SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

	c	Draw the symbol of n-channel and p-channel JFET.	2M
	Ans:	Symbol of n -channel and p -channel JFET:-	1M each
	d	List the types of amplifier coupling.	2M
	Ans:	Types of amplifier coupling: (ANY TWO) 1. Resistance - capacitance (RC) coupling. 2. Transformer coupling 3. Direct coupling	1M each
	e	Define intrinsic stand-off ratio of UJT.	2M
	Ans:	Intrinsic standoff ratio: It is defined as the ratio of the $R_{B 1}$ (base resistance 1) to the inter-base resistance $R_{B B}$. $\Pi=\frac{R_{B 1}}{R_{B B}}=\frac{R_{B 1}}{R_{B_{1}}+R_{B 2}}$	(Definition :1M, Equation :1M)
	f	State the need of voltage regulator.	2M
	Ans:	NEED OF VOLTAGE REGULATORS:- DC voltage obtained by using rectifier and filter is not constant and may vary depending upon supply variations. This DC voltage may result in an error or may damage other electronic devices or circuits e.g. 1. In oscillators it may lead to phase shift. 2. In amplifiers it may lead to change in voltage gain or power gain.	2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

	3. It may lead to calibration error in measuring instruments. 4. It may produce distortions in output of audio and video amplifiers. Hence to avoid these errors DC voltage regulators are necessary to keep the output DC voltage constant.	
g	Define efficiency of power amplifier.	2M
Ans:	Definition:- Efficiency of power amplifier is defined as the ratio of r.m.s. output power dissipated in the load to the total DC power taken from the supply source. Formula:- $\eta \%=\frac{P_{\mathrm{OUT}}}{\mathrm{P}_{\mathrm{DC}}} \times 100$ Where: $\eta \%$ - is the efficiency of the amplifier. Pout - is the amplifiers output power delivered to the load. Pdc - is the DC power taken from the supply.	$\begin{aligned} & \hline 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
h	State the condition for sustained oscillations.	2M
Ans:	Conditions for sustained oscillations:- 1. The total shift introduced, as the signal proceeds from input terminals through the amplifier and feedback network \& back again to the input is precisely 0° or 360°. 2. The magnitude of the loop gain $A_{v \beta}$ must be equal to 1 at the frequency of oscillations. $\left\|A_{v} \beta\right\|=1 \& \theta=0^{\circ} \text { or } 360^{\circ} .$	1M each
B	Attempt any TWO:	8- Total Marks
a	Draw the circuit diagram for Common Base (CB) configuration and draw its input and output characteristics.	4M
Ans:	Circuit diagram for Common Base (CB) configuration:-	2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

SUMMER- 18 EXAMINATION

		When input voltage is decreased, the input current gets reduced, as a result of this Iz also decreases. The voltage drop across Rs will be reduced and thus the load voltage V_{L} equal to V_{z} and load current (I_{L}) remains constant. Part II: REGULATION BY VARYING LOAD RESISTANCE:- In this method the input voltage is kept constant whereas load resistance R_{L} is varied. Case 1:- WHEN LOAD RESISTANCE IS INCREASED When load resistance is increased, the load current reduces, due to which the zener current I_{z} increases. Thus the value of input current and voltage drop across series resistance is kept constant. Hence the load voltage remains constant. Case 2:- WHEN LOAD RESISTANCE IS REDUCED When load resistance is decreased, the load current increases. This leads to decrease in Iz . Because of this the input current and the voltage drop across series resistance remains constant. Hence the load voltage is also kept constant.	1M diagram, 1M Explanation

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

		Answers	Marking Scheme
2		Attempt any FOUR:	16- Total Marks
	a	Describe the concept of thermal runaway. How it should be avoided?	4M
		Concept of thermal Runaway:- We know that $I_{C}=\beta I_{B}+(1+\beta)$. $I_{c o}$, where $I_{c o}$ is the leakage current. Ico is strongly dependent on temperature. The flow of collector current produces heat within the transistor. This raises the transistor temperature. If no stabilization is done, Ico further increases. If Ico increases, Ic increases by $(1+\beta)$. Ico The increased I_{c} will raise the temperature of the transistor which in-turn will increase the $I_{c o}$. This effect is cumulative and in a fraction of a second Ic becomes so large causing transistor to burn up. This self-destruction of an unstabilized transistor is known as Thermal Runaway. Thermal Runaway can be avoided : 1. By keeping I_{C} constant. This is done by causing I_{B} to decrease automatically with temperature increase. 2. By using heat sink.	3M

b	Draw the circuit diagram of two stage RC coupled amplifier. Draw its frequency response.	4M
Ans	Circuit diagram of two stage RC coupled amplifier:- Frequency response:-	2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

	C	Explain the working of \mathbf{N}-channel JFET with neat diagram.	4M
	Ans	N-Channel JFET:- (a) (b) Working: 1. The application of negative gate voltage or positive drain voltage with respect to source, reverse biases the gate- source junction of an N-channel JFET. The effect of reverse bias voltage is to form depletion regions within the channel. 2. When a voltage is applied between the drain \& source with dc supply voltage ($V_{D D}$), the electrons flows from source to drain through the narrow channel existing between the depletion regions. This constitutes the drain current (I_{D}) \& its conventional direction is from drain to source. The value of drain current is maximum, when no external voltage is applied between the gate $\&$ source $\&$ is designated by the symbol Idss. 3. When $V_{G G}$ is increased, the reverse bias voltage across gate-source junction is increased. As a result of this depletion regions are widened. This reduces the effective width of the channel \& therefore controls the flow of drain current through the channel. 4. When gate to source voltage $\left(\mathrm{V}_{\mathrm{GG}}\right)$ is increased further, a stage is reached at which both depletion regions touch each other as shown in fig (b). 5. At this value of $V_{G G}$, channel is completely blocked or pinched off $\&$ drain current is reduced to zero. The value of $\mathrm{V}_{G S}$ at which drain current becomes zero is called pinch	2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

Ans $:$	Circuit diagram and input-output waveform:- Working principle: - 1. When the supply voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$ is switched ON , the capacitor charges through resistor (R), till the capacitor voltage reaches the voltage level (V_{P}) which is called peak point voltage. At this voltage the UJT turns ON. 2. As a result of this, the capacitor (C) discharges rapidly through resistor $\left(R_{1}\right)$. When the capacitor voltage drops to level Vv (called valley- point voltage) the uni-junction transistor switches OFF allowing the capacitor (C) to charge again. 3. In this way because of the charging and discharging of capacitor, an exponential sweep voltage will be obtained at the emitter terminal of UJT. 4. The voltage developed at base $1\left(\mathrm{~V}_{\mathrm{B} 1}\right)$ terminal is in the form of narrow pulses commonly known as trigger pulses. 5. The sweep period depends upon time constant (RC) and the sweep frequency can be varied by changing value of either resistance (R) or capacitor (C). Due to this fact, the resistor R is shown as a variable resistor. The sweep period is given by the relation $\begin{gathered} T=\text { R.C. } \log _{e}(1 / 1-\eta) \\ T=2.3 \text { R.C. } \log _{10}(1 / 1-\eta) \end{gathered}$	1M each
f	Draw and explain transistorized series regulator.	4M
Ans	Transistorized Series Voltage regulator:	2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

		WORKING:- In above figure, transistor is connected in series with load, therefore the circuit is known as a series regulator. The transistor behaves as variable resistance whose value is determined by the amount of base current. $V_{L}=V_{Z}-V_{B E}$ (OR) $V_{B E}=V_{Z}-V_{L}$ \qquad Equation 1 Suppose that value of load resistance is increased. Because of this, the load current decreases and load voltage (V_{L}) tend to increase. From equation (1) that any increase in V_{L} will decrease $V_{B E}$ because V_{Z} value is fixed. As a result of this, forward bias of the transistor is reduced. This reduces its level of conduction. This increases $\mathrm{V}_{\text {CE }}$ of transistor which will slightly decrease the input current for the increase in the value of load resistance so that load voltage remains constant. If the output voltage decreases, then exactly opposite action will take place and output voltage is regulated. The output of a transistor series regulator is approximately equal to zener voltage $\left(\mathrm{V}_{\mathrm{z}}\right)$ This regulator can also be used for larger load currents.	2M
$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
3		Attempt any FOUR:	16- Total Marks
	a	Compare CB, CE and CC configuration on the basis of, (i) Input Impedance (Ri) (ii) Output Impedance (Ro) (iii) Voltage gain (Av) (iv) Current gain (Ai)	4M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

Ans	Parameter	Common Base	Common Emitter	Common Collector	1 M each (numerical values for parameters are optional)
	Input Impedance	Low (50 Ohm)	Moderate (1 KOhm)	High (300 KOhm)	
	Output Impedance	High (1 M Ohm)	Moderate (50 K)	Low (300 Ohm)	
	Voltage Gain	High	Higher than CB	Less than Unity	
	Current Gain	Less than Unity	High	Very High	
b	Draw the circuit diagram of self-bias method of JFET and describe its working.				4M
Ans	Self Biasing Method The self-bia configuration elimina JFET must be operat requires a negative V above - The resisto it and therefore gate amplifier application From above diagram \therefore voltage across $\mathrm{R}_{\mathrm{S}}=$ $\therefore \mathrm{V}_{\mathrm{S}}=\mathrm{I}_{\mathrm{D}} . \mathrm{R}_{\mathrm{S}} .$ $=0-I_{D} \cdot R_{S}$	figuration for FE the need of two \square uch that the gate r n channel JFET. does not affect t ains at $O V . R_{G}$ is n $I_{D} \& V_{G}=0$ $=I_{S} \cdot R_{S}=I_{D} \cdot R_{S}$ $V_{G}-V_{S}$	uivalent circuit) is as er supplies. junction is always rev be achieved using because it has esse ry only to isolate an	wn in fig. This biased. This condition elf bias arrangement as no voltage drop across nal from ground in	Diagram-2M Working-2M

$$
V_{G S}=-I_{D} \cdot R_{S}
$$

From Shockley's equation the drain current is:
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\text {DSS }}\left[1-\frac{V_{G S}}{V_{G S(\text { off })}}\right]^{2}$
Substitute the value of $V_{G S}=-I_{D} . R_{S}$

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left[1-\frac{I_{D} \cdot R_{S}}{V_{G S(o f f)}}\right]^{2}
$$

$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left[1+\frac{I_{D} R_{S}}{V_{G S(\text { off })}}\right]^{2}$
The drain voltage with respect to ground is determined as follows -
$V_{D}=V_{D D}-I_{D} R_{D}$
$\mathrm{V}_{\mathrm{S}}=\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}}$
The drain to source voltage is -
$V_{D S}=V_{D}-V_{S}$.
$V_{D S}=\left(V_{D D}-I_{D} R_{D}\right)-I_{D} R_{S}$
$V_{D S}=V_{D D}-I_{D} R_{D}-I_{D} R_{S}$

Q point of self Bias circuit is located as -
$V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$
$V_{G S}=-I_{D} R_{S}$
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DS}}\left[1+\frac{I_{D} R_{S}}{V_{G S(o f f)}}\right]^{2}$
$V_{D S}=V_{D D}-I_{D} R_{D}-I_{D} R_{S}$

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

c	Draw the circuit diagram of double tuned amplifier and describe its working.	4M
Ans :	Circuit diagram:- Working:- When a signal containing many frequencies is applied at the input, the frequency corresponding to the resonant freq. of tuned circuit comprising of $C_{1} \& L_{1}$ is selected, and other frequencies are rejected. The tuned circuit offers very high impedance to this signal frequency. Amplified output appears across the tuned circuit $\mathrm{L}_{1} \mathrm{C}_{1}$. The output from this tuned circuit is transferred to the second tuned circuit $\mathrm{L}_{2} \mathrm{C}_{2}$ through mutual induction .Frequency response of doubled tuned circuit depends upon the magnetic coupling of L_{1} \& L_{2}. A frequency response curve of a typical doubled tuned circuit at different coupling condition is shown - From above it is seen that most suitable curve is one when optimum coefficient of coupling exists between the tuned circuits. In this condition, the circuit is highly selective \& also provides sufficient amount of gain for a particular band of freq. Thus by adjusting coupling between two coils the required result can be obtained.	Diagram-2M Working-2M

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer
Subject Code: 17319

SUMMER- 18 EXAMINATION

Subject Name: Electronic Devices \& Circuits Model Answer

		negative. Therefore Q_{1} conducts (ON) and Q_{2} is OFF When negative half cycle is applied across input, the base of Q_{1} becomes negative and the base of Q_{2} is positive. Therefore Q_{1} is OFF and Q_{2} conducts. only $i_{c 2}$ flows and $i_{c 1}=0$. A negative sinusoidal voltage will appear across load. Thus at any instant only one transistor will conduct. When Q_{1} conducts, only ic_{1} flows and $\mathrm{ic}_{2}=0$. A positive sinusoidal voltage will appear across load.	
$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	Sub Q. N .	Answers	Marking Scheme
4		Attempt any FOUR:	12- Total Marks
	a	Define α and β of the transistor. Derive the relationship between α and β.	4M
	Ans	Alpha (α) :It is a large signal current gain in common base configuration. It is the ratio of collector current (output current) to the emitter current (input current). Beta (β):It is a current gain in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). Relation between $\alpha \& \beta$: Current gain $(\boldsymbol{\alpha})$ of CB configuration $=\frac{I_{C}}{I_{E}}$ Current gain of $(\boldsymbol{\beta})$ of CE configuration $=\frac{I_{C}}{I_{B}}$ We know that ; $\begin{equation*} \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} . \tag{1} \end{equation*}$ Dividing equation (1) by I_{C} $\frac{I_{E}}{I_{C}}=\frac{I_{B}}{I_{C}}+\frac{I_{C}}{I_{C}}$ Therefore $\frac{1}{\alpha}=\frac{1}{\beta}+1$ $\left[\right.$ since $\left.\boldsymbol{\alpha}=\frac{I_{C}}{I_{E}}, \boldsymbol{\beta}=\frac{I_{C}}{I_{B}}\right]$ Therefore $\frac{1}{\alpha}=\frac{1+\beta}{\beta}$ $\begin{aligned} & \alpha(1+\beta)=\beta \\ & \alpha+\alpha \beta=\beta \\ & \alpha=\beta-\alpha \beta \\ & \alpha=\beta(1-\alpha) \end{aligned}$	Definition α and $\beta-1 \mathrm{M}$ each Derivation2M

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Electronic Devices \& Circuits Model Answer

	The gate to source voltage is set to zero volts by the direct connection from one terminal to the other. \& voltage $\mathrm{V}_{\text {DS }}$ is applied across the drain to source terminals. This results the attraction by the free electrons of the n channel due to positive drain \& loss establish in the circuit. For negative voltage at gate, the gate will tend to repel free electrons towards P type substrate and attract holes toward insulated layer. Recombination occurs between electron \& holes that will reduce the number of free electron in the channel for conduction. So drain current reduces. The value of voltage of $V_{\text {GS }}$ at which drain current nearly becomes zero is called cut off voltage. When gate is positive with respect to source then positive $\mathrm{V}_{G S}$ draws additional electrons from the P type substrate. Thus drain current (o) increases as increase in positive value.	
d	Draw and explain transistor as a switch with neat input and output waveforms.	4M
Ans	When a sufficient voltage ($\mathrm{Vin}>0.7 \mathrm{~V}$) is applied between the base and emitter, collector to emitter voltage is approximately equal to 0 . Therefore, the transistor acts as a short circuit. The collector current Vcc/Rc flows through the transistor. Therefore switch is ON. Similarly, when no voltage or zero voltage is applied at the input, transistor operates in cutoff region and acts as an open circuit. Therefore switch is OFF. Waveform:	Diagram-1 Explanation- 2M Waveform- 1M

e	In UJT sweep circuit, calculate time period and frequency of oscillation if $\eta=0.65$ and $R=$ $2 \mathrm{k} \Omega$	4M
Ans	$\begin{aligned} & t=2.3 R C \log _{10}\left(\frac{1}{1-\eta}\right) \\ & \text { Assume } C=0.1 \mu F \\ & t=2.3 \times 2 \times 10^{3} \times 0.1 \times 10^{-6} \times \log _{10}\left(\frac{1}{1-0.65}\right) \\ & t=0.2097 \mathrm{~ms} \\ & f=\frac{1}{t} \\ & f=\frac{1}{0.2097 \times 10^{-3}} \\ & f=4.7687 \mathrm{kHz} \end{aligned}$	Time period and frequency of oscillation 2M each (marks may be given if any other value of C is assumed and calculation done accordingly)
f	Draw the block diagram of regulated power supply. State the function of each block.	4M
Ans	Block Diagram of Regulated power supply: Block diagram of a regulated Dc power supply consist of the following blocks namely: 1) Transformer 2)Rectifier 3) Filter 4) Voltage regulator. 1. Transformer:- The AC main voltage is applied to a step down transformer. It reduces the amplitude of ac voltage and applies it to a rectifier. 2. Rectifier: The rectifier is usually centre tapped or bridge type full wave rectifier. It converts the ac voltage into a pulsating dc voltage. 3. Filter: The pulsating dc (or rectified ac) voltage contains large ripple. This voltage is applied to the filter circuit and it removes the ripple. The function of a filter is to remove	Block Diagram-2M Function- 2M

SUMMER- 18 EXAMINATION

Subject Name: Electronic Devices \& Circuits Model Answer
Subject Code:
17319

		the ripples to provide pure DC voltage at its output. This DC output voltage is not a steady DC voltage but it changes with the change in load current. It has poor load and line regulation. The voltage obtained is unregulated DC voltage. 4. Voltage Regulator: The unregulated DC voltage is applied to a voltage regulator which makes this DC voltage steady and independent of variation in load and mains AC voltage .This improves the load and line regulation and provides the regulated DC voltage across the load.	
$\begin{aligned} & \hline \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
5		Attempt any FOUR:	16- Total Marks
	a	Explain the concept of dc load line analysis.	4M
	Ans	Concept of DC load line:- For proper operation of a transistor a fixed level of certain currents and voltage in a transistor are set. These values of current and voltage define the point at which the transistor operates. This point is called operating point. It is also known as quiescent point or simply Q-point. Consider the transistor circuit shown in the figure above for this circuit we know that the value of collector current is given by the relation. $I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}} \ldots E q u a t i o n ~(i) ~$	1 Mark for Concept 2 Mark for Explanation

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

Where,
$V_{C C}=$ The value of DC supply voltage in the collector circuit.
$\mathrm{V}_{\mathrm{CE}}=$ The value of collector to emitter, and
$\mathrm{Rc}=$ The Value of collector resistance
The value of collector to emitter voltage (V_{CE}) at saturation point, is very small as compared to $\mathrm{V}_{c c}$ supply. Therefore the collector current at saturation point is

$$
I_{C}=\frac{V_{C C}}{R_{C}} \ldots \ldots \text { Equation(ii) }
$$

The value of collector current at saturation point designated as $\mathrm{I}_{\text {(sat) }}$ may be obtained by dividing the value of V_{cc} supply by the value of collector resistance R_{c}. This value gives us upper end of the load line as shown in the figure.

1 Mark for Load line

At cut off point, the value of collector current is zero.
substituting $\mathrm{I}_{\mathrm{C}}=0$ in equation(i)

$$
0=\frac{V_{C C}-V_{C E}}{R_{C}}
$$

(OR)

$$
V_{C E}=V_{C C}=V_{C E(\text { cut off).............Equation (iii) }}
$$

Equation (iii) gives us the lower end of the load line as shown in the above figure.

The region lying in between saturation and cutoff points of the load line is called active region of the transistor operation. Equation (i),(lii) are the Q point coordinates of DC load line.

b	Draw the circuit diagram of single stage CE amplifier. State the function of each component.	4M
Ans	Single stage CE amplifier Circuit diagram: (OR) Function of each component: - The potential divider biasing is provided by resistors R_{1}, R_{2} and R_{E}. It provides good stabilization of the operating point. - The capacitors C_{1} and C_{2} are called the coupling capacitors and are used to pass the AC voltage signals from one side to the other. At the same time , they do not allow the dc voltage to pass through .Hence they are also known as blocking	2 Marks for any Circuit diagram 2 Marks for Function of each component

	capacitors. - The capacitor C_{E} works as a bypass capacitor. It bypasses all the AC currents from the emitter to the ground and avoids the negative current feedback. It increases the output AC voltage. - The resistance R_{L} represents the resistance of whatever is connected at the output. It may be load resistance or input resistance of the next stage.	
c	Draw drain characteristics of JFET and explain ohmic and pinch-off region.	4M
Ans	Drain characteristics of JFET : Ohmic Region : This regions is shown as a curve OA in the figure. In this region, the drain current increases linearly with the increase in drain-to-source voltage, obeying Ohm's law. The linear increase in drain current is due to the fact that N -type semiconductor bar acts like a simple resistor. Pinch off region: This regions is shown by the curve BC . It is also called saturation region or constant current region. This means the drain current remains constant at its maximum value (i.e. IDss). The drain current in the pinch off region, depends upon the gate-to-source voltage and is given by the relation	2 Marks for Drain characteristic 2 Marks for explanation of regions

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{p}}\right)^{2}
$$

The above relation is known as Shockley's equation. The pinch off region is the normal operating region of JFET, when used as an amplifier.
d Draw common source FET amplifier and describe its operation.

4M
Ans Common source FET amplifier Circuit Diagram:

Operation of Common source FET amplifier:
When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage. This results in variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (R_{D}) also increases. This causes the drain voltage to decrease. It means positive half cycle of the input voltage produces the negative half cycle of the output voltage. (ie.) the output voltage is 180° out of phase with the input voltage.
e Construct the circuit diagram of DC regulated power supply for $\pm 12 \mathrm{~V}$ using IC 78XX and IC 79XX.

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer
Subject Code: 17319

"Ans		4 Marks
f	Draw Bootstrap amplifier and describe its working.	4M
Ans	Bootstrap amplifier: Here transistor Q_{1} acts as a switch and transistor Q_{2} acts as an emitter follower (i.e. a unit gain amplifier). Circuit Operation:	2 Marks for diagram 2 Marks for working

		Initially transistor Q_{1} is ON and Q_{2} is OFF . Therefore capacitor C_{1} is charged to V_{cc} through the diode forward resistance (R_{F}). At this instance output voltage is zero. When negative pulse is applied to the base of transistor Q_{1}, it turns OFF. Since transistor Q_{2} is an emitter follower, therefore the output voltage V_{0} is same as base voltage of transistor Q_{2}. When Q_{1} turns OFF, the capacitor C_{1} starts charging capacitor C through resistor (R). As a result of these both the base voltage of Q_{2} and output voltage begins to increase from zero. As the output voltage increases diode D becomes reverse biased, because of the fact that the output voltage is coupled through the capacitor $\left(C_{1}\right)$ to the diode. Since the value of capacitor $\left(C_{1}\right)$ is much larger than that of capacitor (C), the voltage across capacitor $\left(C_{1}\right)$ practically remains constant. Thus voltage drop across resistor (R) and hence current (IR) remains constant, means capacitor C is charged with constant current. This causes voltage across capacitor C (and hence the output voltage) to increase linearly with time. The circuit pulls itself up by its own bootstrap and hence it is known as bootstrap sweep circuit.					
Q. No	Sub Q. N.			Answers			Marking Scheme
6		Attempt	any FOUR:				16- Total Marks
	a	Compare	RC couple	t coupled and transfor	mer coupled amp		4M
	Ans	Sr.No 1	Particulars Frequency Response	RC coupled Excellent in the audio frequency range	Direct coupled Best	Transformer coupled Poor	4Marks (any four points each carry one mark)

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

	6. Input and output resistance can be modified as desired. 7. Less phase distortion	
C	Define the terms Line and Load regulation.	4M
Ans	Line Regulation: The line regulation rating of a voltage regulator indicates the change in output voltage that will occur per unit change in the input voltage. Mathematically, Line Regulation $=\frac{\Delta V_{L}}{\Delta V_{S}}$ Where $\Delta V_{L}=$ the change in output voltage and $\Delta V_{S}=$ the change in input voltage Load Regulation: The load regulation indicates the change in output voltage that will occur per unit change in load current. Mathematically, Load Regulation $=\frac{V_{N L}-V_{F L}}{\Delta I_{L}}$ Where $\mathrm{V}_{\mathrm{NL}}=$ No load output voltage $\mathrm{V}_{\mathrm{FL}}=$ Full load output voltage $\Delta I_{L}=$ Change in load current demand	2 Marks for Line regulation 2 Marks for Load regulation
d	Draw I-V characteristics of UJT and label different regions on it.	4M
Ans		2 Marks for Characteristic

		S 2 Marks for labeling
e	Draw the circuit diagram of fixed bias circuit. Write its working.	4M
Ans	Applying KVL for the given loop $I_{B} . R_{B}+V_{B E}-V_{C C}=0$ or the base current,	2 Marks for Diagram 2 Marks for working

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

	$I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \ldots \text { Equation (i) }$ Since the supply voltage V_{CC} and the base emitter voltage V_{BE} have fixed values of voltage, the selection of base bias resistor R_{B} fixes the value of base current. Thus the equation (i) may be simplified as $I_{B}=\frac{V_{C C}}{R_{B}} \ldots\left(\text { Since } \mathrm{V}_{\mathrm{cc}} \text { is much greater than } \mathrm{V}_{\mathrm{BE}}\right)$ Now consider the collector emitter circuit loop in the base bias circuit and applying the KVL for this loop, $\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}$ $V_{C E}=V_{C C}-I_{C} . R_{c ~ E q u a t i o n ~(i i) ~}^{\text {in }}$ The above equation gives the voltage drop across the collector emitter terminals of the transistor. The value of collector current is given by $I_{C}=\beta \cdot \frac{V_{C C}}{R_{B}}=\frac{V_{C C}}{R_{B} / \beta} \ldots \ldots . . . \text { Equation (iii) }$ From above, collector current IC is β times greater than base current and is not dependent on resistance of collector circuit (RC). $I_{C E}$ and $V_{C E}$ are dependent on β. But β is dependent on temperature. It is impossible to obtain a stable ' Q ' point in a fixed bias circuit. Because of this fact, base bias is never used in amplifier circuit.			
f	Compar	BJT and FET (any four points)		4M
Ans	Sr.No 1	Bipolar Junction Transistor(BJT) It is bipolar device i.e. current in the device is carried either by both electrons \& holes	Field Effect Transistor(FET) It is unipolar device i.e. current in the device is carried either by electrons or holes	4 Marks for any four points

SUMMER- 18 EXAMINATION
Subject Name: Electronic Devices \& Circuits Model Answer

