

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

17330

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q. N.		Scheme
1.	A)	Attempt any six:	12Marks
	a)	Define complexity and classify it.	2M
	Ans:	 Complexity: The complexity of an algorithm is a measure that describes its efficiency in terms of amount of time and space required for an algorithm to process. Classification: Time complexity Space complexity 	(Definition: 1mark, Classificatio n: 1mark)
	b)	State limitations of the Big 'O'notation.	2M
	Ans:	 Many algorithms are too hard to analyze mathematically. There may not be sufficient information to calculate the behavior of the algorithm in the average case. Big-Oh analysis only tells us how the algorithm grows with the size of the problem, not how efficient it is, as it does not consider programming effort. 	(Any two points: 1 Mark each)
	c)	Define searching and enlist its types.	2M
	Ans:	Searching: It is the process of finding a data element in the given data structure. Types: 1. Linear search 2. Binary search	(Definition:1 mark, types:1/2 mark each)

SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

d)	Stack is linear data structure. Yes/No? Justify your answer.Yes. Stack is a Linear data structure.Justification:Linear data structures allow organization of data elements in proper sequential manner.Stack is linear data structure because it organizes elements in a particular sequence. Stack allows insertion and deletion of element only from one end, so elements are inserted or deleted in a particular sequence.					
Ans:						
e)	Sketch represe	entation of queue as an array.		2M		
Ans:	fro	a a[0] a[1] a[2] a[3] ont r	15 ↑a[4] a[5] a[6] rear	(Proper sketch representatio n: 2 marks)		
f)	Define linked list with example.					
Ans:	Linked list: It is linear collection of data elements. Each element in linked list is called as 'node'. Each node contains two fields. First is INFO which stores data & second is NEXT which is linked with address of next node in a list. Example:					
		NODE 1 NODE 10 20 - NFO NEXT INFO NE	30 NULL			
g)	Differentiate b	etween tree and graph (Min. 2 po	ints).	2M		
Ans:	Tree Graph					
	Definition	Tree is defined as a non-empty finite set T of elements, called nodes where nodes contains a root node and others as child nodes.	A graph is defined as a set of two tuples such that $G=(V,E)$ where G is a graph, V represents vertices and E represents the set of edges of graph G.			

SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

A	Ans:	 Top-down a a. A top-down modules or s b. Each subs sub system le c. Top-down Top most most a. In this app detail. 	(Explanation of Top- down:2 marks, Bottom-up:2 marks)		
a	ı)	Describe diffe	rent approaches to design an algo	rithm.	4M
E	3)	Attempt any t	wo:		8 Marks
	1) Ans:	Indegree of no edges that have Outdegree of n	e that specified node as the head.	ph? wards a specified node i.e. number of ut from a specified node i.e. number of	mark, Outdegree: 1
		Model	Tree is a hierarchical model.	Graph is a network model.	
		Parent child relationshi p Different Types Applicatio ns	In trees, there is parent child relationship so flow can be there with direction top to bottom or vice versa. Different types of trees are: Binary Tree, Binary Search Tree, AVL tree, Heaps. Tree applications: sorting and searching like Tree Traversal & Binary Search.	child relationship. There are mainly two types of Graphs: Directed and Undirected graphs. Graph applications : Coloring of maps, in OR (PERT & CPM), algorithms, Graph coloring, job scheduling, etc.	
		Root Node	In tree there is exactly one root node and every child have only one parent.	of root node.	

(ISO/IEC - 27001 - 2005 Certified)

<u>MODEL ANSWER</u>

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

17330

Example: Top-down Complex algorithm Bottom-up approach approach Module 1 Module 2 Module n Each module can be divided into one or more sub modules b) Explain Binary Search Tree (BST) with example. **4M** A binary tree is said to be binary search tree when all nodes less than the root node are (Binary Ans: placed at the left of root node and all nodes greater than or equal to the root node are search Tree placed at the right of root node. The nodes in the binary search tree are ordered. The time Concept: 2 needed to search an element from the tree is reduced. Binary search tree also speed up the marks, insertion and deletion operation. **Example: 2** marks) **Example:** 1 5 1 6 1 1 In the above example, binary tree is a binary search tree. Its root node is 10. Nodes 5,1 and 6 are less than root node so they are placed at left and nodes 19,17 are greater than root node so they are placed at right of node 10.In each level, root node is compared with its child nodes before placing child nodes in a binary search tree. c) What are the applications of graph? Explain any two with example. **4M Applications of graph:** (Enlisting Ans: application:2 1. To represent road map marks, Any 2. To represent circuit or networks two relevant 3. To represent program flow analysis Examples :1 4. To represent transport network mark each)

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

		5. To represent social network	
Ì		6. Neural networks	
		 Neural networks Social Network Graphs: to tweet or not to tweet. Graphs that represent who knows whom, who communicates with whom, who influences whom or other relationships in social structures. An example is the twitter graph of who follows whom. These can be used to determine how information flows, how topics become hot, how communities develop, or even who might be a good match for who, or is that whom. Transportation networks: In road networks vertices are intersections and edges are the road segments between them, and for public transportation networks vertices are stops and edges are the links between them. Such networks are used by many map programs such as Google maps, Bing maps and now Apple IOS 6 maps (well perhaps without the public transport) to find the best routes between locations. They are also used for studying traffic patterns, traffic light timings, and many aspects of transportation. Neural networks: Vertices represent neurons and edges the synapses between them. Neural networks are used to understand how our brain works and how connections change when we learn. The human brain has about 10¹¹ neurons and close to 10¹⁵ synapses. Utility graphs: The power grid, the Internet, and the water network are all examples of graphs where vertices represent connection points, and edges the wires or pipes between them. Analyzing properties of these graphs is very important in understanding the reliability of such utilities under failure or attack, or in minimizing the costs to build infrastructure that matches required demands. Network packet traffic graphs: Vertices are IP (Internet protocol) addresses and edges are the packets that flow between them. Such graphs are used for analyzing network security, studying the spread of worms, and tracking criminal or non-criminal activity. Robot planning: Vertices represent states the robot can be in and the edges the possible transitions between the states. This requi	
Ì		7. Graphs in compilers: Graphs are used extensively in compilers. They can be used for	
		type inference, for so called data flow analysis, register allocation and many other	
-		purposes.	
2.		Attempt any four :	16 Marks
	a)	Write a program for Binary search.	4M
	Ans:	#include <stdio.h></stdio.h>	(Correct
		int a[20], n, item, loc, beg, mid, end, i;	logic-2
		void main()	marks,
			syntax :2
		clrscr(); printf("\nEnter size of an array: ");	marks,
		scanf("%d", &n);	any relevant logic shall be
		printf("\nEnter elements of an array in sorted form:\n");	considered)
		for $(i=0; i < n; i++)$	consider ed)
		scanf("%d", &a[i]);	
		printf("\nEnter ITEM to be searched: ");	

Subject Title: DATA STRUCTURE USING 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) <u>MODEL ANSWER</u>

SUMMER-17 EXAMINATION

Subject Code:

b)	b n w { if e b n } if p e p g } Convert followi A + B ↑ C * (D	beg = 0; a mid = (be vhile ((b f (item < end = mid else beg = mid else f (a[mid] orintf("\n else f (a[mid] orintf("\n else printf("\n else bri	d+1; eg+end)/2;] == item) \\n ITEM found at lo \\nITEM doesn't exi ression into postfix	ocation %	n)) %d & item is: %d", m •ith illustration of all		4M
	Note: † indicat	tes expo	nent operator.				
Ans:	Γ	Sr No	Symbol Scanned	Stack	Expression		(Correct Answer: 4
		1	A		A	_	marks)
		1 2	A +	+	A A	-	
				+ +		-	
		2	+		A		
		2 3	+	+	A AB		
		2 3 4	+ B ↑	+ +↑	A AB AB		
		2 3 4 5	+ B ↑ C	+ +↑ +↑	A AB AB ABC ABC↑		
		2 3 4 5 6 7 8	+ B ↑ C *	+ +↑ +↑ +* +*(+*(A AB AB AB ABC ABC↑ ABC↑ D		
		2 3 4 5 6 7	+ B ↑ C * (D /	+ +↑ +↑ +*(+*(+*(/	A AB AB ABC ABC↑ ABC↑ ABC↑ D ABC↑ D		
		2 3 4 5 6 7 8	+ B ↑ C * (D	+ + + + + + * (+*(+*(/ +*(/	A AB AB ABC ABC↑ ABC↑ ABC↑ D ABC↑ D E		
		2 3 4 5 6 7 8 9	+ B ↑ C * (D /	+ +↑ +↑ +*(+*(+*(/	A AB AB ABC ABC↑ ABC↑ ABC↑ D ABC↑ D		

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

17330

13 F ABC↑ D E/*+F _ 14 % -% ABC↑ D E/*+F ABC↑ D E/*+FG 15 G -% ABC↑DE/*+FG%-16 Postfix Expression: ABC^{DE/*+FG%-} c) Differentiate between stack and Queue.(Min. 4 points). **4M** (Any Four Ans: Stack Queue Points: 1 1.In Stack insertion and deletion 1.In Queue insertion and deletion mark each) operations are performed at same end. operations are performed at different end. 2.In stack the element which is inserted 2.In Queue the element which is inserted last is first to delete so it is called Last first is first to delete so it is called First In In First Out First Out 3.In stack only one pointer is used called 3.In Queue two pointersare used called as as Top front and rear 4.In Stack Memory is not wasted 4. In Queue memory can be wasted/ unusable in case of linear queue. 5. Students standing in a line at fees 5. Stack of books is an example of stack counter is an example of queue **6.**Application: 6.Applicatio: Recursion In computer system for organizing Polish notation processes. In mobile device for sending and receiving messages Draw representation of linear linked list, circular linked list and doubly linked list. **4M** d) (Representat Ans: ion of linear Head linked list:1 NULL mark. 01 02 03 04 circular Linked list:1 **Fig: Linear Linked List** $\frac{1}{2}$ marks,doubl y linked list: $:1\frac{1}{2}$ marks)

Subject Title: DATA STRUCTURE USING 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Head First Last 2 3 1 Fig: Circular Linked List next pointer Start 8 10 4 2 Pointer Ť Null Null prev pointer Fig: Doubly Linked List e) Write algorithm for preorder traversal of binary tree. **4M** Algorithm for Preorder Traversal: (Correct Ans: Step 1: Visit root node. Algorithm: 4 marks) Step 2: Visit left subtree in preorder. Step 3: Visit right subtree in preorder. А С В Example: Preorder traversal is: A, B, C. In this traversal method 1st process root element then left subtree & then right subtree.

f)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Explain representation of graph in detail. **4M** Graph is a data structure that consists of following two components: Ans: (Array representatio n: 2 marks. 0 linked representatio n: 2 marks) 2 Following two are the most commonly used representations of graph: **1.**AdjacencyMatrix 2.AdjacencyList There are other representations also like, Incidence Matrix and Incidence List. The choice of the graph representation is situation specific. It totally depends on the type of operations to be performed and ease of use. 1. Adjacency Matrix: Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. It is also called as bit matrix as it contains only two values i.e. 1 and 0.Value 1 indicates that there is an edge from vertex i to vertex j. Value 0 indicates that there is no edge from vertex i to vertex j.Adjacency matrix for undirected graph is always symmetric. The adjacency matrix for the above example graph is: 4 0 1 2 3 0 0 1 0 0 1 1 1 1 0 1 1 2 1 0 1 0 0 3 0 1 1 0 1 4 0 0 1 1 1 **2.** Adjacency List: An array of linked lists is used. Size of the array is equal to number of vertices. Let the array be array[]. An entry array[i] represents the linked list of vertices adjacent to the *i*th vertex. This representation can also be used to represent a weighted graph. The weights of edges can be stored in nodes of linked lists. Adjacency list contains two columns as vertex name and adjacent vertices. It show who all are adjacent vertices of each vertex in a graph.

17330

Subject Code:

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code: 17330

		VertexAdjacent vertices 0 $1,4$ 1 $0,2,3,4$ 2 $1,3$ 3 $1,2,4$ 4 $0,1,3$	
		$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 0 \\ 1 \\ 4 \\ 3 \\ 0 \\ 1 \\ 1 \\ 4 \\ 3 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
3.		Adjacency List Representation of the above Graph Attempt any four:	16 Marks
1	a)	Describe time and space trade off and time and space complexity with example of each.	4M
	Ans:	Time and Space trade off: If we increase the space require to store data then time require for processing will be less and if we decrease the space require to store data then time require for processing will be more. This phenomena is known as time – space trade off.Time Complexity: Time complexity of program / algorithm is the amount of computer time that is required to run to completion.Example: Algorithm : for a=1 to n $a=a+1$ loopTime complexity of an algorithm with above statement requires n seconds O(n) as the key statement executes n times.	(Time and space trade off 2 marks; Time complexity 1 mark; Space Complexity mark)
		Space Complexity: Space complexity of a program / algorithm is the amount of computer memory that is required to run to completion.	
1			

Example: space complexity includes computer space required for storing program instructions, constants, variable, etc.

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

b)	Write a program for selection sort.	4M
Ans:	#include <stdio.h></stdio.h>	(Correct
	void main ()	Logic :2
	{	marks,synta
	int array[100],n,i,j,temp,pos;	:2 marks)
	printf("Enter the number of elements to be sorted: ");	
	scanf("%d",&n);	
	printf("enter the elements\n");	
	for(i=0;i <n;i++)< td=""><td></td></n;i++)<>	
	<pre>scanf("%d",&array[i]);</pre>	
	}	
	for(i=0;i <n;i++)< td=""><td></td></n;i++)<>	
	pos=i;	
	for(j=i+1;j <n;j++)< td=""><td></td></n;j++)<>	
	if(array[j] <array[pos])< td=""><td></td></array[pos])<>	
	pos=j;	
	temp=array[i];	
	array[i]=array[pos];	
	array[pos]=temp;	
	}	
	printf("The Sorted List Is ");	
	for(i=0;i <n;i++)< td=""><td></td></n;i++)<>	
	printf("%d ",array[i]);	
	}	
	getch();	
c)	Explain operations on stack using array.	4M
Ans:	Basic operations of stack are:	(Any 2
	1) Create Stack (): To initialize stack as an empty stack. To show stack is empty, initially	Operations
	stack top is initialize to -1.	mark each)
		······································

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

	Advantages:	
	 Preferences to the higher priority process are added at the beginning. High priority process executes first. Keep the list sorted in increasing order. 	
e)	Write an algorithm for searching a node in linked list.	4M
Ans:	 Algorithm SEARCH (INFO, LINK, START, ITEM, LOC) LIST is a linked list in memory. This algorithm finds the location LOC of the node where ITEM firstappears in LIST or sets LOC =NULL. 1) Set PTR := START 2) Repeat Step 3 while PTR !=NULL 3) If ITEM = INFO[PTR], then Set LOC: = PTR, and exit; Else Set PTR: = LINK [PTR]. (PTR now points to the next node) [End of if loop] 4) [Search is unsuccessful.] set LOC:= NULL. 	(Correct Algorithm: 4 marks) (**Note: An set of correc steps shall b considered*)
f)	5) Exit.Draw a binary search tree for given sequence and write postorder traversal of tree.	4M
	10 5 8 9 7 6 2 15.	
	Binary search tree: 10 5 15 2 8 7 9 6	(Correct binary tree: marks, post order traversal:1 mark)
	Postorder traversal:-	
	2 6 7 9 8 5 15 10	

Subject Title: DATA STRUCTURE USING 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Code:

	Attempt a	ny four	:						16 Mar
a)	Elaborate the steps for performing insertion sort for given elements of array.								
	30 10	40	50	20 45					
Ans:	We take gi	ven arra	ıy:						(Correct
	30		10	40	50	20	45		Iteration
	Iteration 1:								marks)
	Insertion s	ort com	pares th	ne first two el	ements:				
	It finds tha	t 30 and	10 are	not in sorted	order; so it v	vill swap 30 v	with 10; and	the resultant	
	sorted sub	list will	be						
	10		30	40	50	20	45		
	Iteration 2:								
			for thi	rd element; I	t will first cl	necks 40 with	h first eleme	ent that is 10	
				,				esser than 40	
			40° thei	n if will check	240 With 30 9				
	so eventua			40 is already					
	so eventua list. 10 Iteration 3: In Iteration	ly it fin	ds that 30 Il check	40 is already 40 40	in its desiral 50 ement which	ble location s	o 40 will be 45 will be com	added to sub	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el	1y it fin 3 it wil t 10 is s ement is	ds that 30 Il check maller s again	40 is already 40 40 40 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will	is 50 which consider next	o 40 will be 45 will be comp at is sub list, t element for	added to sub	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el which is 40	1y it fin 3 it wil t 10 is s ement is 0. This e	ds that 30 Il check maller s again element	40 is already 40 40 40 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will	is 50 which consider next	o 40 will be 45 will be comp at is sub list, t element for place.	added to sub	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el	1y it fin 3 it wil t 10 is s ement is 0. This e	ds that 30 Il check maller s again	40 is already 40 40 40 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will	is 50 which consider next	o 40 will be 45 will be comp at is sub list, t element for	added to sub	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el which is 40 10 Iteration 4: Next it will jump to ne greater tha	ly it fin 3 it wil t 10 is s ement is 0. This e l check xt location 20. So	ds that 30 Il check maller s again element 30 for fift ion. At	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check	ble location s 20 is 50 which a next element consider next accep 50 to its 20 th first element with the element	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with	added to sub	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el which is 40 10 Iteration 4: Next it will jump to ne	ly it fin 3 it wil t 10 is s ement is 0. This e l check xt location 20. So	ds that 30 Il check maller s again element 30 for fift ion. At	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check	ble location s 20 is 50 which a next element consider next accep 50 to its 20 th first element with the element	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with	added to sub pare with 10; which is 30, r comparison	
	so eventualist. 10 Iteration 3: In Iteration it finds that this new ele which is 40 10 Iteration 4: Next it will jump to ne greater that desired loce	ly it fin 3 it wil t 10 is s ement is 0. This e l check xt location ation.	ds that 30 Il check maller s again element 30 for fift ion. At b it will	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check nents 30 onw	ble location s 20 is 50 which a next elemer consider nex accep 50 to its 20 th first elemer with the element ards by one p	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with position and	added to sub pare with 10; which is 30, r comparison	
	so eventua list. 10 Iteration 3: In Iteration it finds tha this new el which is 40 10 Iteration 4: Next it will jump to ne greater tha	ly it fin 3 it wil t 10 is s ement is 0. This e l check xt location ation.	ds that 30 Il check maller s again element 30 for fift ion. At	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check	ble location s 20 is 50 which a next element consider next accep 50 to its 20 th first element with the element	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with	added to sub pare with 10; which is 30, r comparison	
	so eventualist. 10 Iteration 3: In Iteration it finds that this new ele which is 40 10 Iteration 4: Next it will jump to ne greater that desired loce	ly it fin 3 it will t 10 is s ement is 0. This e l check xt location.	ds that 30 Il check maller s again element 30 for fift ion. At b it will	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check nents 30 onw	ble location s 20 is 50 which a next elemer consider nex accep 50 to its 20 th first elemer with the element ards by one p	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with position and	added to sub pare with 10; which is 30, r comparison	
	so eventualist. 10 Iteration 3: In Iteration it finds that this new ele which is 40 10 Iteration 4: Next it will jump to ne greater that desired loce	ly it fin 3 it will t 10 is s ement is 0. This e l check xt location.	ds that 30 Il check maller s again element 30 for fift ion. At b it will 30 30	40 is already 40 40 40 40 40 40 40 40 40 40	in its desiral 50 ement which it will check 50, so it will ler so it will l 50 hich is 20 wi it will check nents 30 onw 50	20 is 50 which a next element consider next ceep 50 to its 20 th first element with the element ards by one p 20	o 40 will be 45 will be comp at is sub list, t element for place. 45 ent which is nent 30 with position and	added to sub pare with 10; which is 30, r comparison	

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

	Iteration 5: Now it will c consider nex compute that next location hence next el than 45 last e 45 will be sh	t element for 20 is smaller is element for ement will be element will b	r comparison than 45 and r comparison selected. Af pe consider.	n which is 2 hence at its a n which is 30 ter comparing The last elem	0. After com ppropriate pla), this elemen g next elemen hent which is	aparison wit ace. Further t is also sma t which is 40	h 20 it will it will select iller than 45 and smaller		
		20	30	40		45			
		20	50		\rightarrow	\rightarrow	_		
	10	20	30	40	45	50			
	Sorted List						,		
	10	20	30	40	45	50			
Ans:	Yes, I #inclu	<pre>#include<stdio.h> #include<conio.h> int fact(int n); void main() {</conio.h></stdio.h></pre>							
	#inch #inch int fac void n {	ude <conio.h> ct(int n); main()</conio.h>						application of stack: 1 mark, Description 3 marks, Program is	
	<pre>#inclu #inclu int fac void 1 { int n= clrscr printf getch }</pre>	ude <conio.h> ct(int n); main() =5; (); ()"\nThe facto</conio.h>		= %d",n,fact(n));			of stack: 1 mark, Description	
	<pre>#inclu #inclu #inclu int fac void t { int n= clrscr printf getch } int fac { if(n== return else</pre>	ude <conio.h> ct(int n); main() =5; (); ("\nThe facto (); ct(int n) =1)</conio.h>	rial of % is =	= %d",n,fact(n));			of stack: 1 mark, Description 3 marks, Program is	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Code:

17330

	In cuch cun ve	lue of varia	ble n is store	d in stack. E	ach call ex	ecution ad	lds one valu	ie in	
	stack. At the e		-				•	ne to	
								1	
	f(1) true return 1;	POP							
	f(2) false return 2*f(1)	f(2) false return 2*1	POP						
	f(3) false return 3*f(2)	f(3) false return 3*f(2)	f(3) false return 3*2	POP					
	f(4) false return 4*f(3)	f(4) false return 4*f(3)	f(4) false return 4*f(3)	f(4) false return 4*6	POP				
	f(5) // line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) # line 1 false return 5*24	POP			
	main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = 120	POP		
	·					L		1	
	In the above di	•		-	-				
	execution. Ren After the last r	-					-		
	1 11001 0110 1002		10112 0 , 2	141000	III 0 , 0	11 0000011		/11102	1
	empty.								
c)	empty. Describe the s	stack as an a	abstract data	atype.					4 M
c) Ans:	Describe the s (**Note:Any	representati		• •	ıg element	s and ope	eration sha		(Description:
	Describe the s (**Note:Any considered**)	representati)	ion of an AD	DT containir	-	-			
	Describe the s (**Note:Any	representat) Data type is	ion of an AD one where w	DT containin we can store	elements	and also	perform cer	rtain	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on the contains stack	representat) Data type is hose element k elements	ion of an AD one where w ts. Stack prov such as arra	DT containin we can store vides such fac ay(list), stac	e elements cilities. Stad	and also ck as an a	perform cer bstract data	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp	representation) Data type is hose elements k elements pty,isfull,pus	ion of an AD one where w ts. Stack prov such as arra sh,pop,display	DT containin we can store vides such fac ay(list), stac	e elements cilities. Stad	and also ck as an a	perform cer bstract data	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp Stack element	representation) Data type is hose elements k elements pty,isfull,pus ts: array(list)	ion of an AD one where w ts. Stack prov such as arra sh,pop,display	DT containin we can store vides such fac ay(list), stac	e elements cilities. Stad	and also ck as an a	perform cer bstract data	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp Stack element Stack operation	representation) Data type is hose elements k elements pty,isfull,pus ts: array(list)	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top	DT containin we can store vides such fac ay(list), stac	e elements cilities. Stad	and also ck as an a	perform cer bstract data	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp Stack element Stack operatio Initialize st Checking v	representation) Data type is hose elements k elements pty,isfull,pus ts: array(list) ons: tack to be em whether stack	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top npty k is empty or	DT containin we can store vides such fac ay(list), stac y.	e elements cilities. Stad	and also ck as an a	perform cer bstract data	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp Stack element Stack operatio Initialize st Checking v Checking i	representation) Data type is hose elements k elements pty,isfull,pus ts: array(list) tack to be em whether stack f stack is full	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top hpty k is empty or l or not	DT containin we can store vides such fac ay(list), stac y. not	e elements cilities. Stac k top and	and also ck as an a l its ope	perform ce bstract data rations sucl	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on th contains stack initialize,isemp Stack element Stack operation Initialize st Checking v Checking in If stack is r	representation) Data type is hose elements k elements pty,isfull,pust ts: array(list) ons: tack to be em whether stack f stack is full not full, then	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top hpty k is empty or l or not insert a new	DT containin we can store vides such fac ay(list), stac y. not element. Thi	e elements cilities. Stac k top and	and also ck as an a l its ope	perform ce bstract data rations sucl	rtain type	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on the contains stack initialize, is emp Stack element Stack operatio Initialize st Checking w Checking in If stack in r	representation) Data type is hose elements pty,isfull,pust ts: array(list) tack to be em whether stack f stack is full not full, then not empty, th	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top hpty k is empty or l or not insert a new hen retrieve el	DT containin we can store vides such fac ay(list), stac y. not element. Thi lement from	e elements cilities. Stac k top and s operation stack top.	and also ck as an a l its oper	perform centract data trations such	rtain type h as	(Description:
	Describe the s (**Note:Any considered**) An Abstract I operation on the contains stack initialize, is emp Stack element Stack operatio Initialize st Checking w Checking in If stack in r	representation) Data type is hose elements pty,isfull,pust ts: array(list) tack to be em whether stack f stack is full not full, then not empty, th	ion of an AD one where w ts. Stack prov such as arra sh,pop,display), stack top hpty k is empty or l or not insert a new	DT containin we can store vides such fac ay(list), stac y. not element. Thi lement from	e elements cilities. Stac k top and s operation stack top.	and also ck as an a l its oper	perform centract data trations such	rtain type h as	(Description:

Subject Title: DATA STRUCTURE USING 'C'

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

```
17330
```

d)	Compare circular queue and double-ended queue. (Min. 4 points)					
Ans:						
	Circular Queue	Double Ended Queue	points of comparison			
	Insertion and Removal operation takes place at only one place. i.e. rear and front.	Insertion and removal can take place at both end	1 mark each			
	It is static in nature.	It can grow dynamically				
	It works in traditional FIFO manner	It does not require to be in LIFO & FIFO manner; removal can take place at any end.				
	Insertion and removal is slow as compare to Double Ended Queue	Relative fast insertion and removal operation as compare to Circular Queue.				
	A B rear G C front	Deletion A B C D E Insertion Insertion front rear				
e)	Define : i)Sibling ii)Depth of tree iii)Complete binary tree iv)Degree of tree.		4M			
Ans:	1. Sibling: Sibling is defined as any nodes t	hat have the same parent node.	(Each Definition:1			
	2. Depth of tree: Maximum number of levels in a tree is known as depth of a tree.					
	3. Complete binary tree: A binary tree in which every non leaf node has exactly two children and all leaf nodes are at same level is called complete binary tree.					
	4. Degree of tree: Degree of tree is defined node. Or degree of node is the number of	d as maximum number of child nodes of any nodes connected to a particular node.				
f)	Explain Hashing with its significance.		4M			
Ans:	help of hashing function. The essence of has	nount of data item to a smaller table with the hing is to facilitate the next level of searching. ng function that converts range of key values	(Description 2 marks; Significance 2 marks)			

MODEL ANSWER

Subje	ect Title:	DATA	STR	UCTUF	RE USII	NG '(MME	ER— 17 E	EXAMIN	ATION	Subj	ect Code	1733	80	
		 into a range of indexes of an array. The value which is generated by hash function isuse to store a value in hash table. Significance of Hashing: It is efficient to handle vast amount of data items in a given collection. No extra space is required to store the index as in the case of other data structures. A hash table provides fast data access and rapid updates. Due to hashing process, the result is a hash data structure that can store or retrieve data item in an average time disregard to the collection size. 														
5.			-	any tv											16	Marks
	a)			progra n in gi 20					Find point	osition	of elem	ent 30 u	sing line	ar search		8M
	Ans;			<pre>#incl void { int a[clrscn printtl scanf printtl for(i= scanf for(i= if(a[i break if(i<r else="" getch="" pre="" printtl="" }="" }<=""></r></pre>	f("Hov f("%d' f("Entu =0;i <n f("%d' f("nEnu f("%d' =0;i<n]==x) s; h) f("Eleu f("Eleu h();</n </n 	onio) x,n; w ma ',&n er arr ;i++) ',&a iter e ',&x ;i++) ment ment	.h> iny ele); ray ele) [i]); lemen);) ;)	emen at to s 1 at ir pund'	ts:n"); search:" ndex %	d",i);					prog mar othe shal	rrect gram:4 •ks, (any er logic Il also be sidered)
					Index	ζ.	0	1	2	3	4	5	6			
					array A	4	10	5	20	25	8	30	40			

SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

	Search 30						
	step 1: compare element at position 0 i.e 10 with 30	(correct					
	10==30 NO, increment position by 1	steps to find					
	step 2: compare Element at position 1 i.e 05 with 30	Element: 4 marks)					
	5==30 NO, increment position by 1						
	step 3: compare Element at position 2 i.e 20 with 30						
	20==30 NO, increment position by 1						
	step 4: compare Element at position 3 i.e 25 with 30						
	25==30 NO, increment position by 1						
	step 5:compare Element at position 4 i.e 8 with 30						
	8==30 NO, increment position by 1						
	step 6: compare Element at position 5 i.e 30 with 30						
	30==30 YES , SEARCH IS SUCCESSFUL AND ELEMENT IS PRESENT AT POSITION 5						
b)	Explain any three application of stack in detail with example.	8M					
Ans:	Following aretheapplications ofstack	(List of application					
	 Depth first search of graph 						
	 Expressionconversion&evaluation 						
	Reversinga list						
	• Recursion						
	• Interrupt handling						
	• Stackmachine						
	• Matchingparenthesis in an expression						
	1. DepthFirstSearch (DFS)stack is used in searching method to store the values of variables during execution of application.						
	Example:-						

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

SUMMER-17 EXAMINATION

Sub

DATA STRU	CTURE U		MER- 17 EXAMINATION	Subject Code:	17330			
	-1-1 f	DD						
	-	DPrint E ST		11 /1				
/ I	1	-	D, and push onto the stack	call the				
neighbors of DPrint D STACK : empty								
$The stack is now empty, so the {\tt DFS} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt S} of {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt G} starting at {\tt J} is now complete. Accordingly, the nodes the {\tt G} starting at {\tt G} starting$								
which wereprinted,								
J, k	K,G, C,F,	E, D						
These areth	he nodesr	eachablefromJ.						
Example:	Conversi	ion of infixexp n: ((A+B)*D)^(· · · · · · · · · · · · · · · · · · ·	ssion				
	SR.NO	STACK	INPUT	OUTPUT				
	1	Empty	((A+B)*D)^(E-F)	-				
	2	((A+B)*D)^(E-F)	-				
	3	((A+B)*D)^(E-F)	-				
	4	((+B)*D)^(E-F)	A				
	5	((+	B)*D)^(E-F)	A				
	6	((+)*D)^(E-F)	AB				
	7	(1 1			
	/	(*D)^(E-F)	AB+				
	8	(*	*D)^(E-F) D)^(E-F)	AB+ AB+				
_					-			

(E-F)

E-F)

-F)

F)

AB+D*

AB+D*E

AB+D*E

AB+D*E

 \wedge

^(

^(

^(-

11

12

13

14

MODEL ANSWER

SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

17330

15 ^(-AB+D*EF) \wedge AB+D*EF-16 End 17 Empty End AB+D*EF-^ Postfixexpression=AB+D*EF-^ 3. **REVERSAL A LIST:** To reverse a list, the elements of list are pushed onto the stack one by one. Once all elements are pushed on the stack they are popped one by one. Since the element last pushed in comes out first, hence reversal of string occurs. **Example**: a list contains elements as {1, 2, 3, 4, 5, 6}. Every push operator will push an element on top ofstack. Once all elements are pushed one can pop all elements and save it which results in to reversing of list as $\{6, 5, 4, 3, 2, 1\}$. 6 5 Push 4 Push 5 3 Push 4 3 2 1 4 2 Push 3 2 1 3 Push 2 1 - 6 ► 5 Pop Pop 5 4 3 2 1 Pop ► 3 4 Pop 2 3 2 1 3 2 1 Pop 2 1 4. Recursion: A function calls itself repeatedly. In recursion, each recursive call use stack to store the values of the variables during execution of application. **Example** : factorial function using recursion Factorial of 5 is 5x4x3x2x1 = 120 and this can be implemented recursively. int f(int x)if(x == 1) return 1;// line 1

<u>MODEL ANSWER</u> SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

f(1) true return 1;	POP					
f(2) false return 2*f(1)	f(2) false return 2*1	POP				
f(3) false return 3*f(2)	f(3) false return 3*f(2)	f(3) false return 3*2	POP			
f(4) false return 4*f(3)	f(4) false return 4*f(3)	f(4) false return 4*f(3)	f(4) false return 4*6	POP		
f(5) // line 1 false return 5*f(4)	f(5) # line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) # line 1 false return 5*24	POP	
main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = f(5)	main() y = 120	POP

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

Ans:	Sr. No	Parameter	Single Linked List	Double Linked List	Circular Linked List	(4 points: 8 marks)
	1	Structure	Struct Node { Int Data; Struct Node *Next; };	Struct Node { Int Data; Struct Node *Next; Struct Node *Previous; };	Depends on the type of circular linked list. Single circular: Struct Node { Int Data; Struct Node *Next; }; Double circular: Struct Node { Int Data; Struct Node *Next; Struct Node *Previous; };	(**Note: description of each stating difference shall also be considered**)
	2	No. Of	One Pointer	Two Pointers	Can have one or two	
	3	Pointer Mobility	We Can Not Move In Backward Direction	We Can Move Backward As Well As Forward Direction	pointers We can or cannot move in backward direction as it depends on type of circular linked list	
	4	Address	Pointer Contains The Address Of Next Node In The List	Pointer Contains The Address Of Next Node As Well As Previous Node In The List	Pointer can or cannot contains the address of previous node as it depends on type of circular linked list.	
	5	Insertion In Between	Two Address Need To Be Updated	Four Address Need To Be Updated	Two or four address need to be updated	
	6	Deletion In Between	one Address Need To Be Updated	Two Address Need To Be Updated	One or two address need to be updated	
	7	connection	last element is linked to a null object	last element is linked to a null object	The last element is linked to the first element.	
	8	Link to other node	each node(item) of the list is connected to the next node	the next node also knows about the previous node	the last node knows about the first node and first node knows about the last node	

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

6.		Attempt any two :	16 Marks
	a)	Write a program for insert and delete operation perform on queue. State any two application of queue.	8M
	Ans:	Note: Any other correct logic shall be considered	(Program: 6
		#include <stdio.h></stdio.h>	marks, any
		#include <conio.h></conio.h>	two
		#define max 3	applications
		int rear=-1;	2 marks)
		int front=-1;	
		intqueue arr[max];	
		void insert();	
		void del();	
		void dei(), void display();	
		void display(), void insert()	
		()	
		intinsert item;	
		if(rear==(max-1))	
		<pre>printf("\n queue is full");</pre>	
		else	
		printf("\n enter element to be inserted:");	
		<pre>scanf("%d",&insert_item);</pre>	
		rear=rear+1;	
		queue_arr[rear]=insert_item;	
		if(front==-1)	
		front=0;	
		}	
		}	
		}	
		void del()	
		{	
		if(rear==-1)	
		<pre>printf("\n queue is empty");</pre>	
		else	
		{	
		printf("\n delete element %d",queue_arr[front]);	
		queue arr[front]=0;	
		if(front==rear)	
	1		
		front=-1;	
		rear=-1;	
		}	
	1	else	

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

	<pre>front=front+1; } void main() { intch; clrscr(); while(1) { printf("\n1.insert()\n2.delete()"); printf("\n enter choice"); scanf("\n9\d",&ch); switch(ch) { case 1: insert(); break; case 2: dcl(); break; default: exit(0); } } Application of queue: 1) Simulation 2) CPU scheduling in multiprogramming and time sharing systems. 3) Queue is in round robin scheduling algorithm 4) Serving requests on a single shared resource, like a printer, CPU task scheduling etc. 5) In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until a service representative is free. 6) Handling of interrupts in real-time systems.</pre>	
b)	Draw tree for given expression and find inorder, preorder and postorder traversal. $(a - 2b + 5c)^2 (4d - 6e)^5$.	8M

MODEL ANSWER

SUMMER- 17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

Ans:	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	(Tree creation:4 marks, inorder:1 mark, preorder:1 mark,postor der:2 marks)
c)	Consider the graph G in Fig. 1 $ \begin{array}{c} \hline X \\ \hline W \\ \hline W \\ \hline Figure - 1 \end{array} $ i)Write Adjacency matrix representation. ii) Depth first taversal sequence. iii) Find all simple path from X to W. iv) Find indegree (X) and outdegree (W).	8M

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Title: DATA STRUCTURE USING 'C'

Subject Code:

Ans:	i)Write Adjacency matrix representation										
		W	Х	Y	Z						
	W	0	0	0	0						
	Х	0	0	1	1						
	Y	0	1	0	1						
	Z	1	1	0	0						
	ii) Depth	ii) Depth first taversal sequence.									
	Note:Any source can be considered										
	NODE W										
	X Y,Z Y X,Z Z W,X										
	Let consider source as X										
	Step 1: Push X on stack.POP and print X. PUSH the adjacent of X on stack.										
	Step 2: POP and print Z.PUSH the adjacent of Z on stack.Step 3: POP and print W.PUSH the adjacent of W on stack										
	Step 4: POP and print Y.PUSH the adjacent of Y on stack.										
	Nodes reachable from node X are X,Z,W,Y.										
	iii) Find all simple path from X to W.										
	a) X-Z-W										
	b)X-Y-Z-W										
	iv) Find	iv) Find indegree (X) and outdegree (W).									
	indegree((X)=2									
	outdegree	•(₩)–0									