\square
Instructions : (1) All questions are compulsory.
(2) Answereach next main question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.

Marks

1. A) Attempt any six of the following:
a) Define loop and node in a network.
b) State Faraday's laws of electromagnetic induction.
c) Define RMS value of AC quantity.
d) Draw impedance triangle for series R-L circuit.
e) State the types of transformer depending on their construction.
f) Define voltage ratio for 1ϕ transformer.
g) Define statically induced emf.
h) Give classification of fuses.
i) State Lenz's law.
B) Attempt any two of the following :
a) Write the equations of instantaneous values of voltage and current through a pure capacitor. Draw the waveforms of voltage and current.
b) State KCL and KVL with the help of suitable example.
c) Calculate the current flowing through each resistor by loop current method for the circuit.

Fig. (i)
2. Attempt any four of the following:
a) Define (i) RMS value and (ii) Average value of an a.c.
b) Draw waveform and phasor representation for lagging and leading ac quantities.
c) Calculate amplitude, RMS value, time period and phase angle for $e=100 \sin \left(314 t+30^{\circ}\right)$.
d) Draw the connection diagram for measurement of 1ϕ power using Dynamometer type wattmeter.
e) Draw series RL circuit indicating all voltages and current and hence draw phasor diagram for the same.
f) State 4 advantages of 3ϕ circuit over 1ϕ circuit.
3. Attempt any four of the following:
a) Prove the relationship between line and phase voltage for balanced star connected load with the help of phasor diagram.
b) Draw neat sketch of plate earthing.
c) Draw connection diagram for step up and step down autotransformer.
d) Draw the impedance triangle for series RL and RC circuit.
e) A choke coil is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The power consumed by the coil is 960 W and current is 8 amp . Calculate circuit constants (R and L).
f) Three similar coils each having a resistance of 20Ω and inductance of 0.05 H are connected in star to a $3 \phi, 400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate
i) Line currents
ii) Total power absorbed.
4. Attempt any four of the following:
a) Write the steps of Nodal voltage method with suitable example.
b) Define the following terms :
i) Magnetic flux
ii) Reluctance
iii) Inductance
iv) Capacitance.
c) Define the following :
i) Power factor
ii) Apparent power
iii) Phasor diagram
iv) Reactive power.
d) Calculate $R_{A B}$ for the circuit of Fig. (ii) by Y / Δ transformation.

Fig. (ii)
e) Draw the waveform representation of three phase a.c.
f) Explain resonance in series RLC circuit.
5. Attempt any four of the following :
a) Draw the phasor diagram for an ideal transformer.
b) Define efficiency and regulation of transformer. Write the condition for maximum efficiency.
c) Write two applications of each motor:
i) Shaded pole motor
ii) Universal motor.
d) State 2 advantages and 2 disadvantages of 1ϕ autotransformer.
e) Compare fuse and MCB on the basis of
i) Service
ii) Operation
iii) Safety
iv) Cost
f) Write 4 steps for handling shock victims.
6. Attempt any four of the following :
a) Define the following for polyphase circuit :
a) Balanced load
b) Unbalanced load
c) Balanced supply
d) Unbalanced supply.
b) A resistance of 10Ω and inductance of 0.01 H are connected across a 230 V , 50 Hz ac supply. Find
i) impedance
ii) current
iii) power
iv) p.f.
c) Explain why 1ϕ induction motor is not self starting ?
d) A resistance and capacitor is connected in series across a voltage $e=282$ $\sin 314 t$ and $i=28.2 \sin \left(314 t+\frac{\pi^{\circ}}{3}\right)$.
Calculate:
i) RMS value of voltage and current.
ii) Value of R and C.
e) A 50 KVA, 6600/250 V, 1ϕ transformer has 52 secondary turns. Find
i) No. of primary turns
ii) Full load primary and secondary currents.
f) Define the following related to a.c.
i) Frequency
ii) Cycle
iii) Time period
iv) Amplitude.

