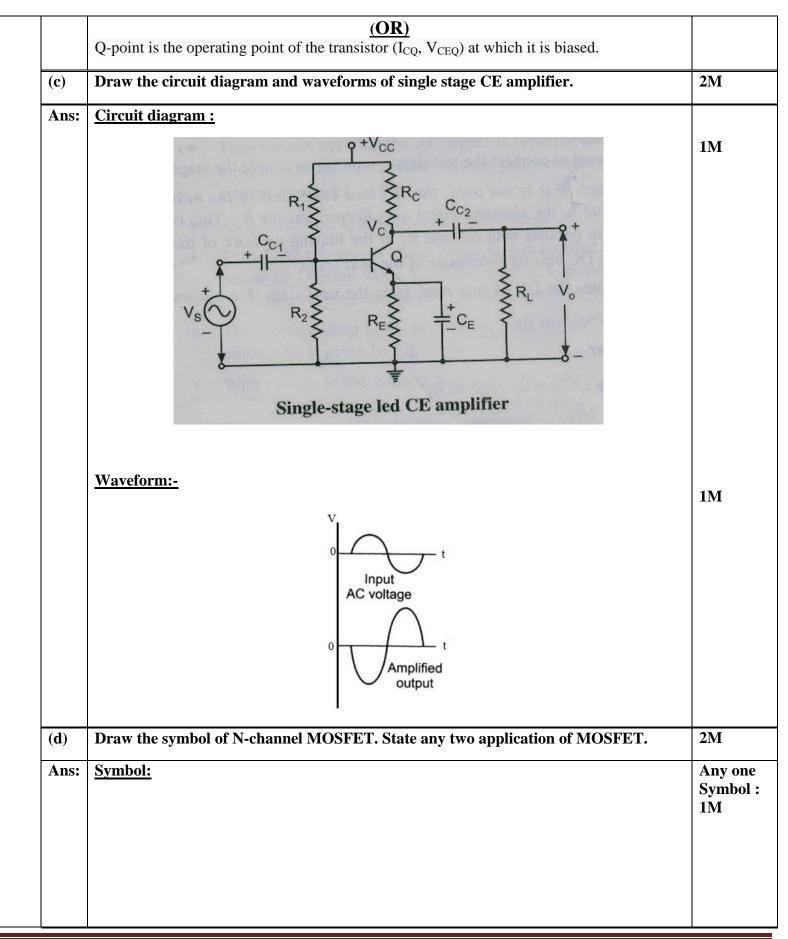


MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Code:

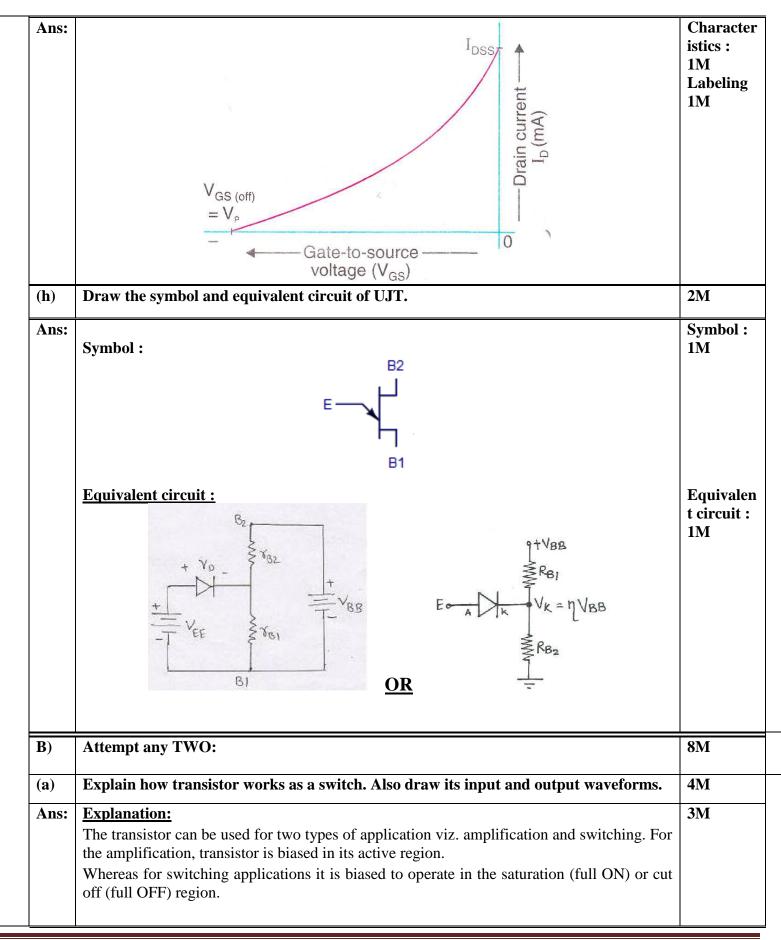
1	7	2	1	\cap
	1	~		Ч
		-		-

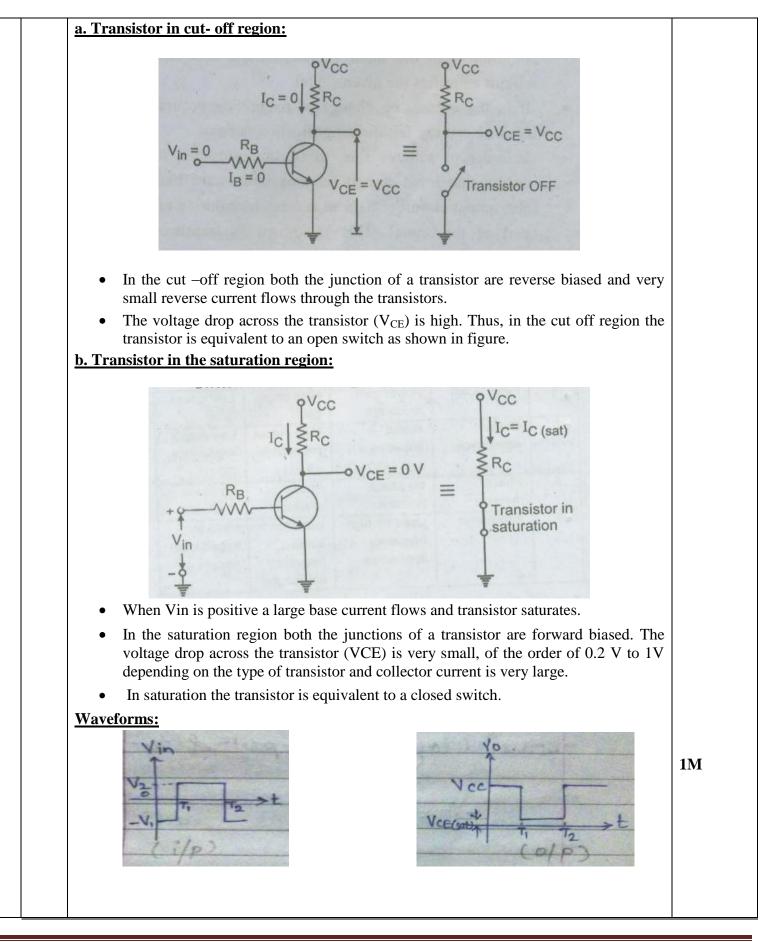

Subject Title: Electronics Devices and Circuits.

Important Instructions to examiners:

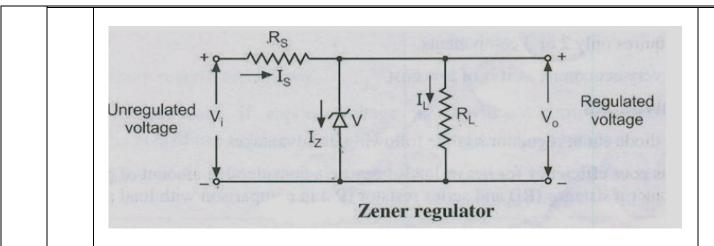
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	(A)	Attempt any SIX:	12-Total Marks
	(a)	What is transistor? State any two applications of transistor.	2M
	Ans:	The two PN - junction formed by sandwiching either p- type or n- type semiconductor between a pair of opposite types is known as transistor. (OR) A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. (OR) An electronic device that can work as an amplifier, transforming weak electrical signals into strong ones. It is normally made from silicon or other semiconductors. Two applications of transistor are: 1. As a switch 2. As an amplifier 3. As a multivibrator 4. As an oscillator etc.	Any relevant correct definition : 1M Applicati on (any two) :1M
	(b)	Define operating point (Q) of the transistor as an amplifier.	2M
	Ans:	<u>O</u> point: For proper operation of transistor in any application, we set fixed levels of voltage (V_{CEQ}) & current (I_{CQ}) in a transistor. These values of current & voltage define the point at which transistor operates. This point is called operating point. It is also known as quiescent point or Q point.	Definition : 2M





	N-channel D-MOSFET N-channel E-MOSFET	
	Applications of MOSFET:	
	 Used as a switch. Used in radio systems. Used in audio frequency power amplifiers. 	Applicati on (any two): 1M
(e)	Define tuned amplifier. State types of resonant circuit.	2M
Ans:	Definition : An amplifier which amplifies a specified frequency (or a narrow band of frequencies) is called a tuned amplifier.	Definition : 1M
	 <u>Types of resonant circuit:</u> 1. Series resonant circuit. 2. Parallel resonant circuit. 	Types :1M
(f)	What is cross-over distortion?	2M
Ans:	Definition :	2M
	When the signal changes or "crosses-over" from one transistor to the other at the zero voltage point it produces an amount of "distortion" to the output wave shape. These results in a condition that is commonly called Crossover Distortion.	



	OR	
	$\frac{V_{IN}}{+V_{max}}$	
(b)	Explain the concept of DC load line and operating point for biasing circuit.	4M
Ans:	$\label{eq:DC-load-line:} \frac{\text{DC-load-line:}}{\text{The DC word indicates that this line is drawn under the dc operating conditions without any ac signal at the input.} And the word load line is used because the slope of this line is -1/R_C where R_C is the load resistance.$	D.C load line : 1M
	 Operating Point : It is the point on the load line which represents the dc current through a transistor (I_{CQ}) and the voltage across it (V_{CEQ}) when no ac signal is applied. The dc load line is a set of infinite number of such operating points and the user or designer can choose any point on the dc load as the operating point. The position of operating point on the load line is dependent on the application of the transistor. The factors affecting the stability of Q-point are: Changes in temperature 2. Changes in the value of β dc . 	Explana on : 2M
	$I_{C} (mA)$ $I_{C} max = \frac{V_{CC}}{R_{C}}$ $Active region$ $I_{B4} = 40 \mu A$ $I_{B3} = 30 \mu A$ $I_{B2} = 20 \mu A$ $I_{B1} = 10 \mu A$ $I_{B} = 0 \mu A$ V_{CE0} V_{CE0} $V_{CE} volts$	1M
(c)	Cutoff region *CE - *CC Describe the action of zener voltage regulator with neat diagram. Write any two	4M
	limitations of unregulated power supply.	
Ans:	Circuit Diagram:	1M

<u>Working :</u>

- For proper operation, the input voltage V_i must be greater than the Zener voltage Vz. This ensures that the Zener diode operates in the reverse breakdown condition. The unregulated input voltage V_i is applied to the Zener diode.
- Suppose this input voltage exceeds the Zener voltage. This voltage operates the Zener diode in reverse breakdown region and maintains a constant voltage, i.e. Vz = Vo across the load inspite of input AC voltage fluctuations or load current variations. The input current is given by,

$$\mathbf{I}_{S} = \mathbf{V}_{i} - \mathbf{V}_{z} / \mathbf{R}s = \mathbf{V}_{i} - \mathbf{V}_{o} / \mathbf{R}s$$

• The input current I_S the sum of Zener current Iz and load current I_L .

$$I_S = I z + I_L$$

$$OR$$

$$I z = Is - I_L$$

- As the load current increase, the Zener current decreases so that the input current remains constant.
- According to Kirchhoff's voltage law, the output voltage is given by,

$$Vo = Vi - Is. Rs$$

- As the input current is constant, the output voltage remains constant, the reverse would be true, if the load current decreases. This circuit is also correct for the changes in input voltage.
- As the input voltage increases, more Zener current will flow through the Zener diode. This increases the input voltage Is, and also the voltage drop across the resistor Rs, but the load voltage Vo would remain constant. The reverse would be true, if the decrease in input voltage is not below Zener voltage.
- Thus, a Zener diode acts as a voltage regulator and the fixed voltage is maintained across the load resistor RL.

Limitations of unregulated power supply:

1. Output voltage is affected significantly by changes in mains voltage and changes in load current.

2. As the load current increases or decreases, the output voltage will decrease or increase

2M

		due to the finite output impedance of the supply caused by transformer winding resistance, inductance etc.	
Q 2		Attempt any FOUR:	16M
	(a)	List the types of biasing method of transistor. Explain any one method.	4M
	Ans:	Types of biasing of transistors: 1. Base bias or fixed bias 2. Base bias with emitter feedback. 3. Voltage divider bias Note: Any one method can be considered	1M
		1. <u>Base bias:</u> V_{CC} H_B H_B R_B R_C C + V_{CE}	1M
		Explanation:- The value of collector current is given by the relation. $I_{C} = \beta \frac{V_{CC}}{R_{B}} = \frac{V_{CC}}{R_{B}} \beta$ The above relation shows that the collector current is β times greater than the base current	2M
		The above relation shows that the collector current is β times greater than the base current and is not at all dependent on the resistance of the collector circuit. It may be noted from the equations that the values of collector current (I _C) and collector-to emitter voltage (V _{CE}) are dependent on β . But β is strongly dependent upon temperature. It means that collector current and collector – to emitter voltage of a bias circuit (which sets the Q-points of a transistor) will vary with the change in value β of due to variation in temperature. It means that it is impossible to obtain a stable Q-point in a base –bias circuit. Because of this fact, the base bias is never used in amplifier circuits.	
		OR	

2. Base bias with emitter feedback: (I_c+I_b) +V_{cc} ı₽↑≹ $|\mathbf{I_c}|$ С қ Vce в V_{be} Explanation: This configuration employs negative feedback to prevent thermal runaway and stabilize the operating point. In this biasing, the base resistor $R_{\rm B}$ is connected to the collector instead of connecting it to the DC source Vcc. So any thermal runaway will induce a voltage drop across the $R_{\rm C}$ resistor that will reduce the transistor's base current. Applying KVL $V_{CC} = (I_C + I_B)R_C + V_{CE}$ (1) $V_{CE} = I_B R_B + V_{BE}$ -----(2) $I_{\rm CE} = I_{\rm B} I_{\rm B} + V_{\rm BE} - (2)$ $I_{\rm C} = \beta I_{\rm B} \text{ so from equation (1) \& (2)}$ $I_{\rm B} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B} + (1 + \beta) R_{\rm C}}$ Since, $I_{c} = \beta \left[\frac{V_{cc} - V_{BE}}{R_{B} + (1 + \beta) R_{c}} \right]$ If $R_B \ll R_C$

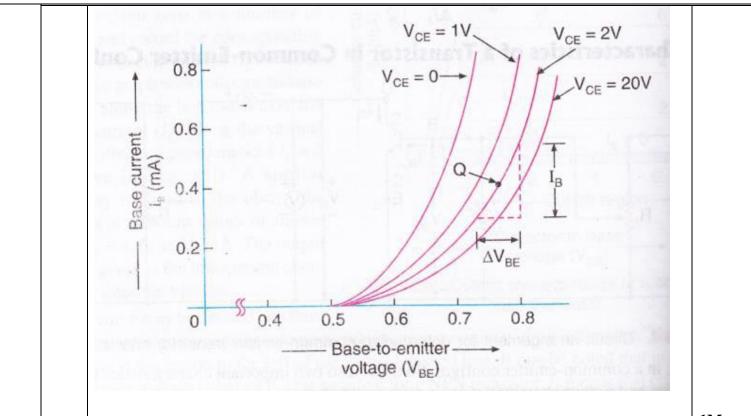
$$I_C = \frac{V_{CC} - V_{BE}}{R_C}$$

<u>3.Voltage divider bias</u>:

1M

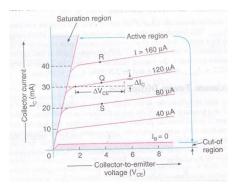
1M

2M



	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array} \end{array} \begin{array}{c} \\ \hline R_{E} \\ & & \\ \end{array} \end{array} \begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array} \end{array} \begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array} \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array} \end{array} \begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array} \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ \hline R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ & & \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ & \\ \end{array}$ $\begin{array}{c} \\ \\ R_{2} \\ & \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \\ \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{2} \end{array}$ $\begin{array}{c} \\\\ R_{$	2M
(b)	What is thermal runaway? How it can be avoided?	4M
Ans:	Concept of thermal runaway: 1.We know that $I_{C} = \beta I_{B} + (1 + \beta). I_{CO}$	2M

	Power dissipation t ICEO t Ict	1M
	<u>Thermal runaway can be avoided by :</u> 1) Using stabilization circuitry 2) Heat sink	1M
(c)	Sketch the drain characteristics of N-channel JFET for various values of V_{GS} . State the condition at which the drain current essentially becomes constant.	4M
Ans:	Drain characteristics of N-channel JFET : $V_{GS} = 0 V$ $V_{GS} = 0 V$ $V_{GS} = 0 V$ $-1 V$ $-2 V$ $-2 V$ $-3 V$ $-4 V$ 0 $1 2 3 4$ Drain to source voltage V _{DS} (V)	2M
	The drain current remains constant at its maximum value i.e. I_{DSS} in the pinch off or saturation region. The drain current in the pinch off region depends upon the gate to source voltage given by $I_D = (1 - \frac{VGS}{VP})^2$	2M
	Draw and explain the input and output characteristics of CE configuration.	4M
(d)		1M

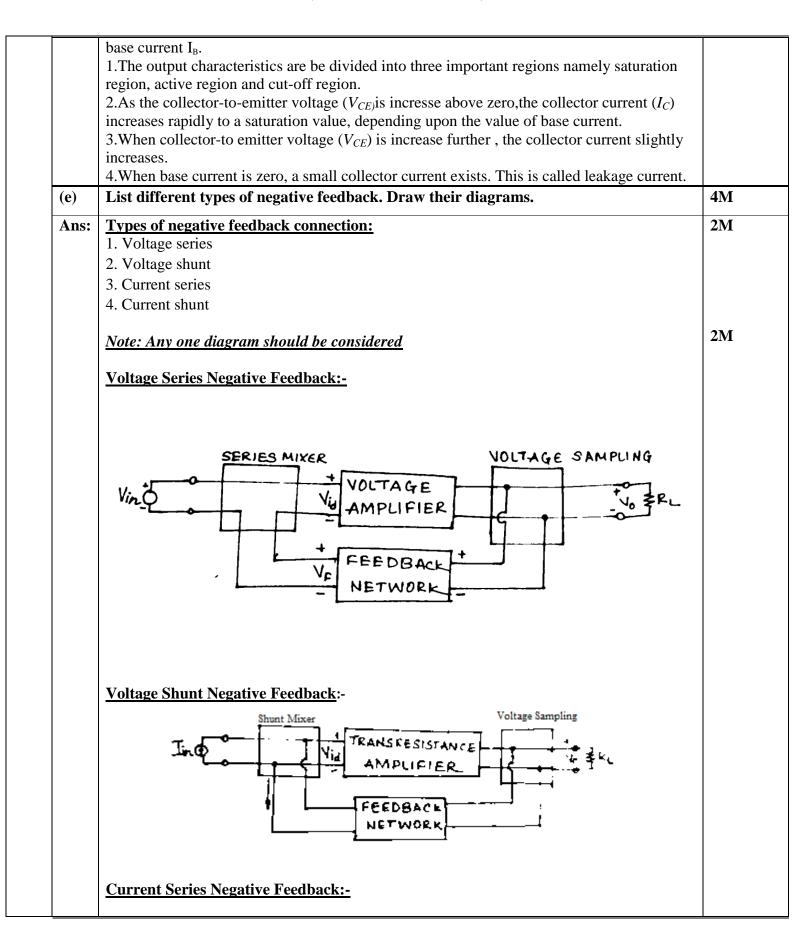


Explanation:

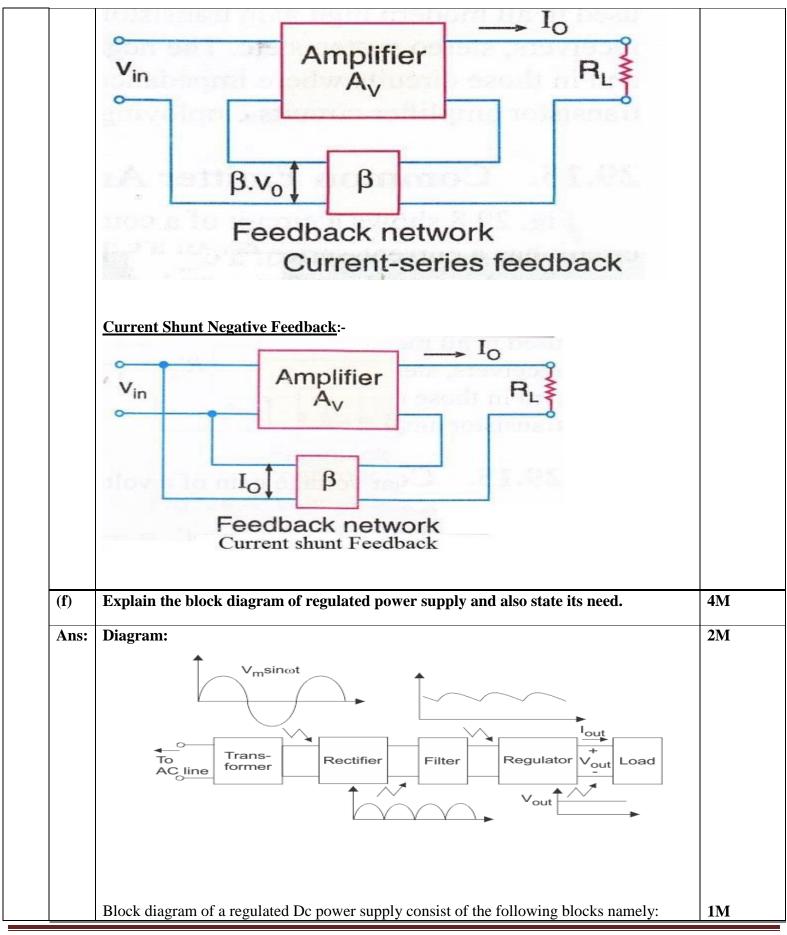
Input Characteristics gives the relationship between the base current I_B and V_{BE} for a constant collector to emitter voltage V_{CE} .

- 1. There exists a threshold or knee voltage(Vk) below which the base current is very small. The value of knee voltage is 0.5V for silicon and 0.1V for germanium transistors.
- 2. Beyond the knee, the base currnt(I_B) increases with the increase (V_{BE}) for a constant V_{CE} .
- 3. As the collector-to-emitter (V_{CE}) is increased above 1 V, the curve shift downwords.

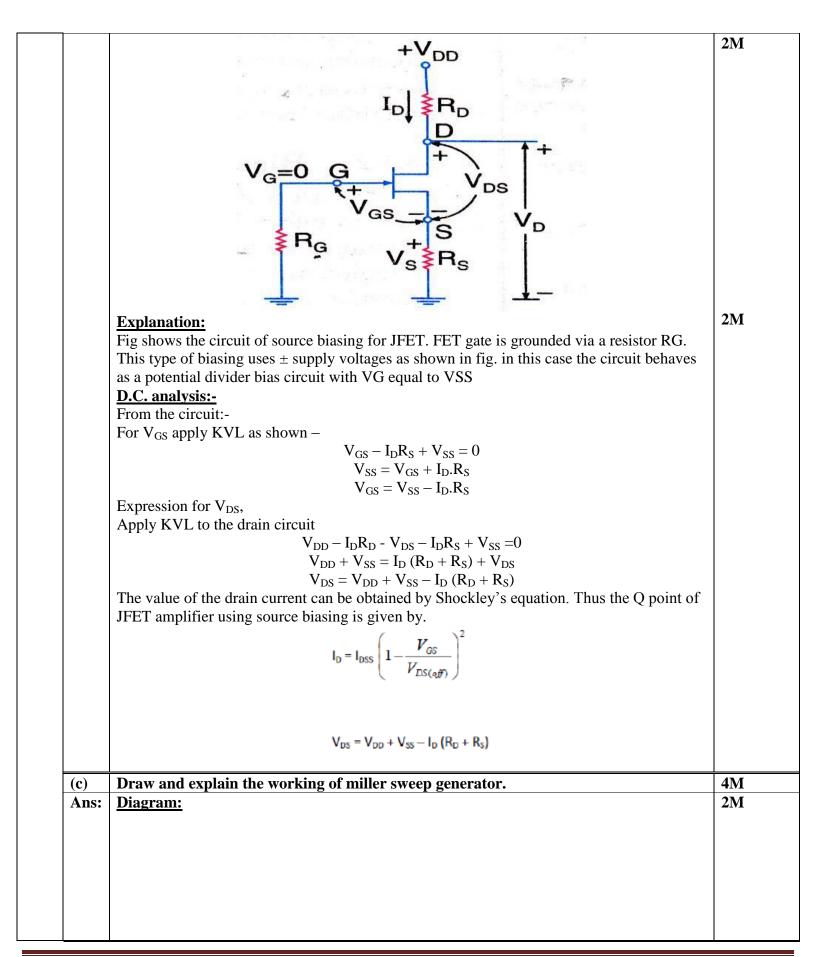
Output Characteristics:



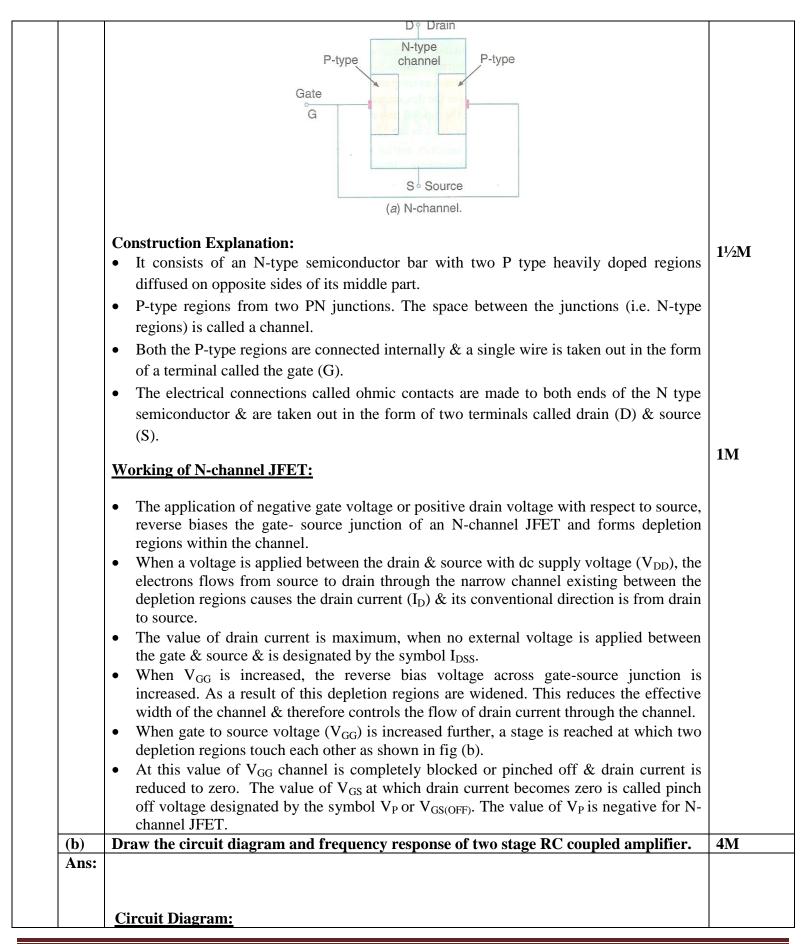
1M


1M

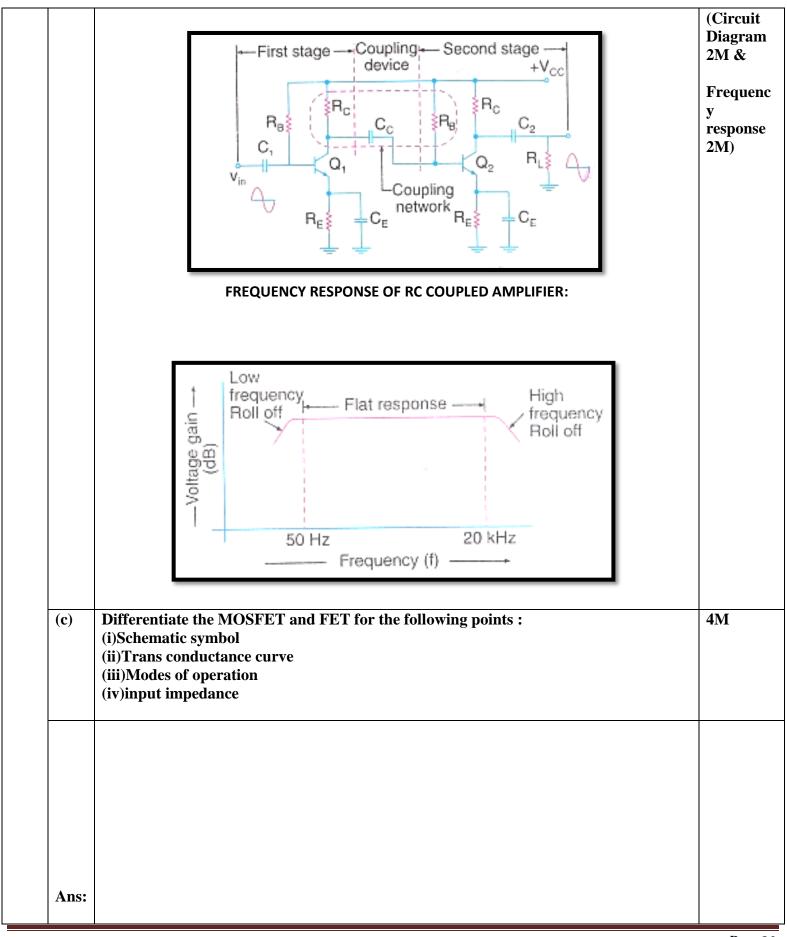
1M



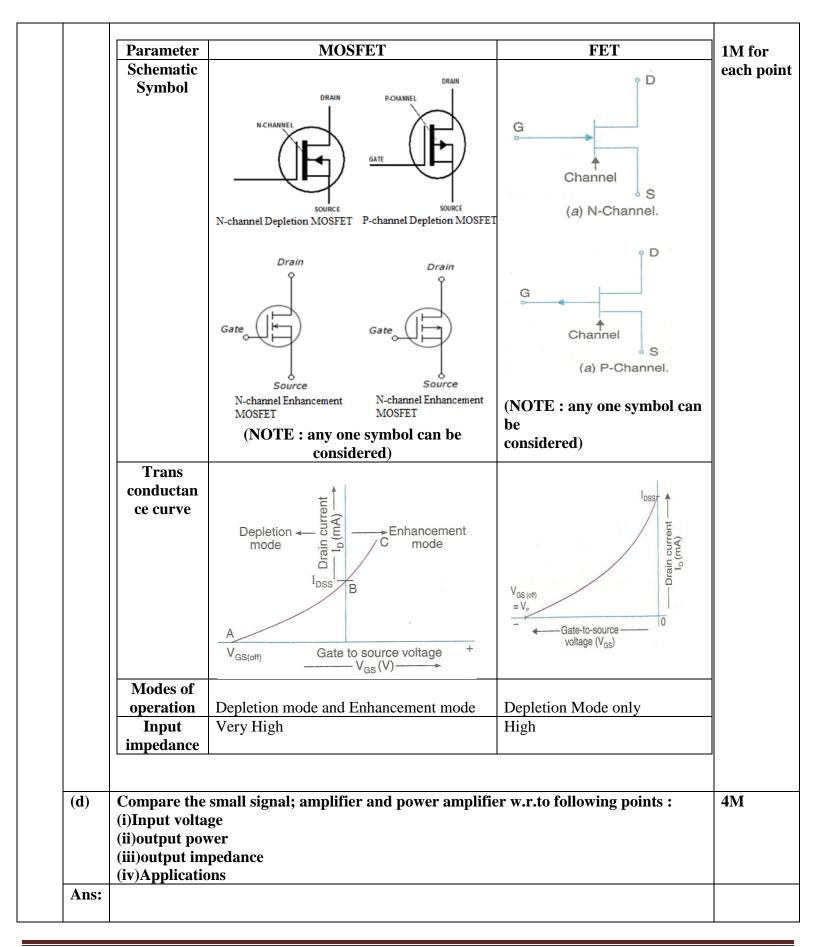
		 the amplitude of ac Rectifier: The rectific converts the ac Volt Filter: The pulsatin applied to the Filter remove the ripples to not a steady DC vol and line regulation. Voltage Regulator: makes this DC <u>Necessity of regulated</u> The major disadvantage variations in the input v similarly, In many elect remain constant regardle 	AC main voltage is voltage and applies i fier is usually Centre tage into a pulsating of g dc (or rectified ac) circuit and it remove to provide pure DC v tage but it changes w The voltage obtained The unregulated DC <u>power supply:</u> of a power supply is roltage or The D.C ou ronic applications, it ess of the variations	tapped or bridge type fu	ll wave rectifier. It pple. This voltage is n of a filter is to DC output voltage is urrent. It has poor load C voltage. voltage regulator changes with the fier also increase t voltage should ad. In order to get	1M
Q. 3		Attempt any FOUR :				16M
	(a)	Compare CB, CC& C	E configurations. (a	ny 4 points)		4M
	Ans:					4M- each point 1M
		Parameters	СВ	CE	CC	point int
		Input Impedance	Low(100Ω)	Low(750Ω)	Very High(750KΩ)	
		Output Impedance	Very High(450KΩ)	$High(45k\Omega)$	$Low(50\Omega)$	
		Current Gain	Less than unity	High (100)	High(100)	
		Voltage Gain	High(About150)	Very high(about 500)	Less than 1	
					·]	
	(b)	With the help of neat	circuit diagram exp	lain the working of self	bias method for FET.	4M
	Ans:	Diagram:				

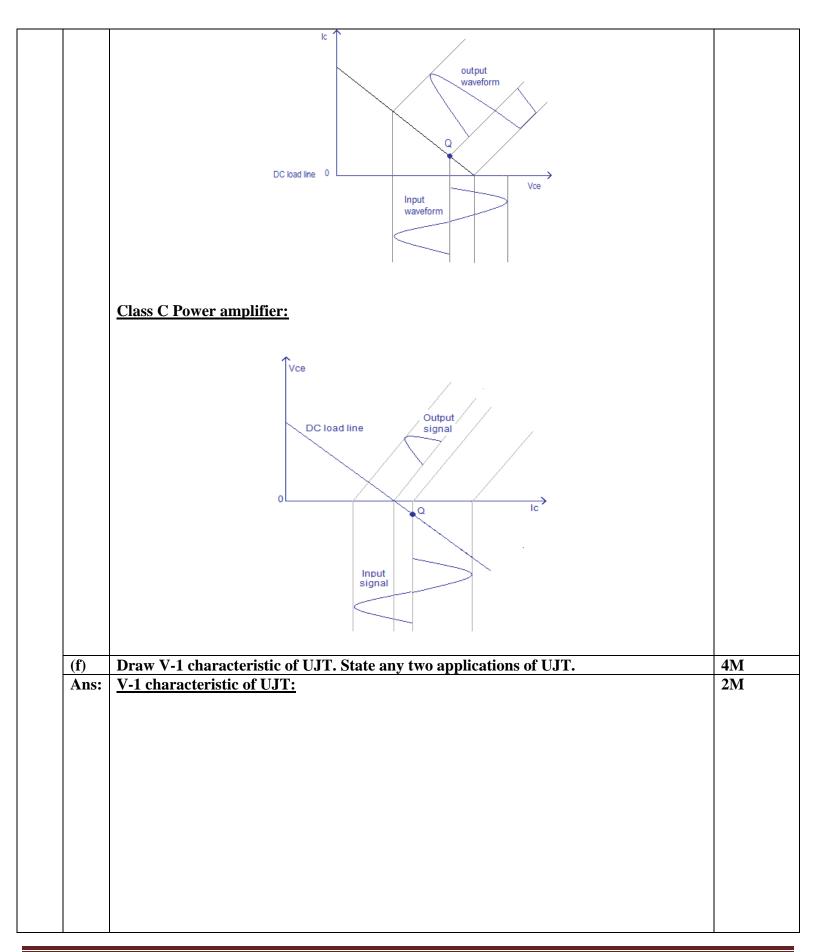


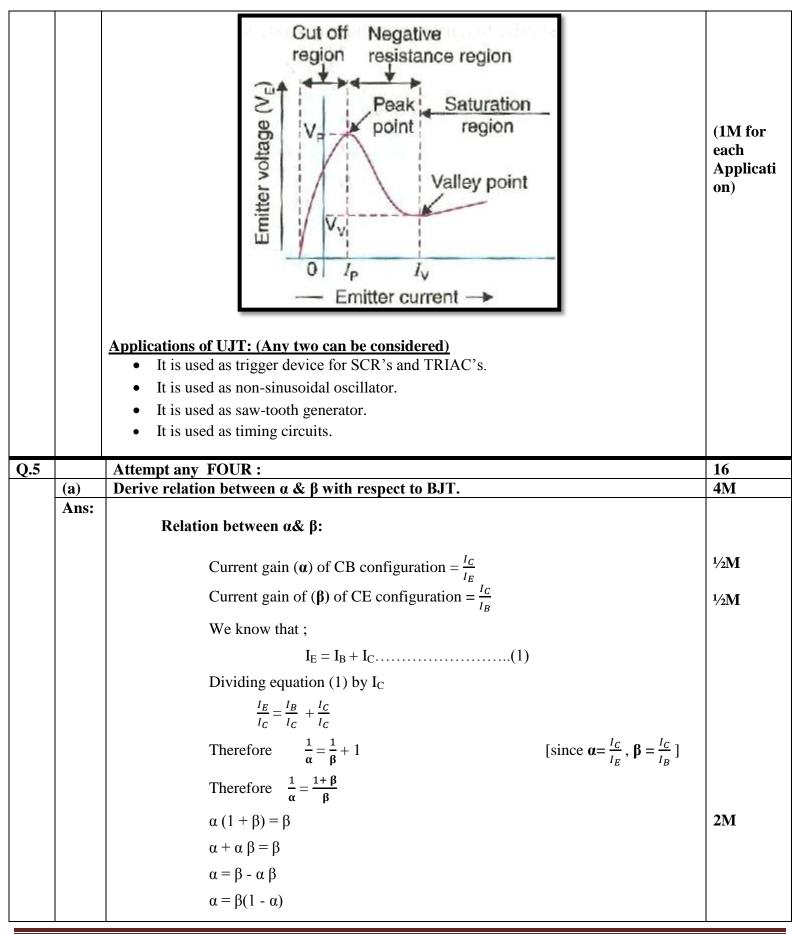
	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	
	 Working: Consider initially the transistor Q₁ is ON and Q₂ is OFF. The output voltage is equal to V_{CC}. When a pulse of negative polarity is applied at the base of the transistor Q₁. The emitterbase junction of the transistor Q₁ is reverse biased and it turns OFF. This causes the transistor Q₂ to turn ON. As the transistor Q₂ conducts, the output voltage begins to decrease towards zero. The time constant of the discharge is given by the metric. 	2M
	time constant of the discharge is given by the relation, $L = R_B * C$ • When the input pulse is removed, the transistor Q ₁ turns ON and Q ₂ turns OFF.As the transistor Q ₁ turns OFF, the capacitor (C) charges quickly, through resistor R _C to V _{CC} with a time constant (L) equal to R _{CC} . The waveform of the generated sweep or the output voltage (v ₀).	
(d)	Describe how excellent impedance matching is achieved with transformer coupling.	4 M
Ans:	 Transformer coupled amplifiers provide excellent impedance matching between the individual stages. This ability makes it very useful in a multistage amplifier as a final stage. It is used to transfer power to the low impedance load (such as speaker). The impedance of a speaker varies from 4 Ω to 16 Ω, whereas the output resistance of a transistor amplifier is several hundred ohms. In order to match the load impedance, with that of the amplifier output, a step-down 	4M
	transformer of proper turns ratio is used. The resistance of the secondary winding of the transformer is made equal to the speaker impedance, while that of the primary winding is made equal to the output resistance of the amplifier.	
(e) Ans:	transformer of proper turns ratio is used. The resistance of the secondary winding of the transformer is made equal to the speaker impedance, while that of the primary winding	4M 1M



		Where $V_{NL} = Voltage at no load (IL = 0)$ V_{FL} voltage at full load (IL = IL Max) <u>Line Regulation</u> : The change in output voltage with respect to per unit change in input voltage is defined as line regulation. It is mathematically expressed as,	1M
		$\label{eq:Line regulation} \begin{split} &Line \ regulation = \Delta V_L / \Delta V_S \\ & \ \ \ \ \ \ \ \ \ \ \ \ \$	1M
	(f)	Draw the dual power supply capable of giving \pm 12 V using three terminal regulator IC's and describe its working.	4M
	Ans:	Diagram: f_1 f_2 f_2 f_1 f_2	3M 1M
		 A full wave rectifier & filter produces the unregulated D.C input to the regulatorIC7812 and IC7912. IC 7812 produces a fixed positive voltage of +12 V. IC 7912 produces a fixed positive voltage of -12 V The output capacitor C₇ and C₈ is used for improving the transient response of IC. This capacitor also helps in reducing the noise present at the output due to load variations. 	
). 4		Attempt any FOUR :	16M
	(a) Ans:	Explain the construction and working of N-channel JFET. <u>Construction of N-Channel JFET:</u>	4M 1 ¹ / ₂ M

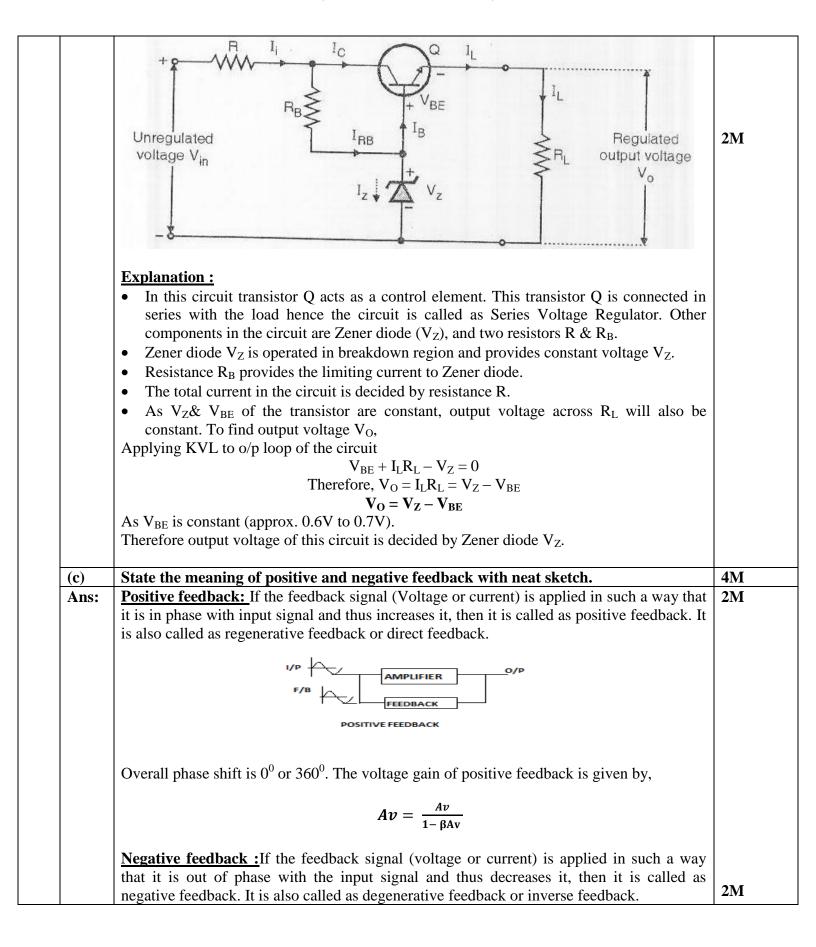




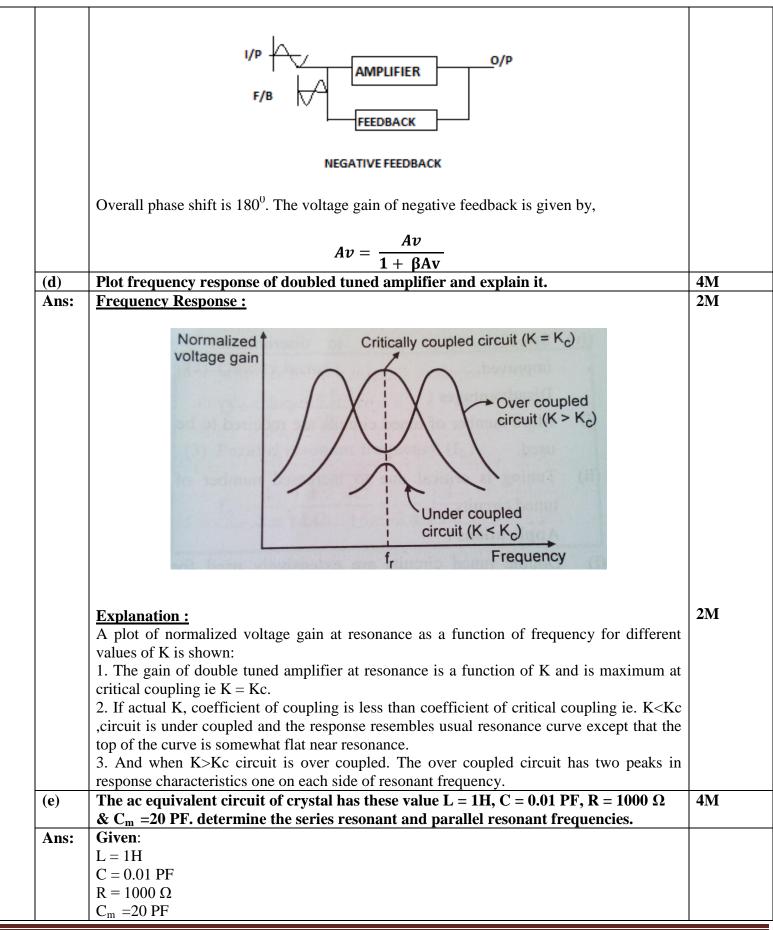


	Parameter	Small signal amplifier	Power Amplifier	(1M for each
	Input voltage	LOW(few mV)	HIGH(2-4 V)	point)
	output power	LOW	HIGH	
	output impedance	e HIGH(4-10 kΩ)	LOW(5-20Ω)	
	Applications	Used as pre- amplifier	Used in output stage	
(e)	Sketch the output waveforms operating point on load line.			4 M
		21cq AC Load Line DC Lo DC Lo	(At centre of AC Load Line	wavefor and 1M for correct labeling

	Therefore $\beta = \frac{\alpha}{1-\alpha} \text{ OR } \alpha = \frac{\beta}{1+\beta}$	1M
(b)	The phase shift oscillator uses equal resistance of 1 M Ω & equal capacitances of 68PF. At what frequency does the circuit oscillate? And also find value of resistance to produce a frequency of 800 kHz if phase shift oscillator uses 5PF capacitor.	4M
Ans:		
	$ \begin{aligned} &\mathcal{B} \cdot = (b) \\ &\mathcal{B} \cdot =$	2M
	- Required resistance is 16.24 Mar for 800×112 freq.	2M
(c)	Explain the working of class-B push-pull amplifier.	4M
Ans:	Circuit Diagram:	(2M
	Circle Provide Automations	circuit diag. ,2M working)
	 Circuit Description: The circuit consists of two centre tapped transformers T₁ & T₂& two identical transistors Q₁& Q₂. 	



	voltage. This produces variation in the drain current. As the gate to source voltage increases the current also increases. As the result of this voltage drop across RD also increases. This causes the drain voltage to decreases. In positive half cycle of the input ac signal the gate to source voltage becomes less negative. This will increase the channel width and increase the level of drain current ID. Thus IDvariessinusoidally above its Q point value. The drain to source voltage V_{DS} is given by $V_{DS} = V_{DD} - I_D R_D$. Therefore as I_D increases the voltage drop $I_D R_D$ will also increase and voltage V_{DS} will decrease. If ΔI_D is large for a small value of ΔV_{GS} , the ΔV_{DS} will also be large and we get amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC input voltage.	2M
(e)	State Barkhausen criterion of oscillation.	4M
Ans:	An amplifier will work as an oscillator if and only if it satisfies a set of conditions called Barkhausen's criterion. It states that: • An oscillator will operate at that frequency for which the total phase shift around loop equals to 0° or 360°. • At the oscillator frequency, the magnitude of the product of open loop gaun of the amplifier A and the feedback factor β is equal or greater than unity. ie. Aβ ≥ 1	4M 2M for each condition
(f)	Draw the functional block diagram of IC 723. State any two features of 723.	4M
Ans:	<u>Functional block diagram of IC 723:</u>	(2M Function l B.D. an 1M each feature)



		V+ CDMP frequency compensation compensated compensation Veccompensation	
Q.6		Attempt any FOUR :	16M
	(a)	Discuss steps to be taken to design transistor biasing and stabilizing circuit.	4 M
	Ans:	 Transistor biasing is the process of setting a transistors DC operating voltage or current conditions to the correct level so that any AC input signal can be amplified correctly by the transistor. Establishing correct operating point requires proper selection of bias resistors and load resistors to provide the appropriate input current and collector voltage conditions. The biasing network should ensure proper zero signal collector current. The biasing network should ensure that V_{CE} does not fall below 0.5V for Ge transistors and 1V for Si transistors at any instant and it should also ensure the stabilization of operating point. Once stabilization is done, the zero signal I_C and V_{CE} become independent of temperature variations or replacement of transistor i.e operating point is fixed. 	Explanati on : 4M
	(b)	Draw circuit diagram of transistorised series voltage regulator and explain its working.	4M
	Ans:	<u>Circuit Diagram :</u>	
			2M

