

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Subject Code: 17319

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

). וס.	Sub Q. N.	Answers				Marking Scheme	
	A	Attempt any SIX:				12- Total Marks	
	а	List different operati	ng regions of transist	or.		2M	
	Ans:	Operating regions of	transistor:-			2M	
		Operating Region	I _B or V _{CE}	BC and BE junctions	Mode		
		Cut off	I _B =very small	Reverse biased and Reverse biased	Open switch		
		Saturation	V _{CE} = Very small	Forward biased and Forward biased	Closed switch		
		Active	V _{CE} = Moderate	Reverse biased and Forward biased	Amplifier		
	b	Define the term stab	ility factor.			2M	
	Ans:		eeping both the curre	etor current I _c with respense ent I _B and the current gain $= \frac{dI_c}{dI_{co}} = \frac{\Delta I_c}{\Delta I_{co}}$		2M	

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

С	Draw the symbol of n-channel and p-channel JFET.	2M
Ans:	Symbol of n-channel and p-channel JFET:-	1M each
	Schematic Symbol Schematic Symbol	
	of an <i>n</i> -Channel JFET of a <i>p</i> -Channel JFET	
	G G	
	♦ S ♦ S	
d	List the types of amplifier coupling.	2M
Ans:	Types of amplifier coupling: (ANY TWO)	1M each
	1. Resistance – capacitance (RC) coupling.	
	2. Transformer coupling	
	3. Direct coupling	
е	Define intrinsic stand-off ratio of UJT.	2M
Ans:	Intrinsic standoff ratio:	(Definitio
	It is defined as the ratio of the R_{B1} (base resistance 1) to the inter-base resistance R_{BB} .	:1M,
	$R_{B_1} = R_{B_1}$	Equation
	$I_{I} = \frac{1}{R_{BB}} = \frac{1}{R_{B1} + R_{B2}}$:1M)
f	State the need of voltage regulator.	2M
Ans:	NEED OF VOLTAGE REGULATORS:-	2M
	DC voltage obtained by using rectifier and filter is not constant and may vary depending	
	upon supply variations. This DC voltage may result in an error or may damage other	
	electronic devices or circuits	
	e.g.	
	1. In oscillators it may lead to phase shift.	
	2. In amplifiers it may lead to change in voltage gain or power gain.	

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

	4. It may produce distortions in output of audio and video amplifiers.	
	Hence to avoid these errors DC voltage regulators are necessary to keep the output DC	
	voltage constant.	
g	Define efficiency of power amplifier.	2M
Ans:	Definition:-	1M
	Efficiency of power amplifier is defined as the ratio of r.m.s. output power dissipated in the load to the total DC power taken from the supply source.	1M
	Formula:-	
	$\eta\% = \frac{P_{OUT}}{P_{DC}} \times 100$	
	Where:	
	$\eta\%$ – is the efficiency of the amplifier.	
	Pout – is the amplifiers output power delivered to the load.	
	Pdc – is the DC power taken from the supply.	
h	State the condition for sustained oscillations.	2M
Ans:	Conditions for sustained oscillations:-	1M each
	 The total shift introduced, as the signal proceeds from input terminals through the amplifier and feedback network & back again to the input is precisely 0° or 360°. The magnitude of the loop gain A_{Vβ} must be equal to 1 at the frequency of oscillations. 	
	$A_{V}\beta = 1 \& \theta = 0^{\circ} \text{ or } 360^{\circ}.$	
В	Attempt any TWO:	8- Total Marks
a	Draw the circuit diagram for Common Base (CB) configuration and draw its input and output characteristics.	4M
-		

SUMMER-18 EXAMINATION

Subject Code: 17319

Subject Name: Electronic Devices & Circuits Model Answer

V_{cc} **≷** R₁ Rc≩ l I_C BE RE Draw and explain zener diode as a voltage regulator. 4M С Ans: Circuit diagram:-Fixed (a) Varying input voltage. 1M Part I: REGULATION BY VARYING INPUT VOLTAGE: diagram, 1M A resistance (R_s) is connected in series with the zener diode to limit current in the circuit. **Explanation** For proper operation, the input voltage (Vs) must be greater than the zener voltage (Vz). Where, R_z= zener resistance $|_{s} = |_{7} + |_{1}$ Here the load resistance is kept fixed and input voltage is varied within the limits Case1:- WHEN INPUT VOLTAGE IS INCREASED When input voltage is increased the input current (Is) also increases. Thus current through zener diode gets increased without affecting the load current(IL). The increase in input voltage also increases the voltage drop across the resistance Rs thereby keeping the V_L constant. **Case 2:- WHEN INPUT VOLTAGE IS DECREASED**

Subject Name: Electronic Devices & Circuits Model Answer

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Q. No	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR:	16- Total Marks
	а	Describe the concept of thermal runaway. How it should be avoided?	4M
	Ans	Concept of thermal Runaway:-	3M
	:	We know that $I_C = \beta I_B + (1 + \beta)$. I_{CO} , where I_{CO} is the leakage current.	
		I _{CO} is strongly dependent on temperature.	
		The flow of collector current produces heat within the transistor.	
		This raises the transistor temperature.	
		If no stabilization is done, I _{co} further increases.	
		If I_{CO} increases, I_C increases by (1+ β). I_{CO}	
		The increased I_{C} will raise the temperature of the transistor which in-turn will increase	
		the I_{CO} . This effect is cumulative and in a fraction of a second Ic becomes so large	
		causing transistor to burn up. This self-destruction of an unstabilized transistor is	
		known as Thermal Runaway.	
		Power dissipation t Ict	
		Thermal Runaway can be avoided :	1M
		1. By keeping I_{C} constant. This is done by causing I_{B} to decrease automatically with	
		temperature increase.	
		2. By using heat sink.	

Subject Name: Electronic Devices & Circuits Model Answer

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Subject Name: Electronic Devices & Circuits Model Answer

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

In above figure, transistor is connected in series with		
as a series regulator.	load, therefore the circuit is known	2M
The transistor behaves as variable resistance whose whose whose whose whose whose whose current.	alue is determined by the amount of	
$V_L = V_Z - V_{BE}$		
(OR)		
$V_{BE} = V_Z - V_L$ Equation 1		
Suppose that value of load resistance is increased decreases and load voltage (V_L) tend to increase. From will decrease V_{BE} because V_Z value is fixed.	-	
As a result of this, forward bias of the transistor i conduction. This increases V_{CE} of transistor which wi for the increase in the value of load resistance so that	Il slightly decrease the input current	
If the output voltage decreases, then exactly opposi voltage is regulated.	te action will take place and output	
The output of a transistor series regulator is approxim regulator can also be used for larger load currents.	ately equal to zener voltage (Vz) This	
Q. Sub Answers No Q.		Marking Scheme
. N.		
3 Attempt any FOUR:		16- Total Marks
a Compare CB, CE and CC configuration on the basis of,		4M
(i) Input Impedance (Ri)		
(ii) Output Impedance (Ro)		
(iii) Voltage gain (Av)		
(iv) Current gain (Ai)		

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

•	Parameter	Common Base	Common Emitter	Common Collector	1M each
•	Input Impedance	Low (50 Ohm)	Moderate (1 KOhm)	High (300 KOhm)	(numerical
	Output Impedance	High (1 M Ohm)	Moderate (50 K)	Low (300 Ohm)	values for parameters
	Voltage Gain	High	Higher than CB	Less than Unity	are optiona
	Current Gain	Less than Unity	High	Very High	
b	Draw the circuit diag	ram of self-bias met	hod of JFET and describe	e its working.	4M
Ans	Self Biasing Method:-				Diagram-2
:	The self-bias c	onfiguration for FET(d	c equivalent circuit) is as sh	own in fig. This	Working-2
	configuration eliminate	-		U U	
	-				
			V _{DD}		
			l		
			ID		
			→		
		RG	Is↓		
		RG	→ Is ↓ RS		
		RG			
			RS T		
	-	such that the gate sou	rce junction is always reve		
	requires a negative V _{GS}	such that the gate sou	RS T		
	requires a negative V _{GS} above –	such that the gate sou for n channel JFET. Th	rce junction is always reve is can be achieved using th	e self bias arrangement as	
	requires a negative V _{GS} above – The resistor F	such that the gate sou for n channel JFET. Th R _G does not affect the P	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re	such that the gate sou for n channel JFET. Th R _G does not affect the P	rce junction is always reve is can be achieved using th	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re amplifier application.	such that the gate sou for n channel JFET. Th R _G does not affect the R emains at OV. R _G is nece	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re amplifier application. From above diagram I _S	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece = $I_D \& V_G = 0$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re amplifier application.	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece = $I_D \& V_G = 0$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re amplifier application. From above diagram I _S ∴ voltage across R _S = V	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece = $I_D \& V_G = 0$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V _{GS} above – The resistor F it and therefore gate re amplifier application. From above diagram I _S	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece = $I_D \& V_G = 0$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V_{GS} above – The resistor F it and therefore gate re amplifier application. From above diagram Is \therefore voltage across $R_S = V$ $\therefore V_S = I_D \cdot R_S$.	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece = $I_D \& V_G = 0$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	
	requires a negative V_{GS} above – The resistor F it and therefore gate re amplifier application. From above diagram Is \therefore voltage across $R_S = V$ $\therefore V_S = I_D \cdot R_S$.	such that the gate sou for n channel JFET. Th R_G does not affect the R emains at OV. R_G is nece $= I_D \& V_G = 0$ $r_{RS} = I_S . R_S = I_D . R_S$	rce junction is always reve is can be achieved using th bias because it has essenti	e self bias arrangement as ally no voltage drop across	

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Subject Code: 17319

V_{GS} = - I_D. R_S From Shockley's equation the drain current is: $I_{\rm D} = I_{\rm DSS} \left[1 - \frac{V_{GS}}{V_{GS(off)}} \right]^2$ Substitute the value of V_{GS} = - I_D . R_S $I_{\rm D} = I_{\rm DSS} \left[1 - \frac{I_D R_S}{V_{GS(off)}} \right]^2$ $I_{\rm D} = I_{\rm DSS} \left[1 + \frac{I_D R_S}{V_{GS(off)}} \right]^2$ The drain voltage with respect to ground is determined as follows - $V_D = V_{DD} - I_D R_D$ $V_s = I_D R_s$ The drain to source voltage is - $V_{DS} = V_D - V_S$. V_{DS} = (V_{DD} - $I_D R_D$) - $I_D R_S$ $V_{DS} = V_{DD} - I_D R_D - I_D R_S$ Q point of self Bias circuit is located as - $V_{DS} = V_{DD} - I_D (R_D + R_S)$ V_{GS} = - I_DR_S $I_{\rm D} = I_{\rm DS} \left[1 + \frac{I_D R_S}{V_{GS(off)}} \right]^2$ $V_{DS} = V_{DD} - I_D R_D - I_D R_S$

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

2	Draw the circuit diagram of double tuned amplifier and describe its working.	4M
Ans	Circuit diagram:-	Diagram-2M
	Vss	Working-2M
	$R1 \stackrel{\texttt{L}}{=} \begin{array}{c} -c_1 & c_1 \\ \hline \\ $	
	Vin (V) R2 RE CE CE	
	Working:-	
	working	
	When a signal containing many frequencies is applied at the input, the frequency	
	corresponding to the resonant freq. of tuned circuit comprising of $C_1 \& L_1$ is selected, and	
	other frequencies are rejected. The tuned circuit offers very high impedance to this signal	
	frequency. Amplified output appears across the tuned circuit $L_1 C_1$. The output from this tuned circuit is transferred to the second tuned circuit $L_2 C_2$ through mutual induction	
	.Frequency response of doubled tuned circuit depends upon the magnetic coupling of L_1 &	
	L_2 .	
	A frequency response curve of a typical doubled tuned circuit at different coupling condition is shown –	
	Gain 🔺 🔹 Loose coupling	
	Tight coupling	
	Fr Frequency	
	From above it is seen that most suitable curve is one when optimum coefficient of	
	coupling exists between the tuned circuits. In this condition, the circuit is highly selective &	
	also provides sufficient amount of gain for a particular band of freq.	
	Thus by adjusting coupling between two coils the required result can be obtained.	

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

	(frequency response curve is optional. Marks may be awarded even if it is not drawn.)	
d	Draw pin diagram of IC 723. Give any four important features of IC 723.	4M
Ans :	Pin diagram of IC 723:	Pin diagram 2M
	Current Limit 2 Current Sense 3 Inverting Input 4 Non Inverting Input 5 Vref 6 V-7 N-7 NC NC NC Current Limit 2 T23 IN Frequency Compensation II V+ II Vc II Vc I	
	Important features of 723: The important features of IC 723 regulator is as given below:	Any four features-
	 It is small in size and less in cost. Positive or negative supply operation. Unregulated dc supply voltage at the input between9.5V and 40V Output voltage adjustable from 2 V to 37 V. Maximum load current of 150 mA With additional transistor used, I_{Lmax} upto10A is available Internal power dissipation of 800mW Wide variety of applications such as series, shunt, switching and floating regulators. Relative simplicity with power supply can be designed. Low standby current gain. Very low temperature drift High ripple rejection. Built in fold back current limiting. Built in short circuit protection. Load and line regulations of 0.03% 	1/2 M each
e	Draw and explain transistorized crystal oscillator.	4M

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Ans	Circuit Diagram:	Circuit
:	+ V _{CC}	Diagram-2N
		Explanation 2M
	Working:-	
	When the power is turned on, capacitor C_1 is charged. When this capacitor discharges, it sets up oscillations. The voltage across L_1 is applied to coil L_2 due to mutual inductance. This positive feedback causes the oscillator to produce oscillations. The frequency of oscillations in the circuit is controlled by the crystal. As the crystal is connected in the base circuit its influence on the	
	frequency of the circuit is much more than LC circuit. The entire circuit vibrates at the natural frequency of the crystal. As the frequency of the crystal is independent of temperature, the circuit generates a constant frequency.	
f	frequency of the crystal. As the frequency of the crystal is independent of temperature, the circuit	4M
f Ans :	frequency of the crystal. As the frequency of the crystal is independent of temperature, the circuit generates a constant frequency.	Diagram-2N
Ans	frequency of the crystal. As the frequency of the crystal is independent of temperature, the circuit generates a constant frequency. Draw and explain class-B push pull amplifier. $ \begin{array}{c} $	Diagram-2N Explanatior
Ans	frequency of the crystal. As the frequency of the crystal is independent of temperature, the circuit generates a constant frequency. Draw and explain class-B push pull amplifier. T2 Vin	Diagram-2N Explanation

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

		negative. Therefore Q ₁ conducts (ON) and Q ₂ is OFF	
		When negative half cycle is applied across input, the base of Q_1 becomes negative and the base of Q_2 is positive. Therefore Q_1 is OFF and Q_2 conducts. only i_{c2} flows and $i_{c1} = 0$. A negative sinusoidal voltage will appear across load. Thus at any instant only one transistor will conduct. When Q_1 conducts, only i_{c1} flows and $i_{c2} = 0$. A	
0	Sub	positive sinusoidal voltage will appear across load.	Marking
Q. No	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR:	12- Total Marks
	а	Define α and β of the transistor. Derive the relationship between α and $\beta.$	4M
	Ans :	Alpha(α) :It is a large signal current gain in common base configuration. It is the ratio of collector current (output current) to the emitter current (input current). Beta (β):It is a current gain in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). Relation between a $\&$ β : Current gain (α) of CB configuration = $\frac{l_c}{l_B}$ Current gain of (β) of CE configuration = $\frac{l_c}{l_B}$ We know that ; $I_E = I_B + I_C$ (1) Dividing equation (1) by I_C $\frac{l_E}{l_C} = \frac{l_B}{l_C} + \frac{l_C}{l_C}$ Therefore $\frac{1}{\alpha} = \frac{1+\beta}{\beta}$ $\alpha (1 + \beta) = \beta$ $\alpha = \beta - \alpha \beta$ $\alpha = \beta(1 - \alpha)$	Definition α and β-1M each Derivation- 2M

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

b	Compare Class A, Clas	s B, Class C & Cl	ass AB power am	plifier.	4M
Ans :	Class A	Class B	Class C	Class AB	Any 4 point- 1m each
	Conducts for (360 ⁰) full cycle of input signal	(180°) half cycle of input signal	Less than 180 ⁰ of input signal.	Greater than 180 ⁰ and less than 360 ⁰	
	Q point is at the centre of load line	On X axis	Below X axis	Just above X axis	
	No distortion	More than class A	More than A, B, AB	Less distortion.	
	lowest efficiency 25% to 50%	Above 78.5%	Above 95%	Between 50 to 78.5%	
	Power dissipation very high	low	Very low	Moderate.	
C	Explain the working o	f N-channel D-N	IOSFET.		4M
Ans	Circuit Operation:-				Diagram-2m
:			Drain gate VGG source N P P		Working- 2M

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

 and explain transistor as a switch with neat input and output waveforms. 	
ee electrons of the n channel due to positive drain & I _{DSS} establish in the circuit. gative voltage at gate, the gate will tend to repel free electrons towards P type substrate and t holes toward insulated layer. Recombination occurs between electron & holes that will e the number of free electron in the channel for conduction. So drain current reduces. The of voltage of V _{GS} at which drain current nearly becomes zero is called cut off voltage. gate is positive with respect to source then positive V _{GS} draws additional electrons from the substrate. Thus drain current (I _D) increases as increase in positive value.	
gative voltage at gate, the gate will tend to repel free electrons towards P type substrate and t holes toward insulated layer. Recombination occurs between electron & holes that will e the number of free electron in the channel for conduction. So drain current reduces. The of voltage of V_{GS} at which drain current nearly becomes zero is called cut off voltage. gate is positive with respect to source then positive V_{GS} draws additional electrons from the substrate. Thus drain current (I_D) increases as increase in positive value.	
t holes toward insulated layer. Recombination occurs between electron & holes that will e the number of free electron in the channel for conduction. So drain current reduces. The of voltage of V_{GS} at which drain current nearly becomes zero is called cut off voltage. gate is positive with respect to source then positive V_{GS} draws additional electrons from the substrate. Thus drain current (I _D) increases as increase in positive value.	
the number of free electron in the channel for conduction. So drain current reduces. The of voltage of V_{GS} at which drain current nearly becomes zero is called cut off voltage. gate is positive with respect to source then positive V_{GS} draws additional electrons from the substrate. Thus drain current (I_D) increases as increase in positive value.	
of voltage of V_{GS} at which drain current nearly becomes zero is called cut off voltage. gate is positive with respect to source then positive V_{GS} draws additional electrons from the substrate. Thus drain current (I_D) increases as increase in positive value.	
gate is positive with respect to source then positive V_{GS} draws additional electrons from the substrate. Thus drain current (I_D) increases as increase in positive value.	
substrate. Thus drain current (I_D) increases as increase in positive value.	
and explain transistor as a switch with neat input and output waveforms.	
and explain transistor as a switch with neat input and output waveforms.	
	4M
Vcc	Diagram-1
\leq	Explanation-
\geq R_c	2M
V _{out}	
R _B	Waveform-
	1M
E	
\perp	
a sufficient voltage (Vin > 0.7 V) is applied between the base and emitter, collector	
nitter voltage is approximately equal to 0. Therefore, the transistor acts as a short	:
t. The collector current Vcc/Rc flows through the transistor. Therefore switch is ON.	
. The conector current vcc/rc nows through the transistor. Therefore switch is on.	
rly, when no voltage or zero voltage is applied at the input, transistor operates in	1
region and acts as an open circuit. Therefore switch is	
Vin	
form:	
V _{out} t	
V _{out} t	
V _{out} t 5v 0v	
	5v 0v

Subject Name: Electronic Devices & Circuits Model Answer

e	In UJT sweep circuit, calculate time period and frequency of oscillation if η = 0.65 and R = 2 k\Omega	4M
Ans :	$t = 2.3RC \log_{10}\left(\frac{1}{1-\eta}\right)$	Time period and frequency
	Assume $C = 0.1 \mu F$	of oscillation -
	$t = 2.3 \times 2 \times 10^3 \times 0.1 \times 10^{-6} \times \log_{10} \left(\frac{1}{1 - 0.65}\right)$	2M each (marks may
	t = 0.2097 ms	be given if any other
	$f = \frac{1}{t}$	value of C is assumed
	$f = \frac{1}{0.2097 \times 10^{-3}}$	and calculation done
	f = 4.7687 kHz	accordingly)
f	Draw the block diagram of regulated power supply. State the function of each block.	4M
Ans :	Block Diagram of Regulated power supply:	Block Diagram-2M
	$\begin{array}{c} & \text{transformer} \\ + \text{ ac line} \\ 230v \text{ rms} \\ - 50 \text{ Hz} \\ - \\ - \\ \end{array} \begin{array}{c} & \text{Diode} \\ + \\ v_S \\ - \\ - \\ - \\ \end{array} \begin{array}{c} & \text{O} \\ + \\ v_S \\ - \\ - \\ - \\ \end{array} \begin{array}{c} & \text{O} \\ - \\ - \\ - \\ - \\ - \\ \end{array} \begin{array}{c} & \text{O} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Function- 2M
	Block diagram of a regulated Dc power supply consist of the following blocks namely:	
	1) Transformer 2)Rectifier 3) Filter 4) Voltage regulator.	
	1. Transformer:- The AC main voltage is applied to a step down transformer. It reduces the amplitude of ac voltage and applies it to a rectifier.	
	2. Rectifier: The rectifier is usually centre tapped or bridge type full wave rectifier. It converts the ac voltage into a pulsating dc voltage.	
	3. Filter: The pulsating dc (or rectified ac) voltage contains large ripple. This voltage is applied to the filter circuit and it removes the ripple. The function of a filter is to remove	

Subject Name: Electronic Devices & Circuits Model Answer

		the ripples to provide pure DC voltage at its output.				
		This DC output voltage is not a steady DC voltage but it changes with the change in load current. It has poor load and line regulation. The voltage obtained is unregulated DC voltage.				
		4. Voltage Regulator: The unregulated DC voltage is applied to a voltage regulator which makes this DC voltage steady and independent of variation in load and mains AC voltage .This improves the load and line regulation and provides the regulated DC voltage across the load.				
Q. No	Sub Q. N.	Answers	Marking Scheme			
5		Attempt any FOUR:	16- Total Marks			
	а	Explain the concept of dc load line analysis.	4M			
	Ans	Concept of DC load line:-				
	:	For proper operation of a transistor a fixed level of certain currents and voltage in a	1 Mark for			
		transistor are set. These values of current and voltage define the point at which the	Concept			
		transistor operates. This point is called operating point. It is also known as quiescent				
		point or simply Q-point.				
		$R_{C} = I_{C}$ R_{B} V_{BB} I_{E} V_{CC}	2 Mark for			
		Consider the transistor circuit shown in the figure above for this circuit we know that the	Explanation			
		value of collector current is given by the relation.				
		$I_C = \frac{V_{CC} - V_{CE}}{R_C}$ Equation (i)				

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Subject Name: Electronic Devices & Circuits Model Answer

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

c Ans	 The capacitor C_E works as a bypass capacitor. It bypasses all the AC currents from the emitter to the ground and avoids the negative current feedback. It increases the output AC voltage. The resistance R_L represents the resistance of whatever is connected at the output. It may be load resistance or input resistance of the next stage. Draw drain characteristics of JFET and explain ohmic and pinch-off region. Drain characteristics of JFET : 	4M
	Ohmic region B Saturation region $V_{GS} = 0$ C V_{P} V_{BR} V_{BR}	2 Marks for Drain characteristic
	 Ohmic Region : This regions is shown as a curve OA in the figure. In this region, the drain current increases linearly with the increase in drain-to-source voltage, obeying Ohm's law. The linear increase in drain current is due to the fact that N-type semiconductor bar acts like a simple resistor. Pinch off region: This regions is shown by the curve BC. It is also called saturation region or constant current region. This means the drain current remains constant at its maximum value (i.e. I_{DSS}). The drain current in the pinch off region, depends upon the gate-to-source voltage and is given by the relation 	2 Marks for explanation of regions

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

Operation of Common source FET amplifier: When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (R _D) also increases. This causes the drain voltage to decrease. It means positive		The above relation is known as Shockley's equation. The pinch off region is the normal operating region of JFET, when used as an amplifier.	
: Coperation of Common source FET amplifier: When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (R_D) also increases. This causes the drain voltage to decrease. It means positive	d	Draw common source FET amplifier and describe its operation.	4M
When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage voltage. This results in variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (R _D) also increases. This causes the drain voltage to decrease. It means positive		$R_1 \qquad C_2 \qquad + V_{DO}$	2 Marks fo diagram
the output voltage is 180° out of phase with the input voltage.		When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage. This results in variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (R_D) also increases. This causes the drain voltage to decrease. It means positive half cycle of the input voltage produces the negative half cycle of the output voltage. (ie.)	2 Marks fo Operation

Subject Name: Electronic Devices & Circuits Model Answer

Subject Name: Electronic Devices & Circuits Model Answer

		1	Frequency Response	Excellent in the audio frequency range	Best	Poor	each carry one mark)
	Ans :	Sr.No	Particulars	RC coupled	Direct coupled	Transformer coupled	4Marks (any four points
	a	Compare RC coupled, direct coupled and transformer coupled amplifier.					4M
					Marks		
6		Attempt any FOUR:				16- Total	
No	Q. N.						Scheme
Q.	Sub			Answers			Marking
		circuit.					
		The circuit pulls itself up by its own bootstrap and hence it is known as bootstrap sweep				s bootstrap sweep	
		with tin	ne.				
	This causes voltage across capacitor C (and hence the output voltage) to increase line				to increase linearly		
		capacitor C is charged with constant current.					
		across capacitor (C ₁) practically remains constant. Thus voltage drop across resistor (R) and hence current (IR) remains constant, means					
			-	citor (C_1) is much larger t		tor (C), the voltage	
				pled through the capacitor			
		zero.	utput voltage inc	reases diode D becomes r	overse hissed her	ause of the fact that	
			t these both the	base voltage of Q ₂ and o	utput voltage begi	ns to increase from	
				capacitor C ₁ starts chargin		-	
		transist					
				er, therefore the output v	voltage V_0 is same	as base voltage of	
	When negative pulse is applied to the base of transistor Q_1 , it turns OFF. Since transition					OFF. Since transistor	
		the diode forward resistance (R_F). At this instance output voltage is zero.					
		Initially	transistor Q_1 is O	N and Q_2 is OFF. Therefore	e capacitor C_1 is cha	rged to V _{cc} through	

Subject Name: Electronic Devices & Circuits Model Answer

	2	Cost	Less	Least	More	
	3	Space and weight	Less	Least	More	
	4	Impedance matching	Not good	Good	Excellent	
	5	Coupling elements	R and C	No element	Transformer	
	6	Distortion	Amplitude	No distortion	Frequency	
	7	Voltage gain	Least	Less	More	
	8	Use	For voltage amplification	For amplifying extremely low frequencies	For power amplification	
b	State	the meaning of po	sitive and negative fee	dback. State four adv	antages of	4M
D		ive feedback.				
Ans		ive feedback.				
	negat		e feedback signal (volt	age or current) is app	olied in such a way	2 Marks for
	negat Positi	ve feedback :If th	e feedback signal (volt he input signal and thu			meaning of
	negat Positi that it	ve feedback : If th t is in phase with t	- .	us increases it, then it	is called a positive	meaning of
	negat Positi that it feedb	ve feedback :If th t is in phase with t ack. It is also know	he input signal and thu	us increases it, then it back or direct feedbacl	is called a positive k.	meaning of positive and negative feedback
	negat Positi that it feedb Negat	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th	he input signal and thun n as regenerative feedb	us increases it, then it back or direct feedback cage or current) is ap	is called a positive k. plied in such a way	meaning of positive and negative feedback
	negat Positi that it feedb Negat that i	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase	the input signal and thun n as regenerative feedb ne feedback signal (volt	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback
	negat Positi that it feedb Negat that i negat	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase	the input signal and thun n as regenerative feedb ne feedback signal (volt with the input signal a llso known as degenera	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback
	negat Positi that it feedb Negat that i negat Adva	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase ive feedback. It is a	the input signal and thun n as regenerative feedback signal (volt with the input signal a llso known as degeneration feedback :	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback
	negat Positi that it feedb Negat that i negat Adva 1.Ban	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase ive feedback. It is a ntages of negative	the input signal and thun n as regenerative feedback signal (volt with the input signal a llso known as degeneration feedback :	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback 2 Marks for any four
	negat Positi that it feedb Negat that i negat Adva 1.Ban 2. Noi	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase ive feedback. It is a ntages of negative dwidth is increased	the input signal and thun n as regenerative feedback signal (volt with the input signal a llso known as degeneration feedback :	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback 2 Marks for any four
	negat Positi that it feedb Negat that i negat Advat 1.Ban 2. Noi 3. Stal	ve feedback : If th t is in phase with t ack. It is also know tive feedback: If th t is out of phase ive feedback. It is a ntages of negative dwidth is increased se is decreased	the input signal and thun n as regenerative feedback signal (volt with the input signal a also known as degeneration feedback :	us increases it, then it back or direct feedback cage or current) is ap nd thus decreases it,	is called a positive k. plied in such a way , then it is called a	meaning of positive and negative feedback 2 Marks for any four

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

	7. Less phase distortion			
С	Define the terms Line and Load regulation.	4M		
Ans				
:	Line Regulation: The line regulation rating of a voltage regulator indicates the change	2 Marks fo		
	in output voltage that will occur per unit change in the input voltage.	Line		
		regulation		
	Mathematically,			
	Line Regulation = $\frac{\Delta V_L}{\Delta V_S}$			
		2 Marks fo		
	Where ΔV_L = the change in output voltage and	Load		
		regulation		
	ΔV_S = the change in input voltage			
	Load Regulation:			
	The load regulation indicates the change in output voltage that will occur per unit change			
	in load current.			
	Mathematically,			
	Load Regulation = $\frac{V_{NL} - V_{FL}}{\Delta I_L}$			
	Where V_{NL} = No load output voltage			
	V_{FL} = Full load output voltage			
	ΔI_L = Change in load current demand			
d	Draw I-V characteristics of UJT and label different regions on it.	4M		
Ans				
:				
		2 Marks fo		
		Characteris		

Subject Name: Electronic Devices & Circuits Model Answer

Subject Name: Electronic Devices & Circuits Model Answer

	Sr.No	Bipolar Junction Transistor(BJT) It is bipolar device i.e. current in the device is carried either by both electrons & holes	Field Effect Transistor(FET) It is unipolar device i.e. current in the device is carried either by electrons or holes	4 Marks for any four points		
Ans :	CrNc	Dipology lunction Transister (DIT)	Field Effect Transister (FET)	A Marka far		
f	Compai	re BJT and FET (any four points)		4M		
		e of this fact, base bias is never used i	n amplifier circult.			
	It is impossible to obtain a stable 'Q' point in a fixed bias circuit.					
	I_{CE} and V_{CE} are dependent on β . But β is dependent on temperature.					
	dependent on resistance of collector circuit (RC).					
	From a	bove, collector current IC is β tim	nes greater than base current and is no	t		
	$I_C = \beta.$	$\frac{V_{CC}}{R_B} = \frac{V_{CC}}{R_B/\beta}$ Equation (iii)				
	transistor. The value of collector current is given by					
	The abo	ove equation gives the voltage drop a	across the collector emitter terminals of the	e		
	$V_{CE} = V_{C}$	cc- Ic . Rc Equation (ii)				
	I _C . R _C +	$V_{CE} = V_{CC}$				
	KVL for	this loop,				
	Now co	nsider the collector emitter circuit lo	oop in the base bias circuit and applying the	2		
	$I_B = \frac{V_{CC}}{R_B}$ (Since V _{cc} is much greater than V _{BE})					
	equatio	n (i) may be simplified as				
	voltage	, the selection of base bias resistor I	R_B fixes the value of base current. Thus the	e		
	Since t	he supply voltage V_{CC} and the base	e emitter voltage V_{BE} have fixed values o	f		

SUMMER-18 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

2	It is a current controlled device i.e. the base current controls the amount of collector current.	It is a voltage controlled device i.e. voltage at the gate (or drain) terminal controls amount of current flowing through the device.
3	Input resistance is very low compared to FET.	Input resistance is very high
4	It has a positive temperature co- efficient at high current levels. It means that current increases as temperature increases.	It has a negative temperature co- efficient at high current levels. It means that current decreases as temperature increases.
5	It is more noisy.	It is less noisy.
6	It has higher gain bandwidth product as compared to FET	It has lower gain bandwidth product as compared to BJT.
7	It is comparatively difficult to fabricate on IC & occupies more space on chip compared to FET.	It is simpler to fabricate on IC & occupies less space on chip compared to BJT.
8	Transfer characteristics are linear	Transfer characteristics are non- linear
9	Thermal runaway can damage the BJT	Thermal runaway does not take place
10	Symbol:	Symbol: G S S n-channel P-channel