SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1	a	Attempt any six:	12-Total Marks
	i	Convert (AC) H into binary and octal.	2M
	Ans:	1) $\begin{aligned} (\mathrm{AC})_{H} & =(?)_{2}=(?)_{8} \\ & =(10101100)_{2} \end{aligned}$ 2) $(\mathrm{AC})_{\mathrm{H}}=\begin{array}{ll}\frac{(10}{\downarrow} & \frac{101}{\downarrow} \\ 2 & 5\end{array}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
	ii	Draw symbol, Truth table and logical equation of Ex-OR gate.	2M
	Ans:	Symbol	$1 / 2 \mathrm{M}$ $1 / 2 \mathrm{M}$

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

v	Specify the function of - 1) IC 74245 : 2) IC 74151 :	2M
Ans:	1) IC 74245: Octal Bus Transceiver a) It is octal bidirectional buffer IC b) It is used as a driver for the data bus c) Total 16 bus drivers, 8 for each direction with tristate output d) The direction of data flow is controlled by DIR pin 2) IC 74151: 8:1 Multiplexer a) It has 8 inputs and 1 output b) $2^{N}=8, N=3$ select lines, whose bit combination determines which combination is selected at output	1M (Minimum One function) 1M (Minimum One function)
vi	What is Flash memory?	2M
Ans:	1. Flash Memory is nonvolatile RAM memory 2. It can be Electrically erased and reprogrammed 3. Flash memory can be written into blocks size rather than byte. It is easy to update. 4. It is faster than EEPROM as EEPROM edit the data at Byte level. 5. As large block of data can be erased at one time (or flash)thus called as flash	(Any 4 points) $1 / 2 \mathrm{M}$ each

SUMMER- 18 EXAMINATION

memory.
6. Features: High speed, low operating voltage and low power consumption
7. Applications: 1. Cellular phone
2. Digital camera's embedded controller.

	memory. 6. Features: High speed, low operating voltage and low power consumption 7. Applications: 1. Cellular phone 2. Digital camera's embedded controller.	
vii	Write applications of DAC and ADC.	2M
Ans:	1. In Process control system 2. Low power converter for remote data acquisition 3. Battery operated equipment 4. Acquisition of analog values in automotive, audio and TV application (Any suitable relevant application should be considered)	$\begin{aligned} & 1 \mathrm{M}(\text { Any } \\ & \text { two) } \end{aligned}$
viii	List advantages of TTL logic family.	2M
Ans:	1. Low propagation delay, hence TTL circuits are fast. 2. Power dissipation is independent of Frequency. 3. No latch ups. 4. TTL is compatible to other logic families. 5. High current sourcing and sinking capabilities. (Relevant advantages should be considered)	$1 / 2 \mathrm{M}$ each (any 4)
b	Attempt any TWO:	08-Total Marks
i	Perform binary subtraction using 2's complement method. $(12)_{10}-(08)_{10}$	4M

SUMMER- 18 EXAMINATION

Ans:	1. Finding equivalent binary for $(12)_{10}$ and $(08)_{10}$ $\begin{aligned} & (12)_{10}=(1100)_{2} \\ & (08)_{10}=(1000)_{2} \end{aligned}$ 2. Taking 1 's complement of $(1000)_{2}$ 1's complement of 1000 => 0111 3. Adding (12) $)_{10}$ and 2 's complement of (08$)_{10}$ 4. If carry comes discard carry 5. Answer is positive and in real form $=(0100)_{2}=(04)_{10}$	1M 1 M 1M 1M
ii	Convert following expression into canonical SOP form $Y=A+B C+A B C$	4M
Ans:	$\begin{array}{ll} \mathrm{Y}=\mathrm{A}+\mathrm{BC}+\mathrm{ABC} & \\ =A .1 .1+B C .1+A B C & \text { Multiplying each sum by missing term } \\ =A(B+\bar{B})(C+\bar{C})+B C(A+\bar{A})+A B C & \text { As }(B+\bar{B})=1 \end{array}$	1M For each step

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:
17320

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:
17320

$\begin{array}{l\|l} \text { Q. } \end{array}$	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16-Total Marks
	a	Minimize the following expression using k-map and realize it using basic logic gates. $Y=\sum m(1,3,4,5,6,7)$	4M
	Ans:		$2 \mathrm{M}-\mathrm{K}-$ map \& 2M Realization

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

Ans:	Circuit Diagram: Operation: - Manual RESET, will reset ramp generator as well as counter.VA has to be positive. RAMP begins at $0 V$. - As VAX < VA, VC = 1 (HIGH). This will enable CLOCK gate allowing the CLK input, to be applied to the counter. - As counter receives clock pulses, it will count up; and the RAMP continues upward. - RAMP voltage rises till it reaches to VA input voltage. - At this point, time t1, output $\mathrm{V}_{0}=0$ (LOW) and it will disable CLOCK gate and counter cease to advance. - The negative transition of V_{0}, simultaneously generates a strobe signal in the CONTROL box that shifts the contents of the three decade counters into the three 4 FF latch circuit. - Shortly after that, a reset pulse is generated (time t2), by the CONTROL box that resets the RAMP and clears the decade counter to all O's (ZEROS) and another conversion cycle begins.	2M - Circuit 2M- Explanation

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

	- In th latch	the meantime the cont hes and are displayed	nts of the previous on the seven segmen	onversion are containe t display.	
f	Differentiat (i) (ii)	te between Static RAM and dy Volatile and Non-	namic RAM olatile memory		4M
Ans:	(i)	Static RAM and dynamic RAM			2M each (Any 2 points)
		Parameter	Static RAM	Dynamic RAM	
		Circuit Configuration	Each SRAM cell is a flip flop	Each cell is one MOSFET \& a capacitor	
		Bits stored	In the form of voltage	In the form of charges	
		No. of components per cell	More	Less	
		Storage capacity	Less	More	
	(ii)) Volatile and Non-Volatile memory			
		Parameter	Volatile memory	Non-Volatile memory	
		Definition	Information is if power is turned off	Information is not lost if power is turned off	
		Classification	All RAMs	ROMs, EPROM, magnetic memories	
		Effect of power	Stored information is retained only as long as power is on	No effect of power on stored information	
		Applications	For temporary storage	For permanent storage of information.	

SUMMER- 18 EXAMINATION
Subject Name: Principles of Digital Techniques
Model Answer

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
4		Attempt any FOUR:	16-Total Marks
	a	(i) Add binary numbers. $(10110.110)_{2}+(1001.1)_{2}$ (ii) Multiply $(1110)_{2} \times(101)_{2}$	4M
	Ans:		2M 2M
	b	Realize the following expression using only NOR gate. $\mathrm{Y}=(\mathrm{ABC}+\overline{\mathrm{B}}+\overline{\mathrm{C}}) \cdot \mathrm{C}$	4M

SUMMER- 18 EXAMINATION

Ans:

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:
17320

SUMMER- 18 EXAMINATION

	 $\begin{aligned} & \mathrm{J} 0=\mathrm{K} 0=1 \\ & \mathrm{~J} 1=\mathrm{K} 1=\mathrm{Q} 0 \\ & \mathrm{~J} 2=\mathrm{K} 2=\mathrm{Q} 1 * \mathrm{Q} 2 \end{aligned}$ Step 3: Draw the complete design as below: Note : It can also be designed using T Flip Flop.	
e	Draw single digit memory cell using NAND gates and explain working with truth table.	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:
17320

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:
17320

Q. No.	Sub Q. N.	Answers	Marking Scheme	
5		Attempt any FOUR:		
	a	Compare single slope ADC and dual slope ADC (any four points).	16-Total Marks	

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER- 18 EXAMINATION

1) RAM :

- Random access memory is also called as read-write memory.
- In this type of memories, the memory locations are organized in such a way that the access time required for any location is same.
- Data stored at any location can be changed during the operation of the system.

2) Static RAM

- This type of memory can be implemented by bipolar as well as MOS technology.
- It is possible to store data as long as power is applied to the chip.
- The basic cell in SRAM is a flip-flop

3) Dynamic RAM

- In dynamic RAM, the data is stored in the form of charge on the capacitor.
- Its formed using MOSFET and capacitor.
- It needs to be refreshed after every few milliseconds.

4) Flash Memory:-

- Flash memory is non-volatile RAM memory that can be electrically erased and reprogrammed.
- Flash memory can be written to in block size rather than byte, it is easier to update it.
- Due to this, the flash memories are faster than EEPROMS which erase and
write new data of byte level.
- This type of memory has been named as 'flash memory' because a large block of memory could be erased at one time, i.e. in a single action or 'flash'.
- Important features are high speed, low operating voltages, low power consumption.
- Typical application areas are digital camera`s embedded controllers, cellular phones etc.

5) Programmable Read Only Memories (PROM):-

- PROM is electrically programmable i.e. the data pattern is defined after final packaging rather than when the device is fabricated.
- The programming is done with an equipment referred to as PROM programmer.
- The PROM are one time programmable. Once programmed, the information stored is permanent.

6) Erasable Programmable Read Only Memories (EPROM):-

- In these memories, data can be written in any number of times i.e. they are reprogrammable.
- Reprogrammable ROMs are possible only in MOS technology. For erasing the contents of the memory, one of the following two methods are employed:
a) Exposing the chip to ultraviolet radiation for about 30minutes (UVEPROM)
b) Erasing electrically by applying voltage of proper polarity \& amplitude.

Electricity
erasable Prom is also referred to as E²PROM or EEPROM or EAROM (Electrically alterable ROM)

Why NAND and NOR gates are called as universal gates. Derive basic gates using NOR gates only.

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code: 17320

Ans: Truth Table for 4 bit Binary to Gray code converter

Binary Input				Gray Output			
B_{3}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	G_{3}	G_{2}	G_{1}	G_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

K-MAP FOR G3:

SUMMER- 18 EXAMINATION

K-MAP FOR G2:

Equation for $\mathrm{G} 2=\overline{\mathrm{B} 3} \mathrm{~B} 2+\mathrm{B} 3 \overline{\mathrm{~B} 2}=\mathrm{B} 3$ XOR B2

K-MAP FOR G1:

Equation for $\mathrm{G} 1=\overline{\mathrm{B} 1} \mathrm{~B} 2+\mathrm{B} 1 \overline{\mathrm{~B} 2}=\mathrm{B} 1$ XOR B 2

K-MAP FOR GO:

SUMMER- 18 EXAMINATION

Equation for $\mathrm{GO}=\overline{\mathrm{B} 1} \mathrm{BO}+\mathrm{B} 1 \overline{\mathrm{~B} 0}=\mathrm{B} 1$ XOR BO
Diagram for 4 bit Binary to Gray code converter

OR

Diagram for 3 bit Binary to Gray code converter (2 Mks)

Truth Table for 3 bit Binary to Gray code converter (2 Mks)

Binary Input				Gray Output			
B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	G_{2}	G_{1}	G_{0}		
0	0	0	0	0	0		
0	0	1	0	0	1		
0	1	0	0	1	1		

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER-18 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer
Subject Code:

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
6		Attempt any FOUR:	16-Total Marks
	A	Draw the pinout configuration for (i) 1 C 7402 (ii)IC 7404	4M
	Ans:	Pin Diagram of IC 7402 Pin Diagram of IC 7404	$2 \mathrm{M}$ $2 \mathrm{M}$
	B	Implement 1:16 Demux using 1:4 Demux write a truth table.	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

SUMMER-18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

Ans:	Explanation- IC 74181 is a high speed, 24 pin IC DIL package. Widely used combinational logic, capable of performing the arithmetic as well as logical operations. It is the heart of microprocessor. A and B are the two 4 bit input variables, F is the 4 bit output variable, S are the 4 bit select lines that decides various (either arithmetic or logical) operations $M=$ mode control that decides whether ALU will perform arithmetic or logical operations If $M=1,16$ Logical operations (AND,OR ,NOR etc operations, depending upon the 4 bit combination of select lines) If $\mathrm{M}=0,16$ Arithmetic operations (addition, subtraction, division etc operations ,depending upon the 4 bit combination of select lines) $A=B$,Comparator equality output G and P are the carry generate and carry propagate outputs used for cascading of ALUs	Diagram 2M Explanation 2 mks
f	Calculate output voltage for 4 bit binary weighted resistor DAC for binary inputs and $V_{\text {ref }}=5 \mathrm{~V}$. (i) 1010 (ii i) 1100	4M

SUMMER- 18 EXAMINATION

Subject Name: Principles of Digital Techniques
Model Answer

Ans: \quad Considering MSB resistor is $2 R, R_{F}=R$
Output voltage for 4 bit (D C B A) binary weighted resistor DAC is given by $V o=\frac{R F}{R}$ Vref $\left(\frac{b_{n-1}}{2^{1}}+\frac{b_{n-1}}{2^{2}}+\frac{b_{n-1}}{2^{3}}+\frac{b_{n-1}}{2^{4}}\right)$
(i) $1010=\mathrm{DCBA}$
$V o=\operatorname{Vref}\left(\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{1}{2^{3}}+\frac{0}{2^{4}}\right)$
$=3.125 \mathrm{~V}$
(ii) $1100=\mathrm{DCBA}$
$V o=V$ ref $\left(\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{0}{2^{4}}\right)$
$=3.75 \mathrm{~V}$
(OR)
Considering $\mathrm{V}(0)=0 \mathrm{~V}$ and $\mathrm{V}(1)=\mathrm{V}_{\text {ref }}=5 \mathrm{~V}$
MSB resistor is $2 R, R_{f}=R$
output voltage for 4 bit (D C B A) binary weighted resistor DAC is given by

$$
V_{0}=\left[\frac{V_{D}}{2}+\frac{V_{C}}{4}+\frac{V_{B}}{8}+\frac{V_{A}}{16}\right]
$$

Where $\mathrm{D}=\mathrm{MSB}$ bit \& $\mathrm{A}=\mathrm{LSB}$ bit
(iii i) $1010=\mathrm{DCBA}$

$$
\begin{aligned}
& V_{0}=\left[\frac{5}{2}+\frac{0}{4}+\frac{5}{8}+\frac{0}{16}\right] \\
& V_{0}=3.125 \mathrm{~V}
\end{aligned}
$$

Note :- Mark should be given even if MSB resistor is taken as R and calculated using formula,

$$
V_{o}=V_{D}+\frac{V_{C}}{2}+\frac{V_{B}}{4}+\frac{V_{A}}{8}
$$

