MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No : 1 of 23
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure/figures drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

Summer-2016 Examinations

Subject Code : 17331 (ETE) Model Answer Page No: 2 of 23
1 A) Attempt any six of the following:
1A) a) State potential difference and its unit.

Ans:

Potential Difference:

The difference between the electrical potentials at any two given points in the electrical circuit is known as potential difference between those points.
Unit:- volt (V)
$1 \mathrm{~A})$ b) If the two resistances of 24Ω in series are connected in parallel with two resistances of 24Ω, find the equivalent resistance.
Ans:
Equivalent resistance of series combination $R_{1}=24+24=\mathbf{4 8 \Omega}$
Equivalent resistance of parallel combination

$$
\begin{gathered}
\frac{1}{R_{A B}}=\frac{1}{48}+\frac{1}{24}+\frac{1}{24}=0.02083+0.04167+0.04167=0.1042 \\
\therefore \boldsymbol{R}_{\boldsymbol{A B}}=\mathbf{9 . 6 \Omega}
\end{gathered}
$$

1A) c) State reluctance. What is its unit?
Ans:
Reluctance:
The opposition offered by material to the magnetic flux to set up through it, is called 'Reluctance' of material to the flux.
Unit: ampere-turns/weber or AT/wb or A/wb
1mark for definition

1 mark for unit

1A) d) Draw impedance triangle and label it.
Ans:

Impedance triangle for R - C series circuit
Any one labeled triangle 2 marks

1A) e) State any four applications of 3-phase circuit.
Ans:
Application of 3 phase circuit: $\quad 1 / 2$ mark for
1] Power and distribution system
2] Large generators
3] 3 phase motors like induction and synchronous motors
4] Low power industrial applications like cranes, conveyors, furnaces. each of any four application

5] For large building loads.
6] For transmission of bulk amount of power over the lines.
1A) f) State the concept of balanced load.
Ans:
Balanced load: If all the phase impedances of the three phase load are exactly

Summer-2016 Examinations

Subject Code : 17331 (ETE)
Model Answer
Page No: 3 of 23
e.g Balanced load: $(3+\mathrm{j} 4),(3+\mathrm{j} 4),(3+\mathrm{j} 4)$ all impedances $=5 \angle 53.13^{\circ} \Omega$

Unbalanced load: $(3+\mathrm{j} 4),(3-\mathrm{j} 4),(4+\mathrm{j} 3)$ all impedance magnitudes are 5Ω but angles are different.
1A) g) Define the voltage regulation of single phase transformer.

Ans:

Voltage Regulation:
The change in secondary terminal voltage from no load to full load expressed as fraction of no load voltage or full load voltage, with primary voltage kept constant, is called voltage regulation.
Let $\mathrm{V}_{\mathrm{NL}}=$ No load secondary voltage
$\mathrm{V}_{\mathrm{FL}}=$ Full load secondary voltage
So \% Voltage Regulation-up $=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100$
1 mark for definition
$\%$ Voltage Regulation-down $=\frac{V_{N L}-V_{F L}}{V_{N L}} \times 100$
1A) h) State the basic difference between fues and MCB.
Ans:
Basic difference between fuse and MCB:
FUSE:

- Performs both functions: detection and interruption
- Fuse melts/fuses in case of excessive load (due to increase in temperature)
- Needs replacement after it is blown away once.

MCB:

- Performs Interruption only. Detection is made by relay system.
- MCB trips off in case of excessive load (works on bimetal expansion or induced magnetism)
- Can be reused after successful operation.

1A) i) State the need of earthing in electrical systems.

Ans:-

1. Earthing is needed for safety of working personnel, safety of animals and property so that any live part touching the body of the equipment must be grounded (connected to zero volts);
2. For protection as under such circumstances the low resistance path results in heavy current drawn from supply which is sensed to trip the circuit or blow fuses.
3. Earthing is also needed in electrical installations of substations to hold the neutral voltage to very low values so that fault on one phase does not affect the other (neutral earthing)
1B) Attempt any two of the following:
1B) a) State the following terms and write the formula.
i) Inductive reactance
ii) Capacitive reactance

State the relation of frequency for both the terms.
Ans:

1. Inductive Reactance:-

Inductive reactance is defined as the opposition offered by inductance to the $1 / 2$ mark for

Summer-2016 Examinations

Subject Code : 17331 (ETE) Model Answer Page No: 4 of 23
flow of an alternating current.
Inductive Reactance is expressed as

$$
X_{L}=2 \pi f L \text { ohm }
$$

2. Capacitive Reactance:

Capacitive reactance is defined as the opposition offered by capacitance to the flow of an alternating current.
Capacitive Reactance is expressed as $\quad X_{C}=\frac{1}{2 \pi f C} \mathrm{ohm}$
where, L is the inductance in henry,
C is the capacitance in farad,
f is the frequency in Hz

3. Relation of frequency:

The inductive reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$ is directly proportional to frequency (f).

$$
X_{L} \propto f
$$

The capacitive reactance $\left(\mathrm{X}_{\mathrm{C}}\right)$ is inversely proportional to frequency (f).

$$
X_{C} \propto \frac{1}{f}
$$

1B) b) For the given circuit as shown in the figure $1 \mathrm{~B}(\mathrm{~b})$ find the current flowing and the magnitude of p.f.

Fig. 1B (b)

Ans:

Data Given: Resistance $R=20 \Omega$, Inductance $L=15 \mathrm{mH}$, Capacitance $\mathrm{C}=2 \mu \mathrm{~F}$
Supply Voltage V $=120 \angle 0^{\circ}$
Assuming supply frequency $\mathbf{f}=\mathbf{5 0 H z}$,
(i) Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)\left(15 \times 10^{-3}\right)=4.71 \Omega$
(ii) Capacitive reactance $X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(50)\left(2 \times 10^{-6}\right)}=1591.55 \Omega$
(iii) Impedance of series circuit

$$
Z=R+j X_{L}-j X_{C}=20+j 4.71-1591.55=1586.97 \angle-89.28^{\circ} \Omega
$$

(iv) Current $I=\frac{V}{Z}=\frac{120 \angle 0^{\circ}}{1586.97 \angle-89.28^{\circ}}=\mathbf{0 . 0 7 5 6} \angle 89.28^{\circ} \mathrm{A}$
(v) Power factor $\cos \phi=\cos \left(89.28^{\circ}\right)=\mathbf{0 . 0 1 2 5 7}$ leading

1B) c) Explain the working principle of shaded pole single-phase induction motor.
Ans:
Shaded pole single-phase induction motor:
When single phase supply is applied across the stator winding an alternating field is created. The flux distribution is non uniform due to shading bands on the poles. The shading band acts as a single turn coil and when links with alternating flux, emf is induced in it. The emf circulates current as it is simply a short circuit. The current produce the magnetic flux the shaded part of core to oppose the cause of its production which is the change in the alternating flux produced by the winding of motor. Now consider three different instants of time t_{1}, t_{2}, t_{3} of the flux wave to examine the effect of shading band as shown in the fig below. The magnetic neutral
definition
of each
$=1$ mark
1 mark for each equation of X
$=2$ marks
$1 / 2$ mark for each relation
$=1 \mathrm{mark}$
$1 / 2$ mark for each X
$=1 \mathrm{mark}$
1 mark
1 mark
1 mark

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 5 of 23
axis shifts from left to right in every half cycle, from non-shaded area of pole to the shaded area of the pole. This gives to some extent a rotating field effect which may be sufficient to provide starting torque to squirrel cage rotor and rotor rotates.

2 Attempt any four of the following:
2a) Applying mesh loop current method, find current flowing through 12Ω connected between terminals A and B (Refer fig. 2(a)).

Ans:
Mesh Analysis:

Summer-2016 Examinations

Subject Code : 17331 (ETE) Model Answer Page No: 6 of 23
i) There are two meshes in the network.
ii) Mesh currents I_{1} and I_{2} are marked anticlockwise as shown.
iii) The polarities of voltage drops across resistors are also shown with reference to respective mesh currents.
iv) By tracing mesh 1 clockwise, we can write
$\therefore \mathrm{I}_{1}=20 \mathrm{~A}$
By tracing mesh 2 anticlockwise, KVL equation is,
$-8 \mathrm{I}_{2}-30-4 \mathrm{I}_{2}-12\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0$
$\therefore 12 \mathrm{I}_{1}-24 \mathrm{I}_{2}=30$
v) Substituting eq.(1) in to (2), we get,
$12(20)-24 \mathrm{I}_{2}=30$
$-24 \mathrm{I}_{2}=30-240=-210$
$\therefore \mathrm{I}_{2}=8.75 \mathrm{~A}$
vi) Current through 12Ω is $I=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$ flowing from B to A
$\mathrm{I}=20-8.75=\mathbf{1 1 . 2 5 A}$ from B to \mathbf{A}
1 mark for mesh identificati on and marking

1 mark for I_{1}
1 mark for mesh equation

1 mark for final solution
2b) State Kirchhoff's laws, with sign convention concept. How KVL is different than mesh loop method?
Ans:

Kirchhoff's laws:

1) Kirchhoff's Current Law (KCL):

It states that in any electrical network, the algebraic sum of the currents meeting at a node (point or junction) is zero.
i.e $\Sigma \mathrm{I}=0$

At junction point $\mathrm{P}, \quad \mathrm{I}_{1}-\mathrm{I}_{2}-\mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{5}-\mathrm{I}_{6}=0$

Sign convention:

Incoming current at the node is considered to be positive and outgoing current to be
 negative.
2) Kirchhoff's Voltage Law (KVL):

It states that, in any closed path in an electric circuit, the algebraic sum of the emfs and products of the currents and resistances is zero.
i.e $\Sigma \mathrm{E}-\Sigma \mathrm{IR}=0$ or $\Sigma \mathrm{E}=\Sigma \mathrm{IR}$ OR
It states that, in any closed path in an electrical circuit, the total voltage rise
 is equal to the total voltage drops.
i.e Voltage rise $=$ Voltage drop

Refering to the circuit, by KVL we can write,
$\left(\mathrm{E}_{1}-\mathrm{E}_{2}+\mathrm{E}_{3}\right)=\left(\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{I}_{3} \mathrm{R}_{3}-\mathrm{I}_{4} \mathrm{R}_{4}\right)$

Sign convention:

While tracing the loop or mesh, the voltage rise is considered as positive

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 7 of 23
and voltage drop is considered as negative.

Difference between Mesh Loop Method and KVL:

In mesh loop method, the mesh/loop currents are marked first and then the branch currents are expressed in terms of mesh currents to write the voltage equations.
In KVL method, the branch currents are marked and voltage equations are written in terms of it.
2c) An alternating voltage is represented by $v=114.8 \sin (314 t)$ volt.
Find: (i) rms value (ii) average value (iii) maximum value (iv) frequency of voltage.

Ans:

Standard equation of sinusoidal quantity is $v=V_{m} \sin (\omega t)$ volt. On comparing the given voltage with standard equation, we get
(i) Maximum Value $V_{m}=\mathbf{1 1 4 . 8}$ volt
(ii) RMS value $V=\frac{V_{m}}{\sqrt{2}}=\frac{114.8}{\sqrt{2}}=\mathbf{8 1 . 1 7 5}$ volt
(iii) Average value (over full cycle) $=0$ volt

Average value (over half cycle) $V_{a v}=0.637 V_{m}=0.637 \times 114.8$

$$
\text { = } 73.13 \text { volt }
$$

(iv) Angular frequency $\omega=314 \mathrm{rad} / \mathrm{sec}=2 \pi \mathrm{f}$
\therefore frequency $\mathrm{f}=\frac{314}{2 \pi}=49.97 \cong \mathbf{5 0 H z}$
2d) State the following terms:
(i) Phase
(ii) Phase difference
(iii) In-phase quantity
(iv) Out-of-phase quantity

Ans:
i) Phase:-

It is the angular distance covered by an alternating quantity since it passed through its last zero value while increasing towards positive maximum value.
In the following figure the phase of quantity at positive maximum value is $\emptyset=90^{\circ}$.

ii) Phase difference:-

Phase difference between two alternating quantities is the angular

1 mark for difference

1 mark for each point

1 mark for each term

Summer - 2016 Examinations

Model Answer

distance between their respective zero or maximum values.
In the following figure, it is seen that the angular distance between corresponding zero values is \emptyset, hence phase difference between them is \emptyset.

iii) In phase quantity:-

If phase difference between two alternating quantities is zero then they are called as 'In phase quantities'.

OR
If two alternating quantities attain their zero values or maximum values simultaneously, then such quantities are called "In-phase" quantities.

iv) Out of phase quantity:-

If phase difference between two alternating quantities is non-zero, then they are called as "Out-of- phase" quantities.

OR
If two alternating quantities do not attain their zero values or maximum values simultaneously, then such quantities are called "Out-of-phase" quantities.

2e) Draw a phasor diagram and waveform for RC series circuit.
Ans:

RC series circuit:

The circuit diagram, waveforms and phasor diagram for series RC circuit are shown below.

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 9 of 23

(a) Circuit Diagram

(b) Waveforms

(c) Phasor Diagram

If $\mathrm{R}=25 \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=50 \mu \mathrm{~F}$, find active power, reactive power when they are connected in series across a a.c. source of $220 \angle 0^{\circ}$ volt.
Ans:
Data Given: Resistance $R=25 \Omega$, Inductance $L=10 \mathrm{mH}$, Capacitance $C=50 \mu \mathrm{~F}$ Supply Voltage V $=220 \angle 0^{\circ}$
Assuming supply frequency $\mathbf{f}=\mathbf{5 0 H z}$,
(i) Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)\left(10 \times 10^{-3}\right)=3.14 \Omega$
(ii) Capacitive reactance $X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(50)\left(50 \times 10^{-6}\right)}=63.66 \Omega$
(iii) Impedance of series circuit

$$
\begin{aligned}
Z & =R+j X_{L}-j X_{C}=25+j 3.14-j 63.66 \\
& =25-j 60.52=65.48 \angle-67.56^{\circ} \Omega
\end{aligned}
$$

(iv) Current $I=\frac{V}{Z}=\frac{220 \angle 0^{\circ}}{65.48 \angle-67.56^{\circ}}=3.36 \angle 67.56^{\circ} \mathrm{A}$
(v) Power factor $\cos \emptyset=\cos \left(67.56^{\circ}\right)=0.38$ leading
(vi) Active power $\boldsymbol{P}=V \operatorname{Icos} \varnothing=(220)(3.36)(0.38)=282.16$ watt
(vii) Reactive power $\boldsymbol{Q}=V I \sin \varnothing=(220)(3.36)(0.92)=\mathbf{6 8 0 . 0 6 4}$ var

3 Attempt any four of the following:

1 mark for I

1 mark for \varnothing
2 marks for waveforms

2 marks for phasor diagram 1 nar

1 mark for
1 mark for Q

3 a) For the circuit shown in fig. 3(a) find the resistance between terminals A and B using star delta conversion.

Fig. 3(a)

Ans:

The circuit is redrawn as shown in Fig.(a) below.
Step I: Converting delta ABC in to equivalent star.

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No : 10 of 23

(e)

(f)

(h)
$R_{A}=\frac{2 \times 8}{2+8+6}=1 \Omega$
$R_{B}=\frac{6 \times 8}{2+8+6}=3 \Omega$
$R_{C}=\frac{6 \times 2}{2+8+6}=0.75 \Omega$
The modified circuit diagram is shown in Fig.(b)
Step II: Equivalent resistance of series combination between E and D

$$
=0.75+6+5+8=19.75 \Omega
$$

The modified circuit diagram is shown in Fig.(c). This circuit can be redrawn as shown in Fig.(d).
Step III: Converting delta AED in to equivalent star

$$
\begin{aligned}
& R_{A}=\frac{1 \times 4}{1+4+19.75}=0.16 \Omega \\
& R_{E}=\frac{1 \times 19.75}{1+4+19.75}=0.798 \Omega \\
& R_{D}=\frac{4 \times 19.75}{1+4+19.75}=3.19 \Omega
\end{aligned}
$$

The modified circuit diagram is shown in Fig.(e).
Step IV: Solving series combinations
$0.798+3=3.798 \Omega$
$3.19+2=5.19 \Omega$
The modified circuit diagram is shown in Fig.(f).
Step V: Solving parallel combination

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 11 of 23
Equivalent resistance $=\frac{3.798 \times 5.19}{3.798+5.19}=2.19 \Omega$
The modified circuit diagram is shown in Fig.(g).

Step VI: Final solution

Referring to Fig.(g), the equivalent resistance between terminal A and B is given by,

$$
\boldsymbol{R}_{\boldsymbol{A B}}=0.16+2.19=\mathbf{2 . 3 5 \Omega}
$$

3 b) AC voltage of $v=110 \sin (314 t)$ is applied across a 39 mH inductor. Write the equation for current, draw phasor diagram.

Ans:

i) Equation for current:

Comparing voltage equation with standard form, we can write,
Angular frequency $\omega=2 \pi \mathrm{f}=314 \mathrm{rad} / \mathrm{sec}$
\therefore Frequency $\mathrm{f}=314 /(2 \pi)=49.97 \cong 50 \mathrm{~Hz}$.
1 mark for
\therefore Inductive reactance $X_{L}=2 \pi f L=2 \pi(50)\left(39 \times 10^{-3}\right)=12.25 \Omega$
Maximum value of current $I_{m}=\frac{V_{m}}{X_{L}}=\frac{110}{12.25}=8.98 \mathrm{~A}$
1 mark for I_{m}
Since it is pure inductor, current lags behind the voltage by 90°.
The current is expressed as,
$i=8.98 \sin \left(314 t-90^{\circ}\right) A$
1 mark for eq. of i

ii) Phasor diagram:

3c) State the concept of lagging and leading quantity. State its nature for capacitive circuit only.
Ans:

Concept of lagging and leading quantity:

In case of two out-of-phase quantities, the quantity which attains its zero or maximum value first as compared to other quantity, is called leading quantity. The quantity which attains its zero or maximum value later as compared to other quantity, is called as lagging quantity.
In the waveforms shown, it is seen that the current becomes zero first and after an angle of
 90° voltage becomes zero. Similarly, current reaches to its maximum value first and after an angle of 90° voltage becomes maximum. So here current is a leading quantoty and voltage is lagging quantity.

Nature for Capacitive circuit:

For capacitive circuit, the current leads the voltage by some angle, usually less than

1 mark for phasor diagram

1 mark for lagging quantity

1 mark for leading quantity

1 mark for diagram

1 mark for nature

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 12 of 23
90°. However, if the circuit is purely capacitive, the current leads voltage by 90°. We can also say thet the voltage lags behind current by 90°.
3d) Draw a neat circuit for measurement of power using of dynamometer type wattmeter on R-L series circuit. Label the current coil and potential coil.

Ans:

Measurement of power using of dynamometer type wattmeter:

3 e) State any four comparisons between R-L series and R-C series circuit.
Ans:
Comparison between R-L series and R-C series circuit:

Particulars	R-L series circuit	R-C series circuit
Circuit diagram		
Impedance	$Z=R+j X_{L}=\|Z\| \angle \emptyset$	$Z=R-j X_{C}=\|Z\| \angle-\emptyset$
Phase angle	$0<\emptyset<90^{\circ}$ lagging	$0<\emptyset<90^{\circ}$ leading
Power factor	$0<\cos \emptyset<1$ lagging	$0<\cos \emptyset<1$ leading
Imdedance triangle	Impedance triangle for R-L series circuit	Impedance triangle for R - C series circuit
Voltage triangle	Voltage Triangle for R-L Series Circuit	Voltage Triangle for R-C Series Circuit

4 marks for
Labeled diagram

1 mark for each of any four points

Summer-2016 Examinations

Subject Code : 17331 (ETE)
Model Answer
Page No: 13 of 23

Power triangle		

3f) For a balanced $440 \mathrm{~V}, 50 \mathrm{~Hz}$, star connected system, three equal coils of resistance 12 ohm and inductance 15 mH are connected per phase. Calculate line current and power absorbed by the circuit.
Ans:
Data Given: Line Voltage $V_{L}=440 \mathrm{~V}$, Frequency $\mathrm{f}=50 \mathrm{~Hz}$
Resistance $\mathrm{R}=12 \Omega$, Inductance $\mathrm{L}=15 \mathrm{mH}$
1 mark for X_{L}
\therefore Inductive reactance per phase $X_{L}=2 \pi f L=2 \pi(50)\left(15 \times 10^{-3}\right)=4.71 \Omega$
\therefore Impedance per phase $Z=R+j X_{L}=12+j 4.71=12.89 \angle 21.43^{\circ} \Omega$
In star-connected system, phase voltage $V_{p h}=\frac{1}{\sqrt{3}}$ Line voltage $=\frac{440}{\sqrt{3}}=254.03 \mathrm{~V}$
\therefore Phase current $I_{p h}=\frac{V_{p h}}{Z}=\frac{254.03 \angle 0^{\circ}}{12.89 \angle 21.43^{\circ}}=19.71 \angle-21.43^{\circ} \mathrm{A}$
In star-connected system, Line current $=$ Phase current $=19.71 \mathrm{~A}$
Power absorbed by the circuit,

$$
\begin{aligned}
P_{3 \emptyset} & =\sqrt{3} V_{L} I_{L} \cos \emptyset=3 V_{p h} I_{p h} \cos \emptyset \\
& =\sqrt{3}(440)(19.71) \cos \left(-21.43^{\circ}\right) \\
& =\mathbf{1 3 9 8 2} .55 \text { watt }
\end{aligned}
$$

4 Attempt any four of the following:
4a) State the difference between statically and dynamically induced emf. For each type state one example.
Ans:

Statically induced emf	Dynamically induced emf
Emf is induced without any relative motion between conductor and magnetic field.	Emf is induced due to relative motion between conductor and magnetic field.
Emf is induced when changing magnetic field links with a conductor.	Emf is induced when conductor cuts the magnetic field due to relative motion between them.
Direction of statically induced emf is given by Lenz's law.	Direction of dynamically induced emf is given by Fleming's Right hand rule.
Two types: Self-induced emf Mutually induced emf	No such further classifcation
e.g. emf induced in transformer windings	e.g emf induced in Generator, Alternator armature windings

2 marks for difference

2 marks for 2 examples

4b) State form factor and peak factor. State the relation between:
i) rms and max value
ii) max and average value

Ans:

Form factor:

Summer-2016 Examinations

Subject Code : 17331 (ETE) Model Answer Page No : 14 of 23
It is the ratio of the RMS value to the average value.
Form factor $=\frac{R M S \text { Value }}{\text { Average Value }}$
1 mark
Peak factor:
It is the ratio of Maximum or peak value to the RMS value.
Peak factor $=\frac{\text { Maximum Value or Peak Value }}{\text { RMS Value }}$

Relation:

i) Relation between rms value and maximum value is given by peak factor and for sinusoidal quantity, it is $\sqrt{2}$.

1 mark
Maximum value $=\sqrt{2}$ (rms value)
ii) Relation between maximum value and average value for sinusoidal quantity is given by,
Average value $=0.637$ (Maximum value)
1 mark
$4 \mathrm{c}) \quad$ A circuit takes a current of 12 A at a voltage of 220 V and its p.f. is 0.8 leading.
Draw power triangle and find active, reactive and apparent power.
Ans:
Data Given: $\mathrm{V}=220 \mathrm{~V} \quad \mathrm{I}=12 \mathrm{~A} \quad \cos \phi=0.8$ leading
The p.f. angle is $\phi=\cos ^{-1}(0.8)=36.87^{\circ}$ leading
i) Active power $\mathrm{P}=\mathrm{V} \operatorname{I} \cos \phi=(220)(12) \cos \left(36.87^{\circ}\right)=2112$ watt. 1 mark
ii) Reactive power $\mathrm{Q}=\mathrm{V} \operatorname{I} \sin \phi=(220)(12) \sin \left(-36.87^{\circ}\right)=-1584$ var $\quad 1$ mark
iii) Apparent power $\mathrm{S}=\mathrm{V} \mathrm{I}=(220)(12)=2640$ volt-amp 1 mark

1 mark

4d) Draw all series resonance curves and state the relation of all elements with frequency.
Ans:
Series resonance curves:

1) Resistance is independent of frequency, i.e frequency have no effect on the value of resistance.
2) Inductive reactance is expressed by, $X_{L}=2 \pi f L$. Thus the value of inductive reactance linearly changes with frequency. The inductive reactance is directly proportional to frequency.
3) Capacitive reactance is expressed as $X_{C}=\frac{1}{2 \pi f C}$. Thus the value of 1 mark capacitive reactance is inversely proportional to the frequency.
The relation of all elements with frequency is shown in the following figure.

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 15 of $\mathbf{2 3}$

1 mark

1 Mark
1 Mark
1 Mark
1 Mark

4 Marks

When single-phase ac supply is given to single-phase stator winding of motor, a magnetic field is produced in the air gap between stator and rotor. However, this magnetic field is not rotating in nature, rather it is pulsating or oscillating in nature. So torque is not developed and motor can not start itself. Thus single-phase induction motor is not self-starting.
To make the motor self-starting, it is essential that rotating magnetic field must be produced in the air gap between stator and rotor. For that, the single phase winding is split into two parts (windings) and such two windings are placed in stator core with 90° displacement. To obtain large phase difference (close to 90° in time phase) between their currents, a capacitor is inserted in series with one winding. This winding is referred as Starting or Auxiliary winding. Other winding is the

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 16 of 23
main or running winding. These two windings when connected in parallel across single-phase supply, two currents of large phase difference flow through these windings and rotating magnetic field is produced. The rotating magnetic field is cut by short circuited rotor conductors, which then carry current. Due to interaction between rotor current and stator magnetic field, force is exerted on rotor ans rotor rotates.
5 Attempt any four of the following:
5 a) Refer figure 5(a) and find (i) max value of current (ii) form factor (iii) peak factor and (iv) frequency.

Fig. 5(a)
Ans:
Data Given: Angular frequency $\omega=314 \mathrm{rad} / \mathrm{sec}$
(i) Maximum value of current $\mathrm{I}_{\mathrm{m}}=40 \mathrm{~A}$
(ii) Form factor :

Average value of current $=0.637 \mathrm{I}_{\mathrm{m}}=0.637(40)=25.48 \mathrm{~A}$
RMS value of current $=0.707 \mathrm{I}_{\mathrm{m}}=0.707(40)=28.28 \mathrm{~A}$
\therefore Form factor $=($ RMS value $) /($ Average value $)$

$$
=\frac{0.707 I_{m}}{0.637 I_{m}}=1.11
$$

(iii) Peak Factor:
\therefore Peak factor $=($ Peak or maximum value $) /($ RMS value $)$

$$
=\frac{I_{m}}{0.707 I_{m}}=1.41
$$

(iv) Frequency $\mathrm{f}=\frac{\omega}{2 \pi}=\frac{314}{2 \pi}=49.97 \cong 50 \mathrm{~Hz}$

5 b) State following laws with their applications.
i) Faraday's Laws (both) of electromagnetism
ii) Lenz's Law

Ans:
i) Faraday's Laws of Electromagnetic Induction:

First Law:
Whenever a changing magnetic flux links with a conductor, an emf is induced in that conductor.

OR

When a conductor cuts across magnetic field, an emf is induced in that conductor.

Second Law:

The magnitude of induced emf is directly proportional to the rate of change of flux linking with the conductor or the rate of flux cut by the

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 17 of $\mathbf{2 3}$
conductor.
Applications: emfs induced in transformers, motors, generators, alternators etc.
ii) Lenz's Law:

The direction of statically induced emf is such that it always opposes the cause of its production.
Application: Finding direction of emfs in transformer windings.
5c) Refer figure 5(c) and find the current flowing through (1) 10Ω branch using nodevoltage method.

Fig. 5(c)
Ans:
Node Voltage Analysis:
Step I: Mark the nodes.
Here nodes are already marked as C and D.
Step II: Write KCL equations
By KCL at node C, we can write,
$\frac{V_{C}-12}{2+5}+5+\frac{V_{C}-10-V_{D}}{3}=0$
$V_{C}\left(\frac{1}{7}+\frac{1}{3}\right)+V_{D}\left(\frac{-1}{3}\right)-\frac{12}{7}-\frac{10}{3}=0$
$V_{C}(0.476)+V_{D}(-0.333)-5.048=0$
$V_{C}(0.476)+V_{D}(-0.333)=5.048$
By KCL at node D, we can write,
$\frac{V_{D}}{10}-8+\frac{V_{D}+10-V_{C}}{3}=0$
$V_{C}\left(-\frac{1}{3}\right)+V_{D}\left(\frac{1}{3}+\frac{1}{10}\right)-8+\frac{10}{3}=0$
$V_{C}(-0.333)+V_{D}(0.433)-4.67=0$
$V_{C}(-0.333)+V_{D}(0.433)=4.67$
Step III: Solving Simultaneous equations
Expressing eq. (1) and (2) in matrix form,
$\left[\begin{array}{cc}0.476 & -0.333 \\ -0.333 & 0.433\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathrm{C}} \\ \mathrm{V}_{\mathrm{D}}\end{array}\right]=\left[\begin{array}{c}5.048 \\ 4.67\end{array}\right]$
$\therefore \Delta=\left|\begin{array}{cc}0.476 & -0.333 \\ -0.333 & 0.433\end{array}\right|=0.206-(0.11)=0.096$
By Cramer's rule,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}=\frac{\left|\begin{array}{cc}
5.048 & -0.333 \\
4.67 & 0.433
\end{array}\right|}{\Delta}=\frac{(2.186)-(-1.555)}{0.096}=\frac{3.741}{0.096} \\
& \boldsymbol{V}_{\boldsymbol{C}}=\mathbf{3 8 . 9 7 \text { volt }}
\end{aligned}
$$

Summer-2016 Examinations
Subject Code : 17331 (ETE)

Model Answer

Page No: 18 of 23

$$
V_{\mathrm{D}}=\frac{\left|\begin{array}{cc}
0.476 & 5.048 \\
-0.333 & 4.67
\end{array}\right|}{\Delta}=\frac{(2.223)-(-1.68)}{0.096}=\frac{3.904}{0.096}
$$

Step IV: Solving for currents
Current in 10Ω resistor is given by, 1 mark for
$I_{10}=\frac{V_{D}}{10}=\frac{40.67}{10}=4.067 \mathrm{~A}$

1 mark for phasor diagram

3 marks for stepwise derivation
I_{R} is the phasor sum of phase currents I_{1} and $-\mathrm{I}_{3}$. We know that in parallelogram, the diagonals bisect each other with an angle of 90°.
Therefore in $\triangle \mathrm{OPS}, \angle \mathrm{P}=90^{\circ}$ and $\angle \mathrm{O}=30^{\circ}$.

$$
[\mathrm{OP}]=[\mathrm{OS}] \cos 30^{\circ}
$$

$$
\text { Since }[\mathrm{OP}]=\mathrm{I}_{\mathrm{L}} / 2 \text { and }[\mathrm{OS}]=\mathrm{I}_{\mathrm{ph}}
$$

$$
\therefore \frac{\mathrm{I}_{\mathrm{L}}}{2}=\mathrm{I}_{\mathrm{ph}} \cos 30^{\circ}
$$

$$
\mathrm{I}_{\mathrm{L}}=2 \mathrm{I}_{\mathrm{ph}} \frac{\sqrt{3}}{2}
$$

$$
\mathbf{I}_{\mathbf{L}}=\sqrt{3} \mathbf{I}_{\mathrm{ph}}
$$

Thus Line current $=\sqrt{3}($ Phase Current $)$
5 e) Compare single-phase two winding transformer with single-phase autotransformer.
Ans:
Comparison between Two winding transformer and Autotransformer:

	Two winding Transformer	Autotransformer
1	There are two separate windings for primary and secondary.	Only one winding, part of the winding is common for primary and secondary.
2	No movable contact between primary and secondary	Movable contact exist

1 mark for each of any four points

Summer-2016 Examinations

Subject Code : 17331 (ETE)
Model Answer
Page No: 19 of 23

3	Electrical isolation between primary and secondary windings.	Electrical connection between primary and secondary.
4	Comparatively more losses	Comparatively lower losses.
5	Efficiency is less as compared to autotransformer.	Efficiency is more as compared to two winding transformer.
6	Copper required is more.	Copper required is less, thus copper is saved.
7	Core type or shell type construction	Spiral core construction
8	Most of the general purpose transformers where fixed voltage is required.	Special applications where variable voltage is required.

5f) Explain construction of single phase transformer. State the losses occurred in transformer.
Ans:
Construction of single phase transformer:
Single-phase transformer essentially consists of following components:
i) Windings: Two windings of aluminium or copper are placed round the core and are insulated from each other and also from the core.
ii) Core: Magnetic core is made up of thin silicon steel laminations of thickness 0.35 to 0.5 mm .
For big size transformers, tank is used to accommodate the core-winding assembly. In fact, the core-winding assembly is kept immersed in oil in the tank. The oil acts as a cooling medium and also the insulating medium. The terminals are taken out of the tank using bushings.
There are two types of core constructions:
i) Core type construction
ii) Shell type construction

In core type construction, the winding surrounds the core, whereas in shell type construction, the core surrounds the winding. The vertical portion of core is called 'Limb' or 'leg'. The horizontal portion of the core is called 'yoke'. The core is made from the E and I or L type laminations stacked together.
The low-voltage winding has few turns, hence it is usually helical winding. The high voltage winding has large no. of turns, hence it is usually disc type winding.

Losses in Transformer:

i) Core or Iron loss: It takes place in the magnetic core and depends upon the magnetic flux. It is treated as constant loss since flux remains constant. Core loss is further divided into two types:
a) Hysteresis loss
b) Eddy current loss
ii) Copper or $I^{2} R$ loss: It takes place in the windings of transformer due to current and resistance of the winding.

3 marks for constructio n

1 mark for losses

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 20 of 23
6 a) Draw phasor diagram for both star and delta connected balanced load.
Ans:
Phasor Diagram for Balanced Star Connected Load:

Phasor Diagram for Balanced Delta Connected Load:

6b) State the term: i) voltage ratio ii) current ratio iii) transformation ratio vi) EMF ratio related to single phase transformer.
Ans:
i) Voltage Ratio:

The ratio of secondary load voltage V_{2} to the primary supply voltage V_{1} is known as the voltage ratio.
Voltage Ratio $=\frac{V_{2}}{V_{1}}$
ii) Current Ratio:

The ratio of secondary current I_{2} to the primary current I_{1} is known as the current ratio.

1 mark for each definition Current Ratio $=\frac{I_{2}}{I_{1}}$
iii) Transformation Ratio:

In general, the turns ratio or emf ratio is called as transformation ratio. The ratio of secondary emf E_{2} to the primary emf E_{1} is known as the transformation ratio. Also the ratio of secondary turns N_{2} to the primary turns N_{1} is known as the transformation ratio.
Transformation Ratio $=\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}$
iv) EMF Ratio:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Summer - 2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 21 of $\mathbf{2 3}$
The ratio of secondary emf E_{2} to the primary emf E_{1} is known as the transformation ratio.
EMF Ratio $=\frac{E_{2}}{E_{1}}$
6c) Justify the name "Universal motor". State its applications.

Ans:

Universal motor:
A series motor which can operate on both AC supply or DC supply is termed as Universal motor. It has high starting torque and variable speed characteristics. Due to its design features, its performance is not affected much when supply type changes i.e it gives out approximately same speed and output for equivalent voltage conditions in AC and DC supply. Since the motor exhibits almost same performance on both AC and DC supply conditions, we can operate it universally on available supply, hence it is termed as "Universal Motor".

Applications:

Domestic appliances such as vacuum cleaners, food processers, mixers, grinders,

1 mark for each of any four

Summer-2016 Examinations
Subject Code : 17331 (ETE)
Model Answer
Page No: 22 of 23

| 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

6e) Draw a neat sketch of pipe earthing with label. State any two drawbacks of it.
Ans:
Pipe earthing:
The figure of Pipe earthing is shown below.
Drawbacks of Pipe Earthing:

1) Less reliable than plate earthing.

2 marks for
drawbacks
2) Only applicable for small installations.
3) Earth resistance obtained is more than plate earthing.

Summer-2016 Examinations

Subject Code : 17331 (ETE)

Model Answer

Page No: 23 of 23

2 marks for diagram

6f) State minimum 4 precautions against electric shock.
Ans:
Precautions against electric shock:

1) While using any electrical device, put on rubber sole footwear and keep your hands dry.
2) Always switch off main switch before replacing a blown fuse.
3) Ensure that the electrical equipment is properly earthed.
4) Keep earth connection in good condition.

1 mark for each of any four.
5) Replace broken or damaged switchs, plugs etc.
6) A plug point should never be disconnected by pulling the flexible cable.
7) Make plug point connection by plug tops and not by bare wires.
8) Check for proper working of safety devices.
9) Keep electrical hand tools in proper condition.
10) Don't wear loose clothes while working on installation.

