

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

17320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	а	Attempt any six:	12-Total Marks
	i	Convert (AC) H into binary and octal.	2M
	Ans:	1) $(AC)_{H} = (?)_{2} = (?)_{8}$ =(1010 1100)_{2} 2) $(AC)_{H} = (10 \ 101 \ 100)_{2} = (254)_{8}$ $2 \ 5 \ 4$	1M 1M
	ii	Draw symbol, Truth table and logical equation of Ex-OR gate.	2M
	Ans:		½ M
		Symbol	½ M

SUMMER-18 EXAMINATION

SUMMER-18 EXAMINATION **Subject Name: Principles of Digital Techniques** Subject Code: 17320 **Model Answer** J Q J Q С C Q Q ĸ ĸ Specify the function of -2M v 1) IC 74245: 2) IC 74151: 1) IC 74245: Octal Bus Transceiver 1M Ans: (Minimum a) It is octal bidirectional buffer IC One function) b) It is used as a driver for the data bus c) Total 16 bus drivers, 8 for each direction with tristate output d) The direction of data flow is controlled by DIR pin 1M (Minimum

2) IC 74151: 8:1 Multiplexer One a) It has 8 inputs and 1 output function) b) 2^N =8, N=3 select lines, whose bit combination determines which combination is selected at output vi What is Flash memory? 2M Ans: 1. Flash Memory is nonvolatile RAM memory (Any 4 points) 1/2 M each 2. It can be Electrically erased and reprogrammed 3. Flash memory can be written into blocks size rather than byte. It is easy to update. 4. It is faster than EEPROM as EEPROM edit the data at Byte level. 5. As large block of data can be erased at one time (or flash)thus called as flash

SUMMER- 18 EXAMINATION

	memory.	
	6. Features: High speed, low operating voltage and low power consumption	
	7. Applications: 1. Cellular phone	
	2. Digital camera's embedded controller.	
vii	Write applications of DAC and ADC.	2M
Ans:	1. In Process control system	1 M(Any two)
	2. Low power converter for remote data acquisition	
	3. Battery operated equipment	
	4. Acquisition of analog values in automotive, audio and TV application	
	(Any suitable relevant application should be considered)	
viii	List advantages of TTL logic family.	2M
Ans:	1. Low propagation delay, hence TTL circuits are fast.	½ M each (any 4)
	2. Power dissipation is independent of Frequency.	
	3. No latch ups.	
	4. TTL is compatible to other logic families.	
	5. High current sourcing and sinking capabilities.	
	(Relevant advantages should be considered)	
b	Attempt any TWO:	08-Total Marks
i	Perform binary subtraction using 2's complement method.	4M
	$(12)_{10} - (08)_{10}$	
1		I

SUMMER- 18 EXAMINATION

Subject	Name: Principles of Digital Techniques	<u>Model Answ</u> er	Subject Code:	17320	
Ans:	1. Finding equivalent binary for (12)	10 and (08)10		1M	
	$(12)_{10} = (1100)_2$				
	$(08)_{10} = (1000)_2$			1M	
	2. Taking 1's complement of (1000) ₂				
	1's complement of 1000 => 0112	1		1M	
	+	1			
	2's complement 1000	0			
	3. Adding (12) ₁₀ and 2's complement	nt of (08) ₁₀		114	
	1100)			
	+ 1000)			
	carry1 0 1 0 0)			
	4. If carry comes discard carry				
	5. Answer is positive and in real form	n =(0100) ₂ = (04) ₁₀			
ii	Convert following expression into canoni	cal SOP form		4M	
	Y = A + BC + ABC				
Ans:	Y = A + BC + ABC			1M Fo	or sten
	= A.1.1 + BC.1 + ABC	Multiplyi	ng each sum by missi	ng term	
	$= A(B + \overline{B})(C + \overline{C}) + BC(A + \overline{A}) + ABC$		As (<i>B</i> + .	$\overline{B}) = 1$	

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques Subject Code: 17320 **Model Answer** $= ABC + A\overline{B}C + AB\overline{C} + ABC + A\overline{B}\overline{C} + \overline{A}BC + ABC$ discarding similar terms (A+A=A) Thus the canonical form of given expression is $Y = ABC + A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}BC$ Draw excitation table for RS Flip-flop and JK flip-flop. 4M iii 2M for Ans: SR Flip-flop JK flip-flop each R Q(t) Q(t+1) S K Q(t+1) Q(t)J table х 0 0 0 0 0 0 х 0 1 1 0 0 1 1 х 1 0 0 1 1 0 1 х 1 х 0 1 1 0 1 х Excitation table for SR Flip Flop Excitation table for JK Flip Flop Sub Ο. Answers Marking No. Q. Scheme N. 2 **Attempt any FOUR:** 16-Total Marks Compare TTL, ECL and CMOS logic family on following points: а 4M (i) **Basic gates** (ii) Component used (iii) **Propagation delay** (iv) Power dissipation 1M Ans: Parameter TTL ECL CMOS EACH NAND NOR-NAND **Basic gates** OR-NOR Component used Difference Transistors CMOS amplifiers

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

							Truth
							Table
2. Truth Table							
Timing Pulse	Serial output	0.	00	0.	0.	Serial	
in ing i disc	at Q _D				004	Input	
Initial value	0	0	0	0	0		
After 1st			-				
clock pulse	0	0	0	U			
A (i) nd					[
clock pulse	0	0	0		_1 ←	- 1	
After 2rd							
clock pulse	0	0			- ° -		
After 4th					1	1	
clock pulse	1 -	1	1	0	14	- 1	
After 5th				1			
clock pulse	1 🛶	1	0		0	0	~
After Cth				1			2M-
clock pulse	0 🔶	0		0	0	0	wavefo
	1						m
After 7th		1-	0	U	0		
After 7 th clock pulse							

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

synchro nised T, clk, Vcc

SUMMER-18 EXAMINATION

	+	0	0	1	1	0	0	1	1	_	
		1	0	0	1	0	1	1	1		

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16-Total Marks
	а	Minimize the following expression using k-map and realize it using basic logic gates. Y= Σ m (1, 3, 4, 5, 6, 7)	4M
	Ans:	$AB \xrightarrow{AB} \xrightarrow$	2 M – K- map & 2M - Realization

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

40 ~ ~

	SUMMER- 18 EXAMINATION	
ubject	Name: Principles of Digital TechniquesModel AnswerSubject Code:173	20
	• On the other hand when A and B both high the emitter 1 1 0	
	• On the other hand when A and B both high, the enlitter 1 1 0	
	diodes of Q1 stop conducting and collector diode goes	
	into forward conduction. This forces Q2 to turn on. In turn Q4 goes on and Q3 turn	
	off, producing a low output as show in truth table. Without Diode D1, Q3 will	
	conduct slightly.	
d	(i) Perform BCD addition.	4M
	(983) ₁₀ + (274) ₁₀	
	(ii) State the rules of BCD additions	
Ans:	(i) BCD Addition:	2M
	Decimal BCD	
	983 1001 1000 0011	
	274 + 0010 0111 0100	
	1011 1111 0111 0110 0110 0000	
	Carry 1 0010 0101 0111	
	1 2 5 7 Final Answer	
	(ii) Rules of BCD Addition:	2M
	1. If sum is less than or equal to 9 with carry equal to 0, then the sum is in proper	
	BCD form and requires no correction.	
	2. If sum is greater than 9 but carry equal to 0, then it's an invalid BCD. Then we have	
	to add decimal 6 or BCD 0110 to get the correct BCD.	
	3. If sum is less than or equal to 9 but carry equal to 1, then too it's an invalid BCD.	
	Then we have to add decimal 6 or BCD 0110 to the sum to get the correct BCD.	
е	Draw and explain working of single slope ADC.	4M

Subject Name: Principles of Digital Techniques

Subject Code:

SUMMER- 18 EXAMINATION

	• In t	the meantime the contents the contents and are displayed of the second	ents of the previous of the seven segmer	conversion are contained in nt display.	n the
f	Differentia	ite between			4M
	(i)	Static RAM and dyr	namic RAM		
	(1)	Static NAM and dyn			
	(ii) Volatile and Non-V	olatile memory		
Ans:	(i)	Static RAM and dyr	namic RAM		2M each (Any 2
		Parameter	Static RAM	Dynamic RAM	points)
		Circuit Configuration	Each SRAM cell is	Each cell is one	
			a flip flop	MOSFET & a capacitor	
		Bits stored	In the form of voltage	In the form of charges	
		No. of components per cell	More	Less	
		Storage capacity	Less	More	
	(ii) Volatile and Non-V Parameter	olatile memory Volatile memory	Non-Volatile memory	
		Definition	power is turned off	Information is not lost if power is turned off	
		Classification	All RAMs	ROMs, EPROM, magnetic memories	
		Effect of power	Stored information is retained only as long as power is on	No effect of power on stored information	
					I

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR:	16-Total Marks
	а	 (i) Add binary numbers. (10110.110)₂ + (1001.1)₂ (ii) Multiply (1110)₂ X (101)₂ 	4M
	Ans:	(i) $(10110.110)_2 + (1001.1)_2 = (100000.01)_2$ 10110.11 + 1001.1 100000.01 (ii) $(1110)_2 \times (101)_2 = ()_2$	2M 2M
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b	Realize the following expression using only NOR gate. $Y = (ABC + \overline{B} + \overline{C}).C$	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques <u>M</u>

<u>Model Answ</u>er

Subject Code:

	Output	State					1M – Step
	Trans	luons					5
	Present	Next					
	State	state	Flij	p-flop inp	outs		
	Q2 Q1 Q0	Q2 Q1 Q0	J2 K2	J1 K1	J0 K0		
	000	001	0 X	0 X	1 X		
	001	010	0 X	1 X	X 1		
	010	011	0 X	X 0	1 X		
	011	100	1 X	X 1	X 1		
	100	101	X 0	0 X	1 X		
	101	110	X 0	1 X	X 1		
	110	111	X 0	X 0	1 X		
	111	000	X 1	X 1	X 1		
S	itate Table and	Correspondin	g Excitatio	n Table (d	=don't care	2)	
Step 2:							
Build Karnaugh Map	or Kmap for ea	ach JK inputs:					

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques **Model Answer** Subject Code: 17320 Ans: A1 Q A2 = \overline{Q}_{\pm} Aı Q A2 0 0 1 1 1 0 0 1 A2 **Circuit Diagram Truth Table** Operation: Assume that the output of gate 1 i.e. Q = 1. Hence $A_2 = 1$. As A₂ = 1, output of gate 2 i.e. \overline{Q} = 0 which makes A₁ = 0. Hence Q continues to be equal to 1. Similarly we can demonstrate that if we start with Q = 0, then we obtain Q = 0 and . $\overline{Q}_{=1}$ f Identify function of IC 7481 and IC 2716 and draw its pin diagram. 4M Function of IC 7481 and IC 2716: Ans: IC 7481 - Bipolar RAM In 4 x 4 Matrix IC 2716 – 16 KB EPROM Each A7 🛛 1 24 🛛 VCC A6 🛛 2 23 | A8 X3 14 Function X2 1 A5 🛛 3 22 | A9 1M Write T A4 🛛 4 21 🛛 Vpp 20 <u>|</u>] G A3 🛛 5 Pin Sense 'I' A2 🛛 6 19 🛛 A10 Diagram 2716 IC. 18 | EP A1 [] 7 Sense W 11 7481 1M 17 h Q7 8 || 0A GND Q0 | 9 16 🛛 Q6 15 h Q5 Q1 1 10 Write 104 14 🛛 Q4 Q2 [11 12 7 8 Y3 13 Q3 VSS 🛛 12

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

Q.	Sub	Answers	Marki	ng Scheme
No.	Q.			
	N.			
5		Attempt any FOUR:	16-Tot	al Marks
	а	Compare single slope ADC and dual slope ADC (any four points).	4M	

Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Subject Code:

Ans	:			 (anv				
	Sr.	Single slope ADC	dual slope ADC	four				
	No.			points- 1 Mk				
	1	Single-slope ADCs are appropriate for very high accuracy of high-resolution measurements where the input signal bandwidth is relatively low	Dual slope ADCs provides increased range, the increased accuracy and resolution.	for each Point).				
	2	Less cost	Costly					
	3	Dual-Slope ADC operate on the principle of integrating the unknown input and then comparing the integration times with a reference cycle.						
	4	Conversion result is dependent on the tolerances of the R & C values						
	5	Poor noise immunity	Good noise immunity					
	6	Speed more	Speed less					
	7	Simple circuitry	Complicated circuitry					
b	How	are memories classified ? Expla ories.	in any two types of	4M				
Ans				Classification 2M				
	Ans: Memories Sequential Memories Memories Memory Sequential Memories Memory							

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)	
SUMMER- 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code:	17320
 1) RAM :	
 Random access memory is also called as read-write memory. 	
• In this type of memories, the memory locations are organized in such a way	
that the	
access time required for any location is same.	
• Data stored at any location can be changed during the operation of the	
system.	
2) Static RAM	
• This type of memory can be implemented by binelar as well as MOS	
technology.	
• It is possible to store data as long as power is applied to the chip.	
• The basic cell in SRAM is a flip-flop	
3) Dynamic RAM	
• In dynamic RAM, the data is stored in the form of charge on the capacitor.	
 Its formed using MOSFET and capacitor. 	
It needs to be refreshed after every few milliseconds.	
4) Flash Memory:-	
• Flash memory is non-volatile RAM memory that can be electrically erased	
and reprogrammed.	
• Flash memory can be written to in block size rather than byte, it is easier to	

• Due to this, the flash memories are faster than EEPROMS which erase and

update it.

		write new data of byte level.	
	•	This type of memory has been named as 'flash memory' because a large	
		block of memory could be erased at one time, i.e. in a single action or 'flash'.	
	•	Important features are high speed, low operating voltages, low power	
		consumption.	
	•	Typical application areas are digital camera's embedded controllers, cellular	
		phones etc.	
	5)	Programmable Read Only Memories (PROM):-	
	•	PROM is electrically programmable i.e. the data pattern is defined after final	
		packaging rather than when the device is fabricated.	
	•	The programming is done with an equipment referred to as PROM	
		programmer.	
	•	The PROM are one time programmable. Once programmed, the information	
		stored is permanent.	
	6)	Erasable Programmable Read Only Memories (EPROM):-	
	•	In these memories, data can be written in any number of times i.e. they are	
	_	reprogrammable.	
	•	Reprogrammable ROMs are possible only in MOS technology. For erasing the	
		contents of the memory, one of the following two methods are employed:	
		a) Exposing the chip to ultraviolet radiation for about sommutes (OVEPROM)	
	Floctri	city	
	LIECUI	erasable Prom is also referred to as E ² PROM or EEPROM or EAROM	
	(Electr	ically alterable ROM)	
с	(4M
	Why I	NAND and NOR gates are called as universal gates. Derive	
	basic	gates using NOR gates only.	

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques <u>Model Answ</u>er

Subject Code:

						Vcc 4:1 Y R RS F/F Q ND. A B select inputs Fig. No. 2	
Ans:							Correct Truth
	A	B=S	Y=R	Q	Q		
	0	0	I ₀ =1	0	1		
	0	1	I ₁ =0	1	0		
	1	0	I ₂ =1	0	1		
	1	1	I ₃ =0	1	0		
e	Dra	ıw bir	nary to	gra	ау сос	de converter and write its truth table.	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code: 17320

B ₃ 0 0 0	B ₂ 0 0	В ₁ 0	В ₀ О	G ₃	G ₂	G ₁	G ₀
0 0 0	0	0	0	0			
0	0			_	0	0	0
0		0	1	0	0	0	1
	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

SUMMER-18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

	0	1	1	0	1	0									
	1	0	0	1	1	0									
	1	0	1	1	1	1									
	1	1	0	1	0	1									
	1	1	1	1	0	0									
f	Drav	w 4 -	bit	twist	ted ri	ing c	ounter a	and exp	olain wo	orking v	with tru	ith tab	le and	4M	

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

					G	Q ₂	Q1	Q ₀	Clock
					(0	0	0	→0
					0	0	0	1	1
					0	0	1	1	2
					0	1	1	1	3
					1	1	1	1	4
					1	1	1	0	5
					1	1	0	0	6
						0	0	0	7
-18-	-17-1	6][5]	• • •		2 1	1		
0	0	6 	0 0			2 1	1		Q., -
0	0	0	0 1			2 1] 1 . 0		Q
- 8 - 0 0	0	0				2 _1 _1	1 1 		Q.0 -
0	0	0	0			2 _1 _1			Q.0 -
0	0	0	0 1 1			2 _1 _1			Q.0 - Q.1 - Q.1 -

Subject Name: Principles of Digital Techniques

Model Answer Subject Code:

SUMMER- 18 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6		Attempt any FOUR:	16-Total Marks
	А	Draw the pinout configuration for	4M
		(i) IC 7402	
		(ii)IC 7404	
	Ans:	Pin Diagram of IC 7402	2M
		Vcc 14 13 12 11 10 9 8 16 7402 1 2 3 4 5 6 7 GND	
		Pin Diagram of IC 7404	
			2M
	В	Implement 1:16 Demux using 1:4 Demux write a truth table.	4M

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code: 17320

Ans:	Pin diagr	am					Pin
				SYMBOL	PIN	DESCRIPTION	diagram:
				AINO	1	analog inputs (A/D converter)	
				AIN1	2		2M
			7	AIN2	3		(consider
	AIN0 1	0	16 V _{DD}	AIN3	4		(consider
	AIN1 2		15 AOUT	A0	5	hardware address	even if
				A1	6		
	AIN2 3		14 VREF	A2	/ 		description
	AIN3 4	PCE8591	13 AGND	SDA	9	I ² C-bus data input/output	
	A0 5	1 01 0001	12 EXT	SCL	10	I ² C-bus clock input	not given)
	A1 6		11 080	OSC	11	oscillator input/output	
	A2 7		10 SCL	EXT	12	external/internal switch for oscillator input	
	Vac 🔍			AGND	13	analog ground	
	VSS LO			V _{REF}	14	voltage reference input	
	D : 1	(5)5		AOUT	15	analog output (D/A converter)	
	Pin di	agram (DIP	'16).	V _{DD}	16	positive supply voltage	
	 Single p Operatin Low stand Serial in Address Samplin A analog differen Auto-ino Analog 11. On-chi 8-bit su Multip 	ower supply v ng supply v ndby curre put/output by 3 hardv g rate give g inputs pro tial inputs cremented g voltage ra p track and uccessive a lying DAC v	ly voltage 2.5 V nt t via I ² C-bus ware address n by I ² C-bus ogrammable channel sele nge from VS I hold circuit pproximatio with one ana	to 6 V s pins speed as single-e ection S to VDD n A/D conv log output	nded	n	Any 4 features ½ M each

SUMMER- 18 EXAMINATION

b	Design a	and dr	aw M	OD-6 co	unter using IC 7490.	4M
Ans:	Clock is counter and QB Truth ta	given after shoul	to clo count d be co	ck inpu ing the onnecte	A. Output Q _A is connected to clock input B. To reset the First six states from 0 to 5, the counter outputs Qc d to the reset inputs.	Design diagrar
	Clock		Outpu	ıt		
		Q _C	Q _B	Q _A		
	0	0	0	0		
	1	0	0	1		
	2	0	1	0		
	3	0	1	1		
	4	1	0	0		
	5	1	0	1		
	6	0	0	0		
	cik—	A B Q _A LSB	IC 749	⁽²⁾ R ₀₍₁ 0 R ₀₍₂ Q _D		
			V 8546			

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

Model Answer

Subject Code:

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques

<u>Model Answ</u>er

Subject Code:

	Note :- Mark should be given even if MSB resistor is taken as R and calculated using formula,	
	$V_{o} = V_{D} + \frac{V_{C}}{2} + \frac{V_{B}}{4} + \frac{V_{A}}{8}$	