WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1	(A)	Attempt any SIX :	12- Total Marks
	(a)	State any four applications of transistor.	2M
	Ans:	Application: 1) Amplifier 2) Switching application 3) Oscillators 4) Wave shaping circuits 5) Logic circuits 6) Timer and Multivibrator	Any Four applicati on-1/2 each

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	7) Delay circuits	
(b)	Define term stability factor.	2M
Ans:	Definition of stability factor: It is defined as the rate of change of collector current Ic with respect to the collector base leakage current I_{c}, keeping both the current I_{B} and the current gain β constant. $\mathrm{S}=\frac{\partial I_{C}}{\partial I_{C O}}=\frac{d I_{C}}{d I_{C O}}=\frac{\Delta I_{C}}{\Delta I_{C O}}$	Definitio $n-2 M$
(c)	Define gain and bandwidth.	2M
Ans:	Gain: It is the ratio of output quantity to the input quantity. Bandwidth: It is defined as the range (band) of frequency over which the gain is constant. (Or) It is the range of frequency over which the gain is greater than 70.7% of the maximum gain possible.	Definitio n-1M each Note: Any other suitable definitio n also can be consider
(d)	Which type of MOSFET is called Normally ON MOSFET"? Why?	2M
Ans:	DMOSFET is called Normally ON MOSFET. In DMOSFET already channel is present and at $\mathrm{Vgs}=0 \mathrm{v}$, drain current $\mathrm{Id}=\mathrm{Idss}$ i.e. drain to source saturation current is flowing.	Identify type-1M Reason- 1M
(e)	Sketch the single tuned amplifier.	2M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:		Neat sketch2M
(f)	List the types of power amplifier.	2M
Ans:	Types of Power amplifier: 1) Class A power amplifier 2) Class B power amplifier 3) Class $A B$ power amplifier 4) Class C power amplifier	1/2 M each
(g)	State 2 advantages of JFET over BJT.	2M
Ans:	Advantages of JFET over BJT: 1) High input impedance 2) Better thermal stability	Any two advantg es-1M each

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	3) Produce less noise 4) Smaller than BJT 5) Rugged in construction and simpler to fabricate 6) High degree of isolation between Input and Output.	
(h)	Define intrinsic standoff ratio.	2M
Ans:	It is defined as the ratio of the Rb1 (base resistance 1) to the inter-base resistance Rbв. $\begin{aligned} & \eta=\frac{R_{B 1}}{R_{B 1}+R_{B 2}} \\ & \eta=\frac{R_{B 1}}{R_{B B}} \end{aligned}$	Definitio $n-2 M$
(B)	Attempt any TWO :	08- Total Marks
(a)	Explain the operating principle of PNP transistor.	4M
Ans:		Diagram -2M Operati ng principle -2M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	The circuit connection of PNP transistor with supply voltages is as shown above. The emitter-base junction is connected as forward bias. Due to this the emitter pushes the holes from the P type emitter region across the emitter-base junction into the base region. These holes constitute the emitter current I_{E}. When these holes move into the N -type semiconductor material or base, they combined with the electrons. The base of the transistor is thin and very lightly doped. Hence only a few holes combined with the electrons and the remaining are moved towards the wide and medium doped P type collector region. This is the base current I_{B}. The collector base region is connected in reverse bias. The holes which collect around the depletion region when coming under the impact of negative polarity collected or attracted by the collector. This develops the collector current I_{c}. This is how a PNP transistor operates.	
(b)	What is thermal runaway in transistor? How it can be avoided?	4M
Ans:	Concept of thermal runaway: 1. We know that $I C=\beta I B+(1+\beta) I C O$ Where $I_{C O}$ is the leakage current and $I_{C O}$ is strongly dependent on temperature. 2. Leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ rise in temperature. 3 As the leakage current of transistor increases, collector current (Ic) increases ($1+\beta$) times. 4. This increases the power dissipation at collector base junction. 5. This in turn increases the temperature of the collector base junction which will increase the number of minority carriers. 6. So $I_{\text {co }}$ further increases causing the collector current to increase further. 7. This effect is cumulative and in a fraction of a second Ic becomes large causing transistor	Thermal runaway -2M Techniq ues to avoid thermal runaway -2M

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	to burn up. This self-destruction of an unstabilized transistor is known as Thermal Runaway. Thermal runaway can be avoided by : 1) Using stabilization circuitry 2) Heat sink	
(c)	Explain how Zener diode is used as voltage regulator.	4M
Ans:	Circuit Diagram: For proper operation, the input voltage Vi must be greater than the Zener voltage Vz. This ensures that the Zener diode operates in the reverse breakdown condition. The unregulated input voltage Vi is applied to the Zener diode. Suppose this input voltage exceeds the Zener voltage. This voltage operates the Zener	Diagram -2M Explanat ion-2M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

2		Attempt any FOUR :	16- Total Marks
	(a)	Define α and β of transistor and derive the relation between them.	4M
	Ans:	Alpha (α): It is a large signal current gain in common base configuration. It is the ratio of collector current (output current) to the emitter current (input current). Beta (β): It is a current gain in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). Relation between $\alpha \& \beta$: Current gain $(\boldsymbol{\alpha})$ of CB configuration $=\frac{I_{C}}{I_{E}}$ Current gain of $(\boldsymbol{\beta})$ of CE configuration $=\frac{I_{C}}{I_{B}}$ We know that ; $\begin{equation*} \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} . \tag{1} \end{equation*}$ Dividing equation (1) by I_{C} $\frac{I_{E}}{I_{C}}=\frac{I_{B}}{I_{C}}+\frac{I_{C}}{I_{C}}$ Therefore $\frac{1}{\alpha}=\frac{1}{\beta}+1$ $\left[\right.$ since $\left.\boldsymbol{\alpha}=\frac{I_{C}}{I_{E}}, \boldsymbol{\beta}=\frac{I_{C}}{I_{B}}\right]$ Therefore $\frac{1}{\alpha}=\frac{1+\beta}{\beta}$ $\begin{aligned} & \alpha(1+\beta)=\beta \\ & \alpha+\alpha \beta=\beta \\ & \alpha=\beta-\alpha \beta \\ & \alpha=\beta(1-\alpha) \end{aligned}$ Therefore $\beta=\frac{\alpha}{1-\alpha}$ OR $\alpha=\frac{\beta}{1+\beta}$ Note: Any other appropriate method for derivation can be considered.	Definitio $n \boldsymbol{\alpha}$ and $\beta-1 M$ each Derivati on-2M

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	1. The application of negative gate voltage or positive drain voltage with respect to source, reverse biases the gate- source junction of an N-channel JFET. The effect of reverse bias voltage is to form depletion regions within the channel. 2. When a voltage is applied between the drain \& source with dc supply voltage (V_{DD}), the electrons flows from source to drain through the narrow channel existing between the depletion regions. This constitutes the drain current (I_{D}) \& its conventional direction is from drain to source. The value of drain current is maximum, when no external voltage is applied between the gate \& source \& is designated by the symbol IDSS. 3. When $V_{G G}$ is increased, the reverse bias voltage across gate-source junction is increased. As a result of this depletion regions are widened. This reduces the effective width of the channel \& therefore controls the flow of drain current through the channel. 4. When gate to source voltage $\left(\mathrm{V}_{\mathrm{GG}}\right)$ is increased further, a stage is reached at which both depletion regions touch each other as shown in fig (b). 5. At this value of $V_{G G}$, channel is completely blocked or pinched off \& drain current is reduced to zero. The value of V_{GS} at which drain current becomes zero is called pinch off voltage designated by the symbol V_{P} or $\mathrm{V}_{\mathrm{G}} \mathrm{S}(\mathrm{OFF})$. The value of V_{P} is negative for N -channel JFET.				
(d)	Compare CB, CC, CE configuration(any 4 points).				4M
Ans:	Characteristic Input Dynamic Resistance Output Dynamic Resistance Current Gain	Common base (CB)	$\begin{gathered} \text { Common } \\ \text { collector,(CC) } \end{gathered}$	$\begin{gathered} \text { Common } \\ \text { emitter,(CE) } \end{gathered}$	Any four points1M each
		Very Low(less than 100 ohm)	Very High(750K)	Low(less than 1K)	
		Very High	Low	High	
			Very High	High	

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

		reference source, an error amplifier, a series pass transistor and a current limiting transistor. The device can provide voltage with an output voltage ranging from 2 V to 37 V , and output current levels up to 150 m A . The working can be explained by dividing it into two blocks, the reference voltage generator and the error amplifier. In the reference voltage generator, a Zener diode is being compelled to operate at fixed point (so that zener output voltage is a fixed voltage) by a constant current Source which comes along with an amplifier to generate a constant voltage of 7.15 V at the Vref pin of the IC. As for the error amplifier section, it consists of an error amplifier, a series pass transistor Q1 and a current limiting transistor. The error amplifier can be used to compare the output voltage applied at Inverting input terminal through a feedback to the reference voltage Vref applied at the Non-Inverting input terminal. This connection is not provided internally and so has to be externally provided in accordance with the required output voltage. The conduction of the transistor Q1 is controlled by the error signal. It is this transistor that controls the output voltage	
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3		Attempt any FOUR :	16- Total Marks
	(a)	Draw the circuit diagram for common base configuration and draw its output characteristics.	4M

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:	Explanation: Fig shows the circuit of source biasing for JFET. - FET gate is grounded through resistor R_{G}. - Source is grounded through resistor R_{s}. - Only one Drain supply $V_{D D}$ is required. - Drain current I_{D} flows when Drain voltage is applied. - This Drain current produces a voltage drop across R_{s}. This provides the reverse voltage at Gate for FET operation. D.C. analysis:- From the circuit:- For $\mathrm{V}_{\text {GS }}$ apply KVL as shown - $\begin{aligned} & -V_{G S}-V_{S}=0 \\ & -V_{G S}-I_{D} \cdot R_{S}=0 \text { since } I D=I_{S} \\ & V_{G S}=-I_{D} \cdot R_{S} \end{aligned}$ Expression for VDS,	Circuit Diagram : 2M Working : 2M

WINTER- 18 EXAMINATION
 Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	Apply KVL to the drain circuit $\begin{aligned} & V_{D D}-I D R D-V_{D S}-I S R S=0 \\ & V_{D D}=I D(R D+R S)+V D S \text { since } I D=I s \\ & V_{D S}=V_{D D}-I D(R D+R S) \end{aligned}$ The value of the drain current can be obtained by Shockley's equation. Thus the Q point of JFET amplifier using source biasing is given by, $\mathrm{I}_{0}=\mathrm{I}_{O S S}\left(1-\frac{V_{O S}}{V_{D S(\omega t)}}\right)^{2}$	
(c)	Draw miller sweep generator and give its two applications.	4M
Ans:	Applications of miller sweep: 1. Applications where linear output is expected. 2. In Television (TV) 3. In CRO 4. To convert step waveform into ramp waveform.	Circuit Diagra m : 1M Applicat ions:2M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

(d)	Compare the different types of coupling (any 4 points).				4M
Ans:	Parameters	RC Coupled	Transformer coupled	Direct coupled	Any 4 points: 1M each
	Frequency response	Excellent in audio frequency range	Poor	Best	
	Cost	Less	More	Least	
	Space and weight	Less	More	Least	
	Impedance matching	Not good	Excellent	Good	
	Applications	For voltage amplification	For power amplification	For amplifying low frequency signals	
	Type of coupling	Resistor- Capacitor	Transformers	No coupling	
(e)	Draw the circuit diagram of -5 V regulator using 7905 and describe its working.				4M
Ans:	- The AC signal is given through an input transformer which steps up or down according to the usage. Mostly a step down transformer is used in rectifier circuits, so				Circuit Diagra m : 2M Workin g: 2M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	as to reduce the input voltage. - Rectifier used is a full wave rectifier which converts AC input into pulsating DC output. - Capacitors are the filter capacitors. It is used to reduce noise or oscillations from unregulated input as well as it improves the transient response. - IC 7905 is a 3 pin regulator IC which is used to produce a regulated -5 V output.	
(f)	Define the following: (1) Load Regulation (2) Line Regulation.	4M
Ans:	(i) Load Regulation The load regulation indicates the change in output voltage that will occur per unit change in load current. Mathematically, $\% \mathrm{~L} \cdot \mathrm{R}=\frac{\mathrm{V}_{\mathrm{NL}}-\mathrm{V}_{\mathrm{FL}}}{\mathrm{~V}_{\mathrm{FL}}} * 100$ where, $\mathrm{V}_{\mathrm{NL}}=$ Load voltage with no load current $\mathrm{V}_{\mathrm{FL}}=$ Load voltage with full load current (ii) Line Regulation The line regulation or source regulation rating of a voltage regulator indicates the change in output voltage that will occur per unit change in the input voltage. Mathematically, $\% \mathrm{~S} . \mathrm{R}=\frac{\mathrm{V}_{\mathrm{HL}}-\mathrm{V}_{\mathrm{LL}}}{\mathrm{~V}_{\mathrm{N}}} * 100$ where,	Definiti on : 2M each

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

		$\begin{aligned} & \mathrm{V}_{\mathrm{HL}}=\text { Load voltage with high line voltage } \\ & \mathrm{V}_{\mathrm{LL}}=\text { Load voltage with low load current } \\ & \mathrm{V}_{\mathrm{N}}=\text { output voltage under normal operating conditions } \end{aligned}$	
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
4		Attempt any FOUR :	16- Total Marks
	(a)	List 4 applications of FET. Draw the drain and transfer characteristics of JFET.	4M
	Ans:	Applications of FET: 1. Used as a buffer amplifier. 2. Used as an electronic switch. 3. Used in radio frequency amplifiers for FM devices 4. Used in low frequency amplifiers due to its small coupling capacitors. 5. Used in large scale integration (LSI) and computer memories because of its small size. 6. Used in mixer circuits to control low inter modulation distortions. Drain characteristics of JFET	Applicati ons (any 4 points) : 2M Drain characte ristics: 1M Transfer characte ristics : 1M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION
Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:	Function of Components: 1. Biasing circuit: Resistors R1, R2 and RE form biasing and stabilization circuit. It establishes a proper operating point. 2. Input Coupling Capacitor C1: Used to couple the input AC signal to base of transistor. It allows only AC signal to flow but opposes DC. 3. Output Coupling Capacitor C2: Used to connect the transistor amplifier to the next stage. It allows only AC signal to flow but opposes DC. 4. Emitter bypass capacitor: It provides a low reactance path to the amplified signal. It bypasses all the currents from the emitter to the ground.	Circuit Diagram : 2M Function s: 2M
(c)	Describe the construction, operation of E-MOSFET.	4M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:	The enhancement type MOSFET has no depletion mode and it operates only in enhancement mode. It differs in construction from the depletion type MOSFET in the sense that it has no physical channel. It may be noted that the P-type substrate extends the silicon dioxide layer completely. This MOSFET is always operated with the positive gate to source voltage. When the gate to source voltage is zero. The $V_{D D}$ supply tries to force free electrons from source to drain but the presence of P - region does not permit the electrons to pass through it. Thus there is no drain current for VGS $=0$. Due to this fact, the enhancement type MOSFET is also called normally OFF MOSFET. Now if some positive voltage is applied at the gate, it induces a negative charge in the P type substrate just adjacent to the silicon dioxide layer. The induced negative charge is produced by attracting the free electrons from the source. When the gate is positive enough, it can attract a number of free electrons. This form a thin layer of electrons, which stretches from source to drain, This effect is equivalent to producing a thin layer of N - type channel in	Constru ction: 2M; Operati on: 2 M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	the P-type substrate. This layer of free electrons is called N - type inversion layer. The minimum gate to source voltage which produces inversion layer, is called threshold voltage $\mathrm{V}_{\text {GST }}$. When the voltage V_{GS} is less than $\mathrm{V}_{\text {GST }}$ no current flows from drain to source. However when the voltage V_{GS} is greater than $\mathrm{V}_{\text {GST }}$ the inversion layer connects the drain and source and we get significant value of current.	
(d)	Describe class B push pull amplifier with neat circuit diagram.	4M
Ans:	In class B amplifier transistor conducts only for half cycle of input signal. This type of output signal gives large distortion. In order to avoid this we use two transistors connected in push-pull arrangement. One conducts in positive half cycle and other conducts in negative half cycle. - Transistor T1 is called as input transformer and is called phase splitter and produces two signals which are 1800 out of phase with each other. Transistor T2 is called output transformer and is required to couple the a.c. output signal from the collector to the load.	Circuit Diagra m : 2M Explana tion : $\mathbf{2 M}$

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Class-B Push-Puel Amplifier

Working:

- When there is no input signal both the transistor Q1 and Q2 are cut-off. Hence no current is drawn from VCC supply. Thus in standby the power dissipation in both transistor is practically zero and there is no power wasted.
- During positive half cycle the base of Q1 is positive and Q2 is negative. As a result of this Q1 conducts, while the transistor Q2 is OFF. And a half cycle is obtained at the output.
- During negative half cycle, Q1 turns OFF and Q2 conducts, and another half cycle is obtained at the output. At any instant only one transistor in the circuit is conducting. Each transistor handles one half of the input signal.
- Then output transformer joins these two halves and produces a full-sine wave across the load resistor.

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

WINTER- 18 EXAMINATION
 Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

		Oscillator is basically an ac signal generator which generates alternating voltage of desired shape at desired frequency. Oscillators work on the principle of positive feedback. Applications of oscillator 1. In the radio and TV transmitters. 2. In Special type receivers. 3. As a crystal clock in microprocessors. 4. In the frequency synthesizers.	Applicati ons (any 3 points) : 3M
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
5.		Attempt any FOUR :	16- Total Marks
	(a)	In C.E. configuration if $\beta=150$, leakage current ICEO $=100 \mu \mathrm{~A}$ and base current is $\mathbf{0 . 5} \mathrm{mA}$, determine I_{C} and I_{E}.	4M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:	5a) Given data: $\begin{aligned} B & =150 \\ I_{C E O} & =100 \mu \mathrm{~A} \\ I_{B} & =0.5 \mathrm{~mA} \\ I_{C} & =? \cdot I_{E}=? \\ I_{C} & =\beta \cdot I_{B}+I_{C E O} \\ & =150 \times 0.5 \times 10^{-3}+100 \times 10^{-6} \\ & =75 \times 10^{-3}+0.1 \times 10^{-3} \\ \therefore I_{C} & =75.1 \mathrm{~mA} \\ \because I_{E} & =I_{C}+I_{B} \\ & =75.1+0.5 \\ \therefore I_{E} & =75.6 \mathrm{~mA} \end{aligned}$	1 mark 1mark 1 mark 1 mark
(b)	State the advantages and disadvantages of crystal oscillator.	4M
Ans:	Advantage of crystal oscillator 1)It provides high degree of stability 2) It provides high degree of accuracy. 3) The Q is very high. 4) It is Possible to obtain very high, Precise and stable frequency of oscillations. 5) Very low frequency drift due to change in temperature and other parameters. Disadvantage of crystal oscillator 1) It is suitable for only low power circuit. 2) Different frequency cannot be obtained easily.	2marks(any two) 2marks(any two)

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	Thus I_{D} varies sinusoidally above its Q point value. The drain to source voltage $V_{D S}$ is given by $V_{D S}=V_{D D}-I_{D} R_{D}$. Therefore as I_{D} increases the voltagedrop $I_{D} R_{D}$ will also increase and voltage $V_{D S}$ will decrease. If ΔI_{D} is large for a small value of $\Delta V_{G S}$, the $\Delta V_{D S}$ will also be large and we get amplification. Thus the AC output voltage $V_{D S}$ is 1800 out of phase with AC input voltage.	
(e)	Describe the working principle of UJT as relaxation oscillator with neat circuit diagram.	4M
Ans:	Circuit Diagram: Circuit Operation: When the supply voltage V_{Cc} is switched ON , the capacitor C charges through resistor R , till the capacitor voltage reaches the voltage level V_{p} which is called as peak point voltage. At this voltage, the UJT turns ON; and capacitor C discharges rapidly through resistor R_{1}. When the capacitor voltage drops to Vv level (called valley-point voltage) the UJT switches OFF, allowing capacitor C to charge again. Because of charging and discharging of capacitor saw tooth waveforms are obtained at emitter terminal and positive trigger pulse is obtained at Base 1 and negative trigger pulses	2 marks for diagram 2 marks for working

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:

	are obtained at base 2 as shown in Fig. (b) The sweep period is given by the relation, $\begin{aligned} & T=\text { R.C. } \log _{e}(1 / 1-n) \\ & T=2 / 3 \text { R.C. } \log _{10}(1 / 1-n) \end{aligned}$ Where, η is intrinsic stand-off ratio The sweep frequency can be varied by changing values of either R or C .	
(f)	Draw pin diagram of IC 78XX and IC 79XX and state their features and advantages.	4M
Ans:	Features: (Any Two)	2 marks (Each pin 1 mark) 1 mark for two

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

		1. Programmable output. 2. Facility to boost the voltage/current. 3. Internally provided short circuit current limiting. 4. Thermal Shutdown. 5. Floating operation to facilitate higher voltage output. 6. Versatility and low cost. 7. They are easy to use. Advantages: (Any One) 1. 78 xx and 79 xx series ICs do not require additional components to provide a constant, regulated source of power, making them easy to use, as well as economical and efficient uses of space. 2. 78xx and 79xx series ICs have built-in protection against a circuit drawing too much current. They have protection against overheating and short-circuits, making them quite robust in most applications.	features 1 mark for advanta ge
Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. } N . \end{aligned}$	Answers	Marking Scheme
6.		Attempt any FOUR :	16- Total Marks
	(a)	Explain with a neat circuit, voltage divider bias method for biasing a transistor.	4M

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

Ans:

	2 marks for circuit
Voltage divider bias circuit	
Explanation:- The name voltage divider is derived from the fact that resistor R_{1} and R_{2} form a potential divider across the $V_{C C}$ supply.	2 marks for explanat ion
The voltage drop across resistor R_{2} forward biases the base - emitter junction of a transistor.	
The emitter resistor (R_{E}) provides the D.C. stability.	
It is evident from the circuit that due to the voltage divider network of resistors R_{1} and R_{2}, the voltage at the transistor base is	
$\mathrm{V}_{\mathrm{B}}=\mathrm{Vcc}^{*} \mathrm{R}_{2} /\left(\mathrm{R}_{2}+\mathrm{R}_{1}\right)$ (considering V_{BE} negligibly small)	
Therefore value of emitter current,	
$\mathrm{I}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}$	
And the value of collector current,	
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}$ (approximately)	
The voltage drop across the collector resistor,	
$\mathrm{V}_{\mathrm{RC}}=\mathrm{IC}^{*} \mathrm{R}_{\mathrm{C}}$	
And the voltage at the collector (measured with respect to the ground) $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{RC}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} * \mathrm{R}_{\mathrm{C}}$	

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	The voltage from collector - to - emitter. $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} * R_{\mathrm{E}} \\ & \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{E}}\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right) \ldots \ldots \ldots \ldots \ldots\left(\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}\right) \end{aligned}$	
(b)	Draw the circuit of series transistor voltage regulator and describe its operation.	4M
Ans:	Explanation : - In this circuit transistor Q acts as a control element. This transistor Q is connected in series with the load RL, hence the circuit is called as Series Voltage Regulator. Other components in the circuit are Zener diode $\left(V_{Z}\right)$, and two resistors $R \& R_{B}$. - Zener diode V_{Z} is operated in breakdown region and provides constant voltage V_{Z}. - Resistance R_{B} provides the limiting current to Zener diode. - The total current in the circuit is decided by resistance R. - $A s V_{Z} \& V_{B E}$ of the transistor are constant, output voltage across R_{L} will also be constant. To find output voltage V_{O}, Applying KVL to o/p loop of the circuit $V_{B E}+I_{L} R_{L}-V_{Z}=0$ Therefore, $\mathrm{V}_{\mathrm{O}}=\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}}$ $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{BE}}$ As V_{BE} is constant and negligibly small (approx. 0.6 V to 0.7 V). Therefore output voltage of this circuit is decided by Zener diode V_{z}.	2 marks for circuit 2 marks for explanat ion

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

| (c) | State the meaning of positive and negative feedback | $\mathbf{4 M}$ |
| :--- | :--- | :--- | :--- |
| Ans: | Positive feedback: If the feedback signal (voltage or current) is applied in such a way that it
 is in phase with the input signal and thus increases it, then it is called a positive feedback. It
 is also known as regenerative feedback or direct feedback.
 Negative feedback: If the feedback signal (voltage or current) is applied in such a way that it
 is out phase with the input signal and thus decreases it, then it is called a negative feedback.
 It is also known as degenerative feedback or inverse feedback. | $\mathbf{2}$ marks |
| (d) | Draw the circuit of double tuned amplifier and sketch the frequency response. | |
| Ans: | Double tuned amplifier:- | 4M mars |
| Frequency response:- | | |

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits
Model Answer Subject Code:
Ans:

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

	When the circuit is energized, by switching on the supply, the circuit starts oscillating. The oscillations may start due to the minor variation in D.C. supply or the inherent noise in the FET. The variation in the gate current is amplified in the drain circuit. Then it is fedback through the phase shift network and finally applied to the gate. The circuit frequency of oscillation is given by the relation, $\mathrm{f}_{\mathrm{ob}}=\frac{1}{2 \pi R C \sqrt{6}}$	
(f)	Explain the construction of UJT and draw its symbol.	4M
Ans:	Fig. shows the equivalent circuit of a unijunction transistor with voltage source V_{EE} connected across emitter and base 1 and V_{BB} connected across base 1 and base2. Hence the diode is reversed biased by a voltage drop across the $\mathrm{r}_{\mathrm{B} 1}$ and its own barrier potential (V_{D}). Thus total reverse bias voltage across a diode is equal to sum of $\eta . V_{B B}$ and V_{D}. As long as the $V_{E E}$ is below the total reverse bias voltage (i.e. $\eta \cdot V_{B B}+V_{D}$) across the diode, it remains reverse biased and there is no emitter current. However if the $V_{E E}$ voltage reaches or exceeds the value equal to ($\eta \cdot V_{B B}+V_{D}$), the diode conducts $\mathrm{V}_{\text {EE }}$, which causes the diode to conduct, is called peak point voltage.	1 Marks for diagram 2 Marks for Explanat ion

WINTER- 18 EXAMINATION

Subject Name: Electronic Devices and Circuits Model Answer Subject Code:

| | $V_{P}=\eta \cdot V_{B B}+V_{D}$
 When the emitter current begins to flow, the UJT is said to be fired, triggered or turned on.
 Symbol of UJT:
 for
 symbol | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |

