are called as 'In phase quantities'.

OR

If two alternating quantities attain their zero values or maximum values simultaneously, then such quantities are called "In-phase" quantities.

iv) Out of phase quantity:-

If phase difference between two alternating quantities is non-zero, then they are called as "Out-of- phase" quantities.

ÔR

If two alternating quantities do not attain their zero values or maximum values simultaneously, then such quantities are called "Out-of-phase" quantities.

2 e) Draw a phasor diagram and waveform for RC series circuit. Ans:

RC series circuit:

The circuit diagram, waveforms and phasor diagram for series RC circuit are shown below.

Subject	Summer – 2016 ExaminationsCode : 17331 (ETE)Model AnswerPa	age No: 9 of 23
	$ \begin{array}{c} \uparrow \\ v,i,p \\ \end{array} \qquad \begin{pmatrix} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	2 marks for waveforms
	(a) Circuit Diagram	2 marks for phasor diagram
2 f)	If $R = 25\Omega$, $L = 10$ mH and $C = 50\mu$ F, find active power, reactive power	when they
	are connected in series across a a.c. source of $220 \angle 0^\circ$ volt.	
	Ans: Data Given: Resistance $R = 250$ Inductance $I = 10$ mH Capacitance C	^с – 50µЕ
	Supply Voltage V = $220\angle 0^{\circ}$	ς = 30μι
	Assuming supply frequency $f = 50Hz$,	
	(i) Inductive reactance $X_L = 2\pi f L = 2\pi (50)(10 \times 10^{-3}) = 3.14\Omega$	1 mark for
	(ii) Capacitive reactance $X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi (50)(50 \times 10^{-6})} = 63.66\Omega$	1
	(iii) Impedance of series circuit	1 mark for
	$Z = R + jX_L - jX_C = 25 + j3.14 - j63.66$	Ø
	$= 25 - j60.52 = 65.48 \angle - 67.56^{\circ}\Omega$	1 1 6
	(iv) Current $I = \frac{v}{Z} = \frac{22020}{65.48 \angle -67.56^{\circ}} = 3.36 \angle 67.56^{\circ} \text{ A}$	I mark for P
	(v) Power factor $\cos \phi = \cos(67.56^\circ) = 0.38$ leading	1 mark for
	(v1) Active power $P = VIcos\emptyset = (220)(3.36)(0.38) = 282.16$ wat (vii) Reactive power $Q = VIsin\emptyset = (220)(3.36)(0.92) = 680.064$	var Q
3	Attempt any four of the following:	16
3 a)	For the circuit shown in fig. 3(a) find the resistance between terminals A	and B
	using star delta conversion.	
	26-2 38-e	

The circuit is redrawn as shown in Fig.(a) below. **Step I:** Converting delta ABC in to equivalent star.

36à

B

Fig. 3(a)

5-2

Step V: Solving parallel combination

		Summer – 2016 Examinations		
Subject Code	: 17331 (ETE)	Model Answer	Page No: 11 of	23
<i>c</i> .	Equivalent resist The modified cir	tance = $\frac{3.798 \times 5.19}{3.798 + 5.19}$ = 2.19 Ω recuit diagram is shown in Fig.(g).		
Step	VI: Final solution Referring to Fig given by,	(g), the equivalent resistance between $P = 0.16 \pm 2.19 = 2.356$	en terminal A and B is	
3b) AC v equat	oltage of $v = 110$ si ion for current, drav	n(314t) is applied across a 39mH v phasor diagram.	inductor. Write the	
i)	Equation for cur Comparing voltas Angular frequence ∴ Frequency f = ∴ Inductive react Maximum value Since it is pure in The current is exp	Frent: ge equation with standard form, we sy $\omega = 2\pi f = 314$ rad/sec $314/(2\pi) = 49.97 \approx 50$ Hz. tance $X_L = 2\pi f L = 2\pi (50)(39 \times 10^{-10})(39 \times 10^$	can write, 10^{-3}) = 12.25 Ω A sage by 90°. 4	1 mark for f 1 mark for Im 1 mark for eq. of i
3.c) State	the concept of lag	v ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	ts nature for capacitive	1 mark for phasor diagram
sc) state	the concept of lag	ging and leading quantity. State I	is nature for capacitive	

circuit only.

Ans:

Concept of lagging and leading quantity:

In case of two out-of-phase quantities, the quantity which attains its zero or maximum value first as compared to other quantity, is called leading quantity. The quantity which attains its zero or maximum value later as compared to other quantity, is called as lagging quantity.

In the waveforms shown, it is seen that the current becomes zero first and after an angle of 90° voltage becomes zero. Similarly, current

 $v = V_m \operatorname{sin\omega t}$ Waveforms

reaches to its maximum value first and after an angle of 90° voltage becomes maximum. So here current is a leading quantoty and voltage is lagging quantity.

Nature for Capacitive circuit:

For capacitive circuit, the current leads the voltage by some angle, usually less than

1 mark for diagram

1 mark for

lagging

quantity

1 mark for

leading

quantity

1 mark for nature

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 12 of 23

90°. However, if the circuit is purely capacitive, the current leads voltage by 90°. We can also say that the voltage lags behind current by 90° .

3 d) Draw a neat circuit for measurement of power using of dynamometer type wattmeter on R-L series circuit. Label the current coil and potential coil. **Ans:**

Measurement of power using of dynamometer type wattmeter:

4 marks for Labeled diagram

3 e) State any four comparisons between R-L series and R-C series circuit. **Ans:**

Comparison between R-L series and R-C series circuit:

Particulars	R-L series circuit	R-C series circuit	
Circuit diagram	R L WWW minin I V 1 \$ Ac supply	I & Supply	
Impedance	$Z = R + jX_L = Z \angle \emptyset$	$Z = R - jX_C = Z \angle - \emptyset$	
Phase angle	$0 < \emptyset < 90^{\circ}$ lagging	$0 < \emptyset < 90^{\circ}$ leading	
Power factor	$0 < \cos \emptyset < 1$ lagging	$0 < \cos \emptyset < 1$ leading	
Imdedance triangle	Impedance Z d Mesistance R Impedance triangle for R-L series circuit	Resistance R ϕ Impedance Z Impedance triangle for R-C series circuit	
Voltage triangle	Supply voltage V = IZ $V_R = IR$ Voltage Triangle for R-L Series Circuit	$V_{R} = IR$ $V_{C} = IX_{C}$ Voltage Triangle for R-C Series Circuit	

1 mark for each of any four points

Summer – 2016 Examinations Model Answer

Page No: 13 of 23

3f) For a balanced 440V, 50Hz, star connected system, three equal coils of resistance 12 ohm and inductance 15mH are connected per phase. Calculate line current and power absorbed by the circuit.

Ans:

Subject Code : 17331 (ETE)

Data Given: Line Voltage $V_L = 440V$, Frequency $f = 50 \text{ Hz}$	1 mark for
Resistance $R = 12 \Omega$, Inductance $L = 15 \text{ mH}$	X_L
\therefore Inductive reactance per phase $X_L = 2\pi fL = 2\pi (50)(15 \times 10^{-3}) = 4.71 \Omega$	
\therefore Impedance per phase $Z = R + jX_L = 12 + j4.71 = 12.89 \angle 21.43^\circ \Omega$	1 mark for
In star-connected system, phase voltage $V_{ph} = \frac{1}{\sqrt{3}}$ Line voltage $= \frac{440}{\sqrt{3}} = 254.03 V$	Z
:. Phase current $I_{ph} = \frac{V_{ph}}{7} = \frac{254.03 \angle 0^{\circ}}{12.00 (31.42)^{\circ}} = 19.71 \angle -21.43^{\circ} \text{ A}$	1 mark for
In star-connected system, Line current = Phase current = 19.71 A	I_L

Power absorbed by the circuit,

$$P_{3\emptyset} = \sqrt{3}V_{L}I_{L}\cos\emptyset = 3V_{ph}I_{ph}\cos\emptyset$$

$$= \sqrt{3}(440)(19.71)\cos(-21.43^{\circ})$$

$$= 13982.55 \text{ watt}$$
1 mark for
P_{3Ø}
P_{3Ø}

4 Attempt any four of the following:

State the difference between statically and dynamically induced emf. For each type 4a) state one example.

Ans:

Ans:		2 marks for
Statically induced emf	Dynamically induced emf	difference
Emf is induced without any relative motion between conductor and magnetic field. Emf is induced when changing magnetic field links with a conductor.	Emf is induced due to relative motion between conductor and magnetic field. Emf is induced when conductor cuts the magnetic field due to relative motion between them.	2 marks for 2 examples
Direction of statically induced emf is given by Lenz's law.	Direction of dynamically induced emf is given by Fleming's Right hand rule.	
Mutually induced emf		
e.g. emf induced in transformer	e.g emf induced in Generator,	
windings	Alternator armature windings	

- 4b) State form factor and peak factor. State the relation between:
 - i) rms and max value
 - ii) max and average value

Ans:

Form factor:

12

	Summer – 2016 Examinations	
/331 (ETE)	Model Answer	Page No : 14 of 23
ratio of the RMS $ctor = \frac{RMS Value}{Average Value}$	S value to the average value.	1 mark
ctor: ratio of Maximu	m or peak value to the RMS value.	1 mark
$m: = \frac{1}{R}$ Relation between and for sinusoida Maximum valu Relation between is given by, Average value = $\frac{1}{R}$	MS Value in rms value and maximum value is al quantity, it is $\sqrt{2}$. $\mathbf{e} = \sqrt{2}$ (rms value) in maximum value and average valu = 0.637 (Maximum value)	given by peak factor 1 mark e for sinusoidal quantity 1 mark
t takes a current ower triangle and iven: $V = 220V$ angle is $\phi = cos$	of 12A at a voltage of 220V and its I find active, reactive and apparent p $I = 12A$ $\cos\phi = 0.8$ leading $s^{-1}(0.8) = 36.87^{\circ}$ leading	p.f. is 0.8 leading. power.
Active power Reactive pow Apparent pow	$P = V I \cos\phi = (220)(12) \cos(36.8')$ ver Q = V I sin $\phi = (220)(12) \sin(-36)$ wer S = V I = (220)(12) = 2640 volt	7°) = 2112 watt. 1 mark 5.87°) = -1584 var 1 mark -amp 1 mark
	7331 (ETE) ratio of the RMS ctor = $\frac{RMS Value}{Average Value}$ ratio of Maximum ctor = $\frac{Maximum V}{R}$ relation betwees and for sinusoida Maximum value Relation betwees is given by, Average value = it takes a current ower triangle and iven: V = 220V angle is $\phi = cos$ Active power Reactive power Reactive power Apparent pov	Summer – 2016 Examinations7331 (ETE)Model Answerratio of the RMS value to the average value. $\cot r = \frac{RMS Value}{Average Value}$ ctor:ratio of Maximum or peak value to the RMS value.ctor = $\frac{Maximum Value or Peak Value}{RMS Value}$ n:Relation between rms value and maximum value is and for sinusoidal quantity, it is $\sqrt{2}$.Maximum value = $\sqrt{2}$ (rms value)Relation between maximum value and average value is given by,Average value = 0.637 (Maximum value)at takes a current of 12A at a voltage of 220V and its ower triangle and find active, reactive and apparent power the triangle of $2200(12) \cos(36.8^{\circ})$ iven: $V = 220V$ I = 12A $\cos \phi = 0.8$ leading angle is $\phi = \cos^{-1}(0.8) = 36.87^{\circ}$ leading Active power P = V I $\cos \phi = (220)(12) \cos(36.8^{\circ})$ Reactive power Q = V I $\sin \phi = (220)(12) \sin(-36)$ Apparent power S = V I = $(220)(12) = 2640$ volt

4 d) Draw all series resonance curves and state the relation of all elements with frequency.

Ans:

Series resonance curves:

- 1) Resistance is independent of frequency, i.e frequency have no effect on the 1 mark value of resistance.
- 2) Inductive reactance is expressed by, $X_L = 2\pi f L$. Thus the value of inductive reactance linearly changes with frequency. The inductive 1 mark reactance is directly proportional to frequency.
- 3) Capacitive reactance is expressed as $X_C = \frac{1}{2\pi fC}$. Thus the value of 1 mark

capacitive reactance is inversely proportional to the frequency.

The relation of all elements with frequency is shown in the following figure.

Summer – 2016 Examinations

Subject Code : 17331 (ETE) **Model Answer** Page No: 15 of 23 Frequency f, Hz Inductive apacitive Resistive Variation of reactances and

impedance with frequency

- 4e) A 3-phase, 440V, 50Hz, supply is connected to a balanced 3-phase delta connected load of impedance $(6 - i8) \Omega$ /phase. Calculate:
 - i) Phase current
 - ii) Line current
 - iii) Power factor
 - iv) Total reactive power

Ans:

Data Given: Line voltage $V_L = 440V$, Frequency f = 50 Hz,

Delta connected load impedance per phase $Z = (6 - i8) = 10\angle -53.13^{\circ}\Omega$

For delta connection, Phase voltage = Line voltage = 440V

i)	Phase current =	Phase Voltage	_		- 44 /53 13° 4	1 Mark
		Impedance per phase	_	10∠-53.13°	- ++255.15 <i>T</i>	
			~			

ii) Line current =
$$\sqrt{3}(Phase current) = \sqrt{3}(44) = 76.21 A$$
 1 Mark
iii) Power factor $\cos\phi = \cos(-53.13^\circ) = 0.6$ leading 1 Mark

- iii) Power factor $\cos\phi = \cos(-53.13^{\circ}) = 0.6$ leading
- Total reactive power $Q_{3\emptyset} = \sqrt{3}V_L I_L sin\emptyset$ iv) 1 Mark $=\sqrt{3}(440)(76.21)\sin(-53.13^{\circ})$ = -46463.79var

4f) How single-phase I. M. is made self-starting? Ans:

When single-phase ac supply is given to single-phase stator winding of motor, a 4 Marks magnetic field is produced in the air gap between stator and rotor. However, this magnetic field is not rotating in nature, rather it is pulsating or oscillating in nature. So torque is not developed and motor can not start itself. Thus single-phase induction motor is not self-starting.

To make the motor self-starting, it is essential that rotating magnetic field must be produced in the air gap between stator and rotor. For that, the single phase winding is split into two parts (windings) and such two windings are placed in stator core with 90° displacement. To obtain large phase difference (close to 90° in time phase) between their currents, a capacitor is inserted in series with one winding. This winding is referred as Starting or Auxiliary winding. Other winding is the 1 mark

Summer – 2016 Examinations Model Answer

Page No: 16 of 23

main or running winding. These two windings when connected in parallel across single-phase supply, two currents of large phase difference flow through these windings and rotating magnetic field is produced. The rotating magnetic field is cut by short circuited rotor conductors, which then carry current. Due to interaction between rotor current and stator magnetic field, force is exerted on rotor ans rotor rotates.

5 Attempt any four of the following:

5 a) Refer figure 5(a) and find (i) max value of current (ii) form factor (iii) peak factor and (iv) frequency.

Ans:

Subject Code : 17331 (ETE)

Data Given: Angular frequency $\omega = 314$ rad/sec

- (i) Maximum value of current $I_m = 40A$
- (ii) Form factor : Average value of current = $0.637I_m = 0.637(40) = 25.48$ A RMS value of current = $0.707I_m = 0.707(40) = 28.28$ A \therefore Form factor = (RMS value)/(Average value) $= \frac{0.707I_m}{0.637I_m} = 1.11$
- (iii) Peak Factor:

∴ Peak factor = (Peak or maximum value)/(RMS value)

$$= \frac{l_m}{0.707 l_m} = 1.41$$

Frequency f = $\frac{\omega}{2\pi} = \frac{314}{2\pi} = 49.97 \cong 50 \ Hz$

- 5 b) State following laws with their applications.
 - i) Faraday's Laws (both) of electromagnetism
 - ii) Lenz's Law

Ans:

(iv)

i) Faraday's Laws of Electromagnetic Induction: First Law:

Whenever a changing magnetic flux links with a conductor, an emf is 1 mark induced in that conductor.

OR

When a conductor cuts across magnetic field, an emf is induced in that conductor.

Second Law:

The magnitude of induced emf is directly proportional to the rate of change of flux linking with the conductor or the rate of flux cut by the 1 mark for each bit

16

Subject	t Code : 17331 (ETE)	Summer – 2016 Examinations <u>Model Answer</u>	Page No: 17 of 2	3
	conductor. Applications: alternators etc ii) Lenz's Law:	emfs induced in transformers, motors,	, generators,	1 mark
	The direction cause of its pr	of statically induced emf is such that i roduction.	t always opposes the	1 mark
5 c)	Refer figure 5(c) and fine voltage method.	the current flowing through (1) 10 Ω	branch using node-	I IIIdIK
		$\frac{2}{10}$	A	
	Ans:	u 19 de la maior de Salection d' - 78 ° de Vise d'Anna de la de la de la deserver d' hans		
	Node Voltage Analysis:			
	Step I: Mark the nodes.			
	Here nodes are al	ready marked as C and D.		
	Step II: Write KCL equa	ations		
	By KCL at node	C, we can write,		
	$\frac{v_{c}-12}{2+5} + 5 + \frac{v_{c}-12}{2+5}$	$\frac{10-V_D}{2} = 0$		
	$V \left(\frac{1}{2} + \frac{1}{2}\right) + V$	$\binom{5}{-1}$ $\frac{12}{10} - 0$		
	$V_C\left(\frac{1}{7}+\frac{1}{3}\right)+V_D$	$\left(\frac{1}{3}\right) = \frac{1}{7} = \frac{1}{3} = 0$		1 mark for
	$V_C(0.476) + V_D$	(-0.333) - 5.048 = 0	、 、	eq(1)
	$V_C(0.476) + V_D$	(-0.333) = 5.048(1))	eq. (1)
	By KCL at node $V = V + 1$	D, we can write,		
	$\frac{v_D}{10} - 8 + \frac{v_D + 1}{10}$	$\frac{10 - v_c}{2} = 0$		
	$V_C\left(-\frac{1}{2}\right) + V_D\left(\frac{1}{2}\right)$	$\left(\frac{1}{1}+\frac{1}{1}\right)-8+\frac{10}{1}=0$		
	$V_{c}(-0.333) + V_{c}(-0.333)$	(0.433) - 4.67 = 0		1 mark for
	$V_{c}(-0.333) + V_{c}$	(0.433) = 4.67	(2)	$e_{\alpha}(2)$
	Step III: Solving Simult	aneous equations	(-)	cq. (2)
	Expressing eq. (1) and (2) in matrix form,		
	[0.476 -0.3]	33] [V _c] _ [5.048]		
	L-0.333 0.43	$[3][V_D] = [4.67]$		
	$\therefore \Delta = \begin{bmatrix} 0.476 \\ 0.000 \end{bmatrix}$	$\begin{vmatrix} -0.333 \\ 0.206 - (0.11) \\ 0.096 \end{vmatrix}$		
	I–0.333 By Cramer's rule	0.433 1		
	15.048 –	, 0.333I		
	$_{\rm V}$ = $ _{4.67}^{100}$ ($ _{.433} _{-}(2.186) - (-1.555) 3.74$	41	I mark for
	$v_{\rm C} = \frac{\Delta}{\Delta}$	====	96	node
	$V_{c} = 38.97 \mathrm{vol}$	t		voltages

Summer – 2016 Examinations **Model Answer**

Page No: 18 of 23

VRY=VL=VF

S I1=IP

R=L

$$V_{\rm D} = \frac{\begin{vmatrix} 0.476 & 5.048 \\ -0.333 & 4.67 \end{vmatrix}}{\Delta} = \frac{(2.223) - (-1.68)}{0.096} = \frac{3.904}{0.096}$$

 $V_D = 40.67$ volt Step IV: Solving for currents Current in 10Ω resistor is given by,

$$I_{10} = \frac{V_D}{10} = \frac{40.67}{10} = \mathbf{4.067} \mathbf{A}$$

5d) For a delta connected balanced system prove $I_L = \sqrt{3} I_{Ph}$ where $I_L =$ line current and I_{Ph} = phase current.

Relationship Between Line Current and Phase Current in Delta Connected System:

VBR

12

VYB

Let I_1 , I_2 and I_3 be the phase currents.

 I_R , I_Y and I_B be the line currents. The line currents are expressed as:

Ans:

 $I_{R} = I_{1} - I_{3}$

 $\mathbf{I}_{\mathbf{Y}} = \mathbf{I}_2 - \mathbf{I}_1$ $I_{\rm B} = I_3 - I_2$

In phasor diagram, the phase currents are drawn first with equal amplitude and displaced from each other by 120°. Then line currents are drawn as per the above

equations. It is seen that the line current

 I_R is the phasor sum of phase currents I_1 and $-I_3$. We know that in parallelogram, the diagonals bisect each other with an angle of 90°.

Therefore in $\triangle OPS$, $\angle P = 90^{\circ}$ and $\angle O = 30^{\circ}$.

$$[OP] = [OS] \cos 30^{\circ}$$

Since $[OP] = I_L/2$ and $[OS] = I_{ph}$
 $\therefore \frac{I_L}{2} = I_{ph} \cos 30^{\circ}$
 $I_L = 2I_{ph} \frac{\sqrt{3}}{2}$
 $I_L = \sqrt{3} I_{ph}$

Thus Line current = $\sqrt{3}$ (Phase Current)

5e) Compare single-phase two winding transformer with single-phase autotransformer. Ans:

Comparison between Two winding transformer and Autotransformer:

	Two winding Transformer	Autotransformer
1	There are two separate windings for primary and secondary.	Only one winding, part of the winding is common for primary and secondary.
2	No movable contact between primary and secondary	Movable contact exist

1 mark for phasor diagram

1 mark for final ans

3 marks for stepwise derivation

1 mark for each of any four points

Summer – 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 19 of 23

3	Electrical isolation between primary	Electrical connection between	
3	and secondary windings.	primary and secondary.	
4	Comparatively more losses	Comparatively lower losses.	
5	Efficiency is less as compared to	Efficiency is more as compared to	
3	autotransformer.	two winding transformer.	
6	Copper required is more	Copper required is less, thus copper	
	Copper required is more.	is saved.	
7	Core type or shell type construction	Spiral core construction	
8	Most of the general purpose	Special applications where veriable	
	transformers where fixed voltage is	voltage is required	
	required.	voltage is required.	

5 f) Explain construction of single phase transformer. State the losses occurred in transformer.

Ans:

Construction of single phase transformer:

Single-phase transformer essentially consists of following components:

- i) Windings: Two windings of aluminium or copper are placed round the core and are insulated from each other and also from the core.
- ii) Core: Magnetic core is made up of thin silicon steel laminations of thickness 0.35 to 0.5 mm.

For big size transformers, tank is used to accommodate the core-winding assembly. In fact, the core-winding assembly is kept immersed in oil in the tank. The oil acts as a cooling medium and also the insulating medium. The terminals are taken out of the tank using bushings.

There are two types of core constructions:

- i) Core type construction
- ii) Shell type construction

In core type construction, the winding surrounds the core, whereas in shell type construction, the core surrounds the winding. The vertical portion of core is called 'Limb' or 'leg'. The horizontal portion of the core is called 'yoke'. The core is made from the E and I or L type laminations stacked together.

The low-voltage winding has few turns, hence it is usually helical winding. The high voltage winding has large no. of turns, hence it is usually disc type winding.

Losses in Transformer:

- i) Core or Iron loss: It takes place in the magnetic core and depends upon the magnetic flux. It is treated as constant loss since flux remains constant. Core loss is further divided into two types:
 - a) Hysteresis loss
 - b) Eddy current loss
- ii) Copper or I²R loss: It takes place in the windings of transformer due to current and resistance of the winding.

6 Attempt any four from the following:

3 marks for constructio n

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 20 of 23

6a) Draw phasor diagram for both star and delta connected balanced load. Ans:

Phasor Diagram for Balanced Star Connected Load:

2 marks

Phasor Diagram for Balanced Delta Connected Load:

2 marks

6b) State the term: i) voltage ratio ii) current ratio iii) transformation ratio vi) EMF ratio related to single phase transformer. Ans:

i) Voltage Ratio:

The ratio of secondary load voltage V_2 to the primary supply voltage V_1 is known as the voltage ratio.

Voltage Ratio =
$$\frac{V_2}{V}$$

ii) Current Ratio:

The ratio of secondary current I_2 to the primary current I_1 is known as the current ratio.

1 mark for each definition

Current Ratio = $\frac{I_2}{I_1}$

iii) Transformation Ratio:

In general, the turns ratio or emf ratio is called as transformation ratio. The ratio of secondary emf E_2 to the primary emf E_1 is known as the transformation ratio. Also the ratio of secondary turns N_2 to the primary turns N_1 is known as the transformation ratio.

Transformation Ratio $= \frac{E_2}{E_1} = \frac{N_2}{N_1}$

iv) EMF Ratio:

Summer – 2016 Examinations Model Answer

Page No: 21 of 23

The ratio of secondary emf E_2 to the primary emf E_1 is known as the transformation ratio. EMF Ratio = $\frac{E_2}{E_1}$

6c) Justify the name "Universal motor". State its applications.

Ans:

Subject Code : 17331 (ETE)

Universal motor:

A series motor which can operate on both AC supply or DC supply is termed as Universal motor. It has high starting torque and variable speed characteristics. Due to its design features, its performance is not affected much when supply type changes i.e it gives out approximately same speed and output for equivalent voltage conditions in AC and DC supply. Since the motor exhibits almost same performance on both AC and DC supply conditions, we can operate it universally on available supply, hence it is termed as "Universal Motor".

Applications:

Domestic appliances such as vacuum cleaners, food processers, mixers, grinders, 2 marks sewing machines, portable drilling machines, coffee grinders, electric shavers etc.

6 d) State the comparison between resistance split phase and capacitor start single phase I. M.

Ans:

Comparison between resistance split phase and capacitor start induction motor:

1 mark for each of any four

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Summer – 2016 Examinations <u>Model Answer</u>

Page No : 22 of 23

3	$\begin{array}{c} 4 & 400 \\ \% F.L. & 300 \\ Torque \\ (T) & 200 \\ \hline T_{st.} & 100 \\ \hline \\ W=0 \\ S=1 \\ \hline \\ \end{array} \\ \begin{array}{c} Centrifugal Switch Opens \\ 0 \\ S=0 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ N \\ \end{array} \\ \begin{array}{c} W=N \\ S=0 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} W=N \\ S=0 \\ \hline \\ \\ \end{array} \\ \begin{array}{c} W=N \\ S=0 \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ N \\ \end{array} \\ \begin{array}{c} W=N \\ S=0 \\ \end{array} \\ \begin{array}{c} W=N \\ S=0 \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ Speed \\ W=N \\ \end{array} $ \\ \begin{array}{c} W=N \\ Speed \\ W=N \\ Speed \\ W=N \\ \end{array} \\ \begin{array}{c} W=N \\ Speed \\ W=N \\	s $rac{1}{96}$ F.L. Torque 500 $rac{1}{96}$ F.L. $rac{1}{100}$ $rac{1}{100}$ rac
4	The main winding has very low	The main winding has very low
	resistance and high inductive	resistance and high inductive
	reactance.	reactance.
5	The auxiliary winding has high	The auxiliary winding has low
	resistance and in addition to that	resistance and a capacitor is inserted
	external resistance is inserted in	in series with it to increase the phase
	series with it to increase the phase	angle between two fluxes
	angle between two fluxes.	
6	Due to losses in resistance, the	Efficiency is high as resistance is
	efficiency is poor	absent
7	Poor or moderate starting torque	High starting torque (350 to 450% of
	(125 to 200% of full load torque)	full load torque)
	with high starting current.	
8	Low power factor	Better power factor
9	Cheaper that capacitor motors	Costly due to capacitor
10	Constant speed operation	Constant speed operation
11	Main applications in domestic	Compressors, Mixers, pumps
	refrigerators, fans, blowers,	
	centrifugal pumps and separators,	
	washing machines, wood working	
	machines, small lathes and machine	
	tools, duplicating machines, portable	
	drills and grinders	

6e) Draw a neat sketch of pipe earthing with label. State any two drawbacks of it. Ans:

Pipe earthing:

The figure of Pipe earthing is shown below.

Drawbacks of Pipe Earthing:

- 1) Less reliable than plate earthing.
- 2) Only applicable for small installations.
- 3) Earth resistance obtained is more than plate earthing.

2 marks for drawbacks

Summer – 2016 Examinations <u>Model Answer</u>

Page No: 23 of 23

2 marks for diagram

A typical illustration of pipe earthing.

6 f) State minimum 4 precautions against electric shock.

Ans:

Precautions against electric shock:

- 1) While using any electrical device, put on rubber sole footwear and keep your hands dry.
- 2) Always switch off main switch before replacing a blown fuse.
- 3) Ensure that the electrical equipment is properly earthed.
- 4) Keep earth connection in good condition.
- 5) Replace broken or damaged switchs, plugs etc.
- 6) A plug point should never be disconnected by pulling the flexible cable.
- 7) Make plug point connection by plug tops and not by bare wires.
- 8) Check for proper working of safety devices.
- 9) Keep electrical hand tools in proper condition.
- 10) Don't wear loose clothes while working on installation.

1 mark for each of any four.