

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

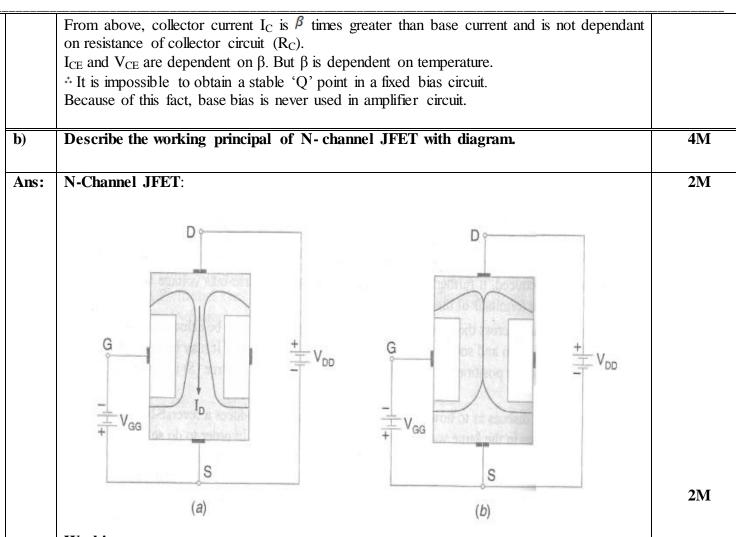
(Subject Code: 17319)

Important Instructions to examiners:

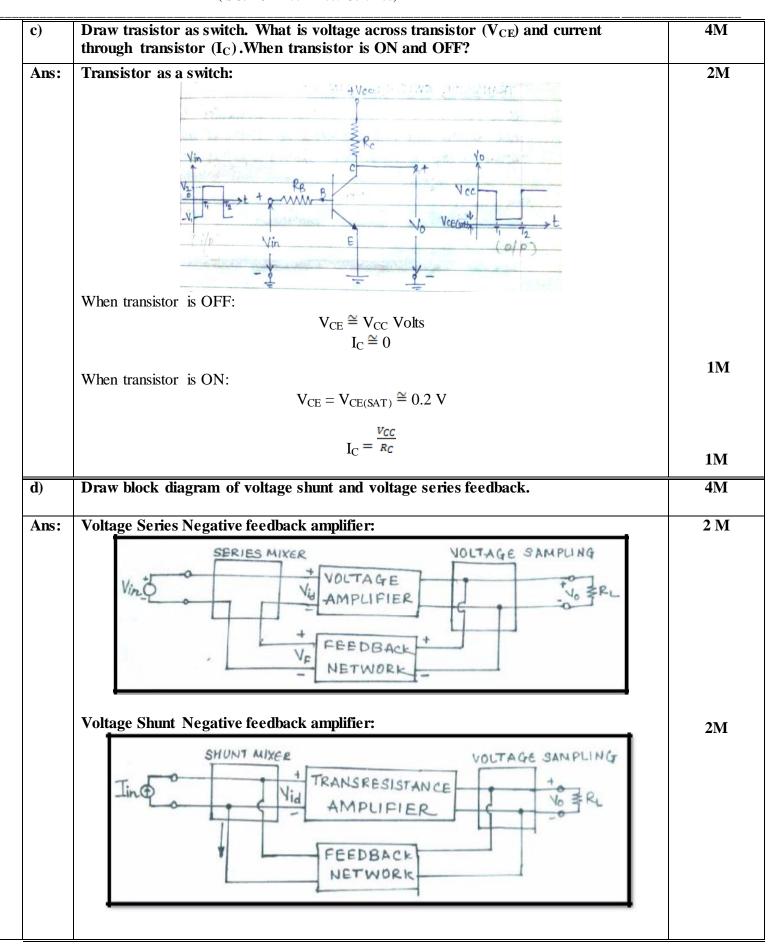
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme	
Q.1		Attempt any <u>SIX</u> of following:	12-Total Marks	
	a)	Draw symbol NPN and PNP transistor.	2 M	
	Ans:	Symbol Of NPN and PNP BJT	(1M each)	
	b) What are different types of amplifier coupling?		2 M	
	Ans:	Types of amplifier coupling: (ANY TWO) 1. Resistance – capacitance (RC) coupling. 2. Transformer coupling 3. Direct coupling	(1M each)	
	c) Define intrinsic stand of ratio for UJT.			
	Ans:	Intrinsic standoff ratio: It is defined as the ratio of the R _{B1} (base resistance 1) to the interbase resistance (R _{BB}). $\Pi = \frac{R_{B1}}{R_{BB}} = \frac{R_{B1}}{R_{B1} + R_{B2}}$	(Definition :1M, Equation :1M)	

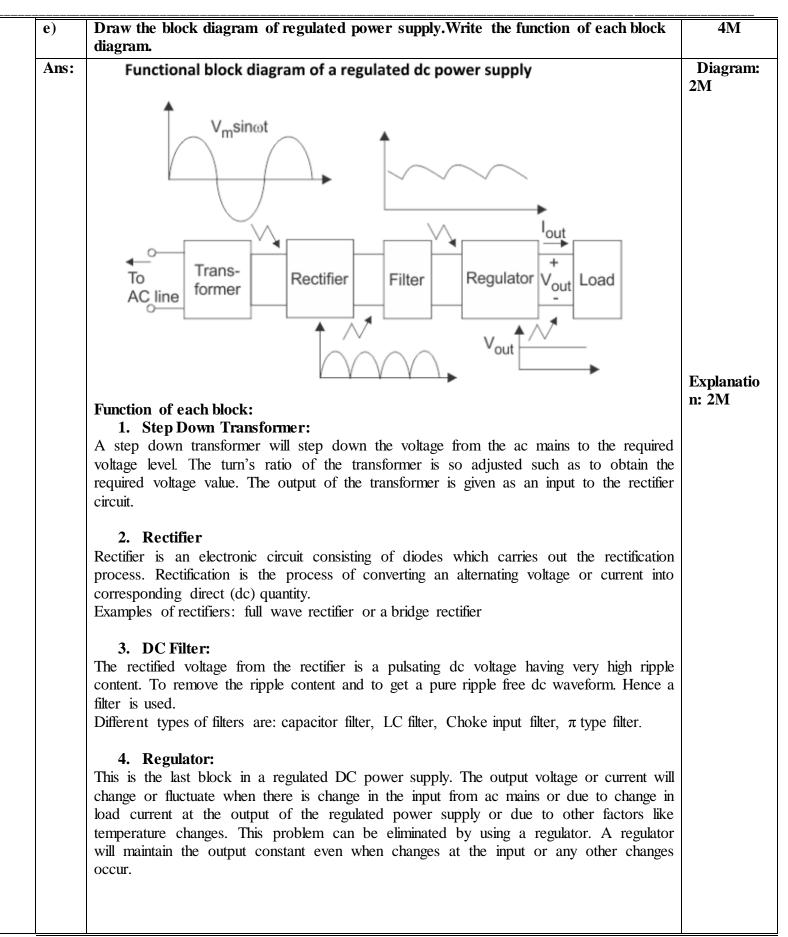
l)	List various transistor biasing methods .	2 M
Ans:	Transistor biasing methods:	(1/2 M
	1. Base bias / Fixed Bias	each)
	2. Base bias with emitter feedback	
	3. Voltage divider bias/ Self bias	
	4. Emitter bias	
e)	State the effect of V_{GS} on channel conductivity on N-channel JFET .	2 M
Ans:	As the V _{GS} is increased above zero the following effects are noted :	(1M Each
	1. The value of pinch off voltage is reached at smaller value for drain current as compared	point)
	to that when $V_{GS} = 0$	
	2. The value of V _{DS} is decreased as compared to that when VGS = 0.	
	i. e. Conductivity decrease when V_{GS} is increased.	
	Conductivity increases when V_{GS} is decreased.	
)	What is thermal runaway? How it can be avoided?	2 M
Ans:	Thermal Runaway:	(Thermal
	• We know that $I_C = \beta I_B + (1 + \beta)$. I_{CO}	Runaway:
	Where I_{CO} is the leakage current.	1M, Ways
	• I _{CO} is strongly dependent on temperature.	to avoid
	• The flow of collector current produces heat within the transistor.	:1M)
	• This raises the transistor temperature.	
	• If no stabilization is done, I _{CO} further increases.	
	• If I_{CO} increases, I_C increases by $(1 + \beta)$. I_{CO}	
	• The increased I_C will raise the temperature of the transistor which in-turn will	
	increase the I _{CO.}	
	• This effect is cumulative and in a fraction of a second I_c becomes so large causing	
	transistor to burn up.	
	• This self-destruction of an unstabilized transistor is known as Thermal Runaway.	
	Temperature 1	
	Power	
	distingthe T	
	Clissipation / ICEO T	
	Ict K	
	Thermal Runaway can be avoided using:	
	• IC should be kept constant	
	• This is done by causing I_B to decrease automatically with temperature	
	increase.	
	• This principle is used to provide stabilization of I_C by designing it as	
	biasing circuit of different types and later providing compensation technique.	
	• And also by Heat sink.	


NEED OF VOLTAGE REGULATORSDC voltage obtained by using rectifier and filter is not constant; this DC voltage may result in an error or may damage other electronic devices or circuits e.g.1. In oscillators it may lead to phase shift.	(State Need :2M)
1. In oscillators it may lead to phase shift.	1
2. In amplifiers it may lead to change in voltage gain or power gain.	
3. It may lead to calibration error in measuring instruments.	
4. It may produce distortions in output of audio and video amplifiers.	
Hence to avoid this errors DC voltage regulators are necessary to keep the output DC voltage constant.	
State the conditions for sustained oscillations.	2 M
Conditions for sustained oscillations:	(1M for
 The total shift introduced, as the signal proceeds from input terminals through the amplifier & amp; feedback network & amp; back again to the input is precisely 0° or 360°. The magnitude of the loop gain A V β must be equal to 1 at the frequency of oscillations. A_Vβ = 1 & θ = 0° or 360°. 	each condition)
Attempt any TWO of following:	
Draw the output characteristics of common emitter configuration. What is the effect	
Output characteristics of Common Emitter configuration:	(Output Char. 2M; Label: 1M, Effect 1M)
	 4. It may produce distortions in output of audio and video amplifiers. Hence to avoid this errors DC voltage regulators are necessary to keep the output DC voltage constant. State the conditions for sustained oscillations. Conditions for sustained oscillations: The total shift introduced, as the signal proceeds from input terminals through the amplifier & amp; feedback network & amp; back again to the input is precisely 0° or 360°. The magnitude of the loop gain A V β must be equal to 1 at the frequency of oscillations. [A₁/β] = 1 & θ = 0° or 360°. Attempt any TWO of following: Draw the output characteristics of common emitter configuration. What is the effect of base current I_B on collector current I_C with reference to characteristics? Output characteristics of Common Emitter configuration:

perating point is obtained? V_{CC} $I_1 \downarrow R_1 R_C \downarrow I_C R_1 \downarrow R_1$ $I_2 \downarrow R_2 R_E \downarrow I_E R_E \downarrow I_E$ tability in operating point is obtained by s I_C = V_{TH}/R_E, the increase in collector current due to temperature will cause the voltage	(Diagram:2 M, Stability of operating point :2M)
is $I_C = V_{TH}/R_E$, the increase in collector current due to temperature will cause the voltage	
rop across R_E This in turn decreases V_{BE} which cause I_B to decrease hence I_C decreases o restore its original value. Thus good stabilization of operating point is ensured for D.C. ias.	4 M
orking. 'ransistorized Series Voltage regulator:	(Diagram:
$ \begin{array}{c} I_{s} \\ V_{s} \\ V_{s} \\ V_{s} \\ V_{z} \\ R_{z} $	2M, Explanatio n :2M)
5	
	 In above fig. since transistor is connected in series with load therefore the circuit is known as a series regulator. The transistor behaves as variable resistances whose value is determined by the amount of base current. V_L = V_Z - V_{BE} OR

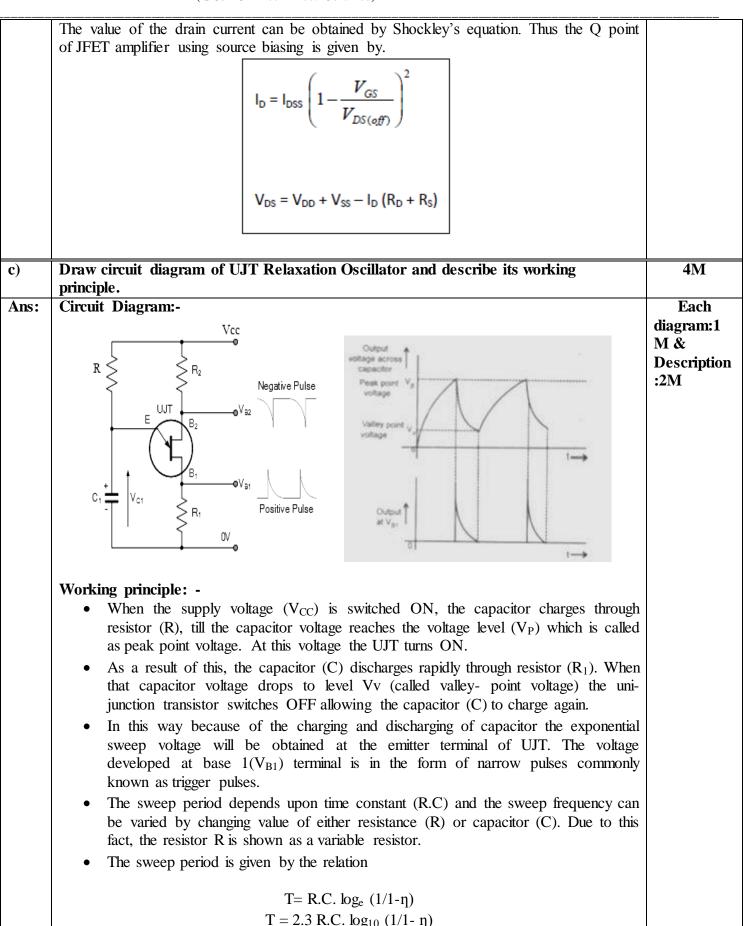


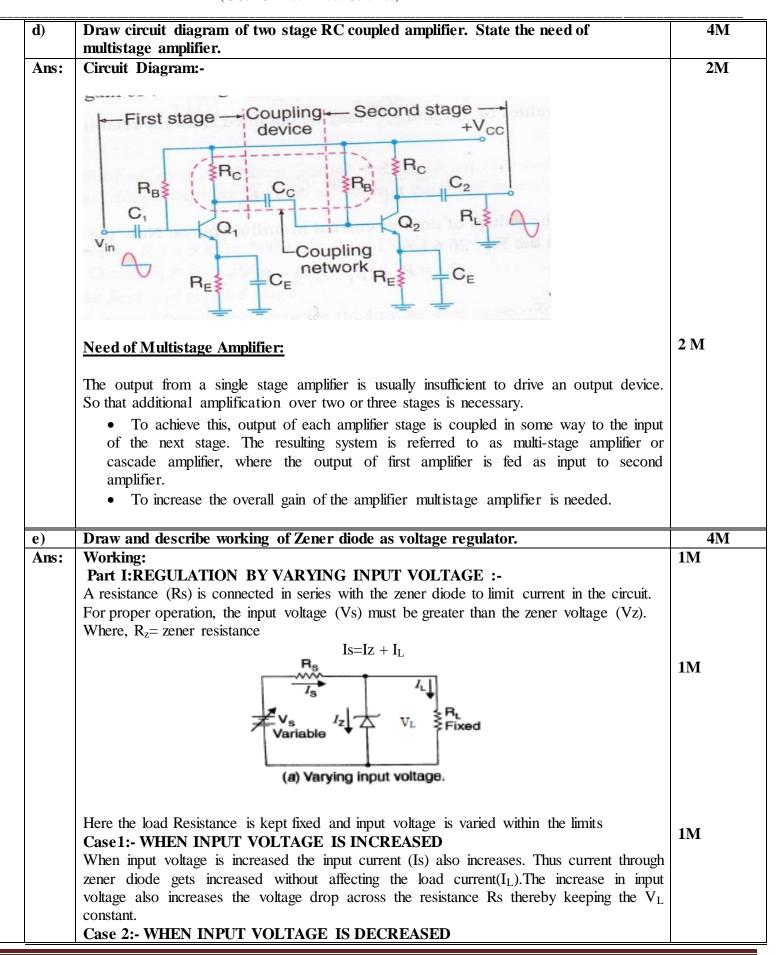
		 WORKING:- Suppose that value of load resistance is increased. Because of this, the load current decreases and load voltage (V_L) tend to increase. From equation (1) that any increase in V_L will decrease V _{BE} because V _Z value is fixed. As a result of this forward bias of the transistor is reduced this reduces its level of conduction. This increases V_{CE} of transistor which will slightly decrease the input current for the increase in the value of load resistance so that load voltage remains constant. The output of a transistor series regulator is approximately equal to zone voltage (V_Z) This regulator can also be used for larger load currents. OR 	
Q 2		Attempt any FOUR:	16M
	a)	With the help of neat circuit diagram, Explain the working of fixed bias method for BJT.	4M
	Ans:	Fixed bias method for BJT:	(Diagram: 2M, Explanatio n :2M)


Working:

- The application of negative gate voltage or positive drain voltage with respect to source, reverse biases the gate- source junction of an N-channel JFET. The effect of reverse bias voltage is to form depletion regions within the channel.
- When a voltage is applied between the drain & amp; source with dc supply voltage (V $_{DD}$), the electrons flows from source to drain through the narrow channel existing between the depletion regions. This constitutes the drain current (I $_{D}$) & amp; its conventional direction is from drain to source. The value of drain current is maximum, when no external voltage is applied between the gate & amp; source & amp; is designated by the symbol I $_{DSS}$.
- When V $_{GG}$ is increased, the reverse bias voltage across gate-source junction is increased. As a result of this depletion regions are widened. This reduces the effective width of the channel & amp; therefore controls the flow of drain current through the channel.
- When gate to source voltage (V $_{GG}$) is increased further, a stage is reached at which two depletion regions touch each other as shown in fig (b).
- At this value of V _{GG} channel is completely blocked or pinched off & amp; drain current is reduced to zero. The value of V _{GS} at which drain current becomes zero is called pinch off voltage designated by the symbol V _P or V _{GS(OFF)}. The value of V _P is negative for N-channel JFET.

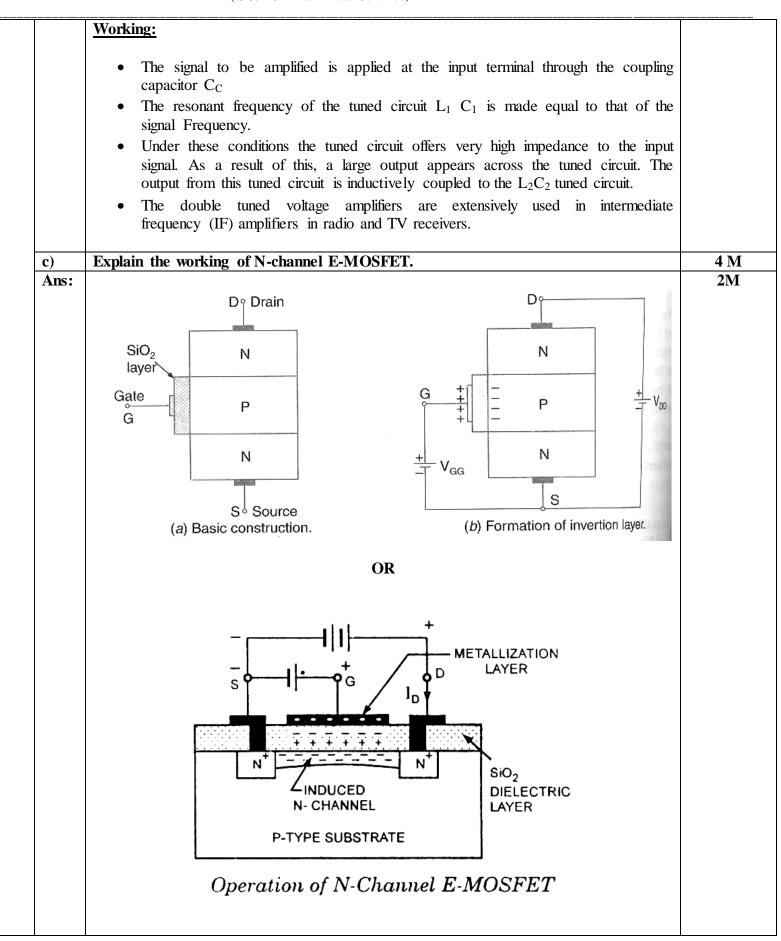
17319




(

Q. 3		Attempt any FOUR:				16 M
	a)	▲ / /	0	T with reference to fo Current gain iv) Volt		4 M
	Ans:	Parameters	СВ	CE	СС	(Note: The value for
		Input Impedance	Low (100Ω)	Low(750Ω)	Very High(750KΩ)	the parameters
		Output Impedance	Very High(450KΩ)	$High(45K\Omega)$	Low(50Ω)	are optional)
		Current Gain	Less than unity	High(100)	High(100)	1M each
		Voltage Gain	High(About150)	Very High (about 500)	Less than 1	
	b)	With the help of near FET.	t circuit diagram, exp	lain the working of se	lf bias method for	4M
	Ans:	Circuit Diagram		/ _{DD}		2M
		This type of biasing behaves as a potential D.C. analysis:- From the circuit:- For VGS apply KVL a $V_{GS} - I_DR_S + V$ $V_{SS} = V_{GS} + I_D$. $V_{GS} = V_{SS} - I_D$. Expression for Apply KVL to $V_{DD} - I_DR_D - V$ $V_{DD} + V_{SS} = I_D$	uses \pm supply voltag divider bias circuit wit as shown – $V_{SS} = 0$ RS R _S V _{DS} ,		nded via a resistor R _G . n this case the circuit	2M

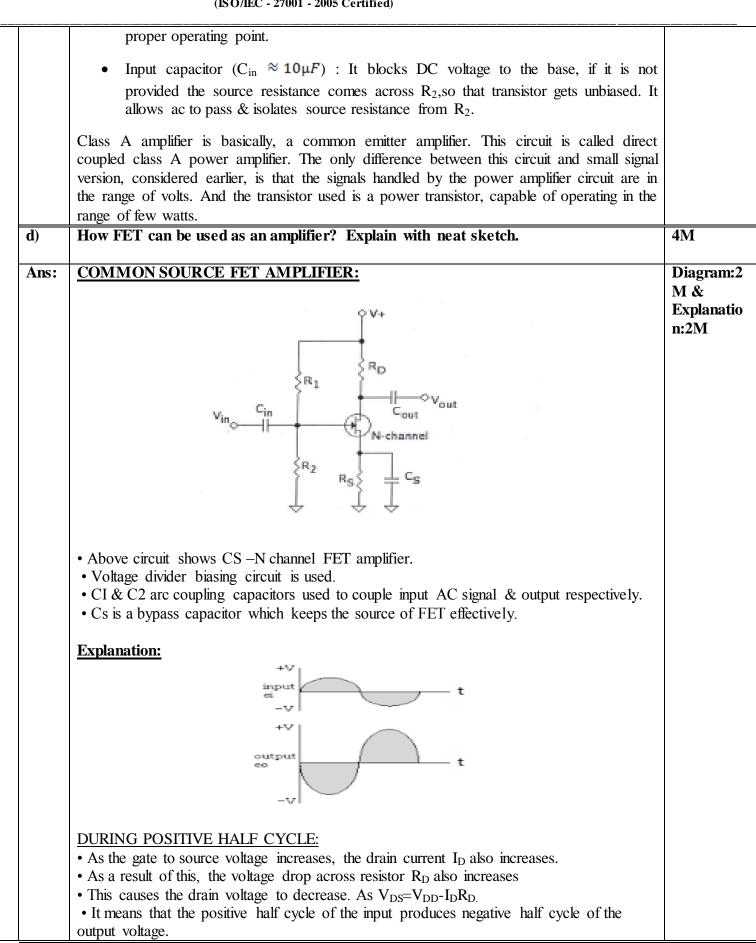



	When input voltage is decreased, the input current gets reduced, as a result of this Iz also decreases. The voltage drop across Rs will be reduced and thus the load voltage (V_L) and load current (I_L) remains constant.	
	Part II: REGULATION BY VARYING LOAD RESISTANCE:- In this method the input voltage is kept constant whereas load resistance RL is varied.	1M
	H_{S} I_{S} V_{S} I_{Z} V_{L} V_{L	
	Case 1:- WHEN LOAD RESISTANCE IS INCREASED When load resistance is increased, the load current reduces, due to which the zener current I_Z increases. Thus the value of input current and voltage drop across series resistance is kept constant. Hence the load voltage remains constant. Case 2:- WHEN LOAD RESISTANCE IS REDUCED When load resistance is decreased, the load current increases. This leads to decrease in I_Z . Because of this the input current and the voltage drop across series resistance remains constant. Hence the load voltage is also kept constant.	
f)	Sketch pin diagram of IC 723. Give any four advantages of IC voltage regulator over discrete voltage regulator.	4M
Ans:	NC 1 Current Limit 2 Current Sense3 Inverting Input 4 Non Inverting Input 5 Vref 6 V-7 8 NC	2M
	Advantages of IC voltage regulator over discrete voltage regulator are: i) Improved performance ii) High quality precise regulation. iii) Current limiting, self protection against temperature.	2M (1/2 M each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

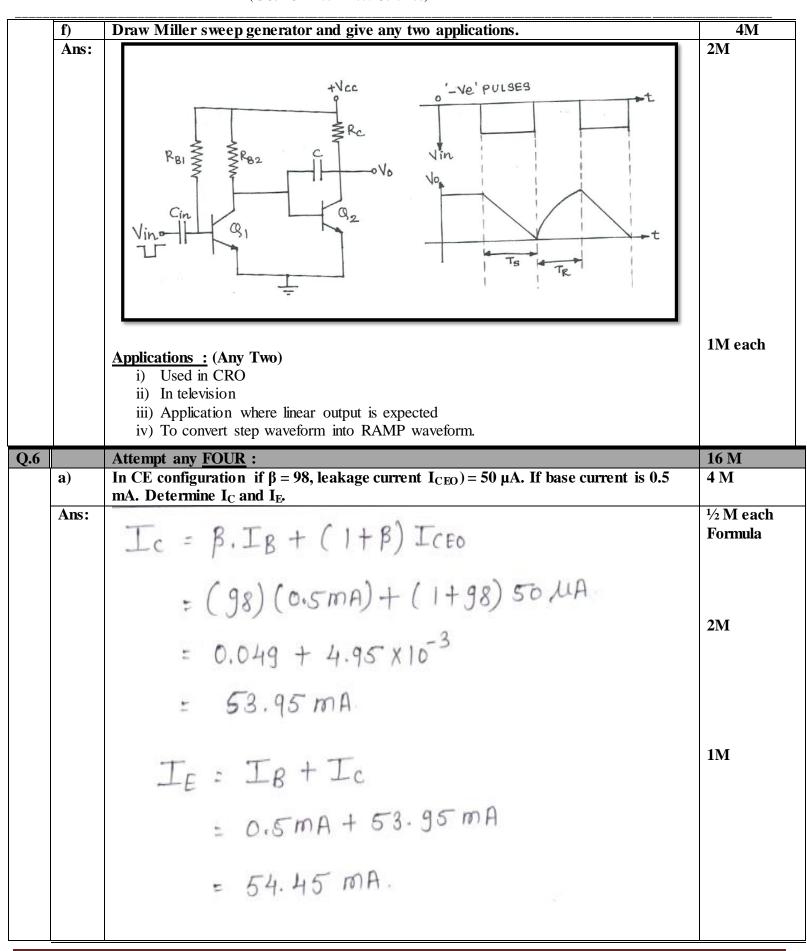
	(150/112 - 27001 - 2005 Certified)	
	 Working Principle:- Case1:- When V_{GS}=0 volt If V_{GS}=0 volt and a +ve voltage applied between its drain and source, then due to the absence of the n-type channel a zero drain current will result. Case2:- When V_{GS}=positive and V_{DS}=positive The +ve potential at the gate terminal will repel the holes present in the p-type substrate. This results in creation of a depletion region Sio₂ insulting layer. But the minority carriers i.e the electrons in the p-type substrate will be attracted towards the gate terminal and gather near the surface of Sio₂ layer. As we increase the positive V_{GS}, the number of electrons gathers near Sio₂ layer we increase. The electron concentration near Sio2 layer increase to such an extent that it creates an induced n-channel. This connects the n-type doped region. This induced n-channel. And the value of V_{GS} at which this conduction begins is called soft voltage' V_{GS} (TH). 	2M
d)	 Case 3:- Effect of increasing in V_{DS} The +V_{GS} is kept constant and the V_{GS} is increased gradually .due to this, the gate terminal becomes less and less +ve with respect to drain. So less number of electrons is attracted towards gate terminal and the induced channel becomes narrow that means the channel width will be reduced to a point of pinch off and the saturation condition will occur, hence I_D will remains constant. Explain class B push-pull amplifier with neat diagram. 	4 M
Ans:	Circuit Diagram:-	2M
	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ Input \\ signal \end{array} \\ & & $	
	 Operation :- In class B amplifier transistor conduct only for half cycle of input signal.one conduct in positive half cycle and other conducts in negative half cycle. Transformer T₁ is called as input transformer called phase splitter and produces two signals which are 180 degree out of phase with each other. Transformer T₂ is called as output transformer and is required to couple the a.c signal from the collector to the load. 	2M

		0/IEC - 2/001 - 2005 Certified)		
	current is drawn	1 0	istor Q_1 and Q_2 are cut off hence no e is no power wasted in stand by the ally zero.	
	• •	•	and at the output half cycle is obtained on hence another half cycle is obtained	
	• Then output tran the load resistor.	sformer joins these two halv	ves and produces a full sine wave in	
0		e ii) Distortion in output vol	r on the following basis. i) Position ltage iii) Collector current	
Ans:	PARAMETERS	CLASS-A	CLASS-B	1M each
	Position of Q point on load line	Centre of DC load line	On the X-axis(in cut –off region)	for point
	Distortion in output	No distortion	Distorted output	
	Collector current waveform			
		I_{c}	$0 \qquad \qquad$	
	Efficiency	Lowest 25% to 50%	Higher (78.5%)	
Ans: F	Fig. Below shows a prac	botstrap time base generator ctical form of bootstrap circui an emitter follower (i.e. a uni $rac{1}{r_{2}}$	it. Here transistor Q_1 acts as a switch	2M
	← ¹ ₈ →			



		 Circuit Operation: Initially transistor Q₁ is ON and Q₂ is OFF. Therefore capacitor C₁ is charged to V_{CC} through the diode forward resistance (R_F). At this instance output voltage is zero. When negative pulse is applied to the base of transistor Q₁, it turns OFF. Since Q₂ is an emitter follower, therefore the output voltage V0 is same as base voltage of Q₂. Thus when Q₁ turns OFF, the capacitor C₁ starts charging this capacitor C through resistor (R). As a result of these both the base voltage of Q₂ and output voltage begins to increase from zero. As the output voltage increases diode D becomes reverse biased, because of the fact that the output voltage is coupled through the capacitor (C₁) to the diode. Since the value of capacitor (C₁) is much larger than that of capacitor (C), therefore the voltage across capacitor (C) practically remains constant. Thus voltage drop across resistor (R) and hence the output voltage) to increase linearly with time. The circuit pulls itself by its own bootstrap and hence it is known as bootstrap sweep circuit. 	
Q.5		Attempt any <u>FOUR</u> :	16 M
	a)	Define α , β with respect to transistor configuration. State the relation between α and β .	4M
	Ans:	α is defined as current gain in common base configuration. It is given by $\alpha = \frac{I_C}{I_E}$ β is defined as current gain in common emitter configuration. It is given by $\beta = \frac{I_C}{I_B}$ relation between $\alpha \& \beta$	Define:0.5 M
		We know that; $IE = IB + Ic \dots 0$ $Dividing eq^{n} 0 by Ic.$ $Ie = IB + Ic \\ Ic = Ie + Ic \\ Ic = Ie + I \\ Record B \\ \frac{1}{2} = \frac{1+\beta}{1e} = \frac{1+\beta}{1e}$ $\frac{1}{2} = \frac{1+\beta}{1e}$ $\frac{1}{2} = \frac{\beta}{1+\beta}$ $\frac{1}{2} = \frac{\beta}{1+\beta}$ $\frac{1}{2} = \frac{\beta}{1+\beta}$	1.5M 1.5M
		$\alpha + \alpha \beta = \beta .$ $\alpha = \beta - \alpha \beta .$ $\alpha = \beta (1 - \alpha) .$ $\beta = \alpha $	

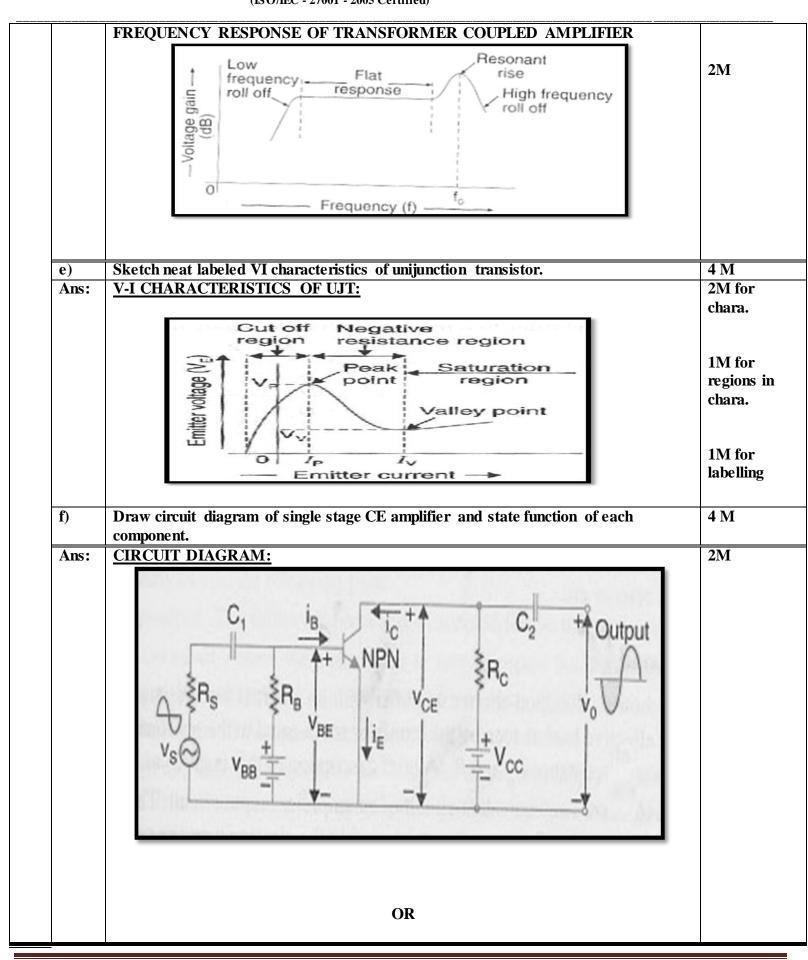
b)	For RC phase shift oscillator the components values are as follows: $R = 8.2 \text{ k}2$, $C = 0.01 \mu f$, $R1 = 1.2 \text{ K}\Omega$, $RF = 39 \text{ K}\Omega$. What will be the frequency of oscillation?	4M
Ans:	Formula $3-f^{*}-\frac{1}{2 \operatorname{TTRCAG}}$ Solution: $f^{*}-\frac{1}{2 \operatorname{TTRCAG}}$	1M
	$= \frac{1}{2 \text{TT} \times 8.2 \text{ k} \Omega \times 0.01 \text{ , } \text{ uf} \times \sqrt{6}}$ = 792.77 Hz	2M
	frequency of oscillations = 792.77Hz	1M answer with unit
c)	Draw the circuit diagram of single stage class A power amplifier and describe its working.	4M
	$R_{1} = R_{1} + V_{CC}$	
	 Circuit Description: The input a.c. signal is applied across the base emitter terminals of the transistor & output is taken across collector emitter terminals of the transistor. V_{BB} supply forward biases the emitter base junction & V_{CC} supply reverse biases the output junction. The Q point is determined by the V_{CC} supply along with the resistance R_C. The 	



	(IS 0/IEC - 2/001 - 2005 Certified)			
 	• In other words output voltage is180 ⁰ out of phase with the input voltage			
	 <u>DURING NEGATIVE HALF CYCLE:</u> As the gate to source voltage decreases. The drain current also decreases. As a result of this, the voltage drop across resistor R_D also decreases. This causes drain voltage to increase. As V_{DS}=V_{DD}-I_DR_D. It means that negative half cycle of the input produces positive half cycle of the output voltage. In other words output voltage is 180 out of phase with the input voltage. 			
e)	Draw the circuit diagram of crystal oscillator, and give the basic principle of Piezoelectric crystal.			
Ans:	<u>Circuit diagram:</u>	2M		
	$fr = \frac{1}{2\pi\sqrt{LC}}$ Aso if mechanical force is applied to crystal then it generates electric potential.	2M		

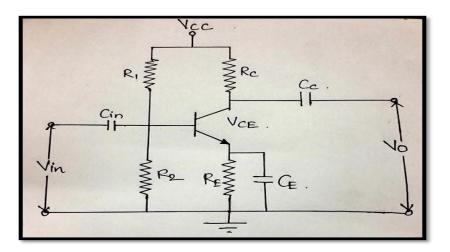
17319

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

	Sr. No.	sh between series and shunt voltage re SHUNT VOLTAGE REGULATOR	SERIES VOLTAGE REGULATOR	4 M 1M each
	1	Control element is connected in shunt with load.	Control element is connected in series with load.	
	2	High Output impedance.	Low Output impedance.	
	3	It has protection against short circuit of transistor.	It does not have protection against short circuit of transistor.	
	4	Good voltage regulation even at high load current.	Not so good voltage regulation at high load current.	
	5	Poor voltage regulation.	Better voltage regulation.	
	6	Good efficiency for low load current.	Good efficiency for high load current.	
	7	The output DC voltage is constant.	The output DC voltage is not absolutely constant.	
	8	Suitable for light loads.	Suitable for heavy loads.	
	9	Control element has to bear the load voltage across it. So it is a high	Control element has to bear the load current. So it is a low voltage	
	''	voltage low current device.	high current device.	
	10	Supply current is higher than load current as $I = I_L + I_{SH}$	Supply current is same as load current. But input voltage is higher than output voltage as $V_i = V_O + V_S$	
Ans:	/			1M each
<u>d)</u>	,	cuit diagram of two stage transformer	r coupled amplifier. Draw its	4 M
		Chit with a view with a state of the state o	Coupies and and and a second s	· - · · ·
u)	inequency	response.		- 111
, 		8		2M
Ans:	CIRCUIT	response.		



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

PRACTICAL COMMON EMITTER AMPLIFIER:

Function of components:

- The input a.c. signal is applied across the base emitter terminals of the transistor & output is taken across collector emitter terminals of the transistor. V_{BB} supply forward biases the emitter base junction & V_{CC} supply reverse biases the output junction.
- The Q point is determined by the V_{CC} supply along with the resistance R_{C} . The resistances R_1 , R_2 , R_E form the biasing & stabilization circuit & thus establishes proper operating point.
- Input capacitor $(C_{in} \approx 10 \mu F)$: It blocks DC voltage to the base, if it is not provided the source resistance comes across R_2 , so that transistor gets unbiased. It allows a.c. to pass & isolates source resistance from R_2 .
- Emitter bypass capacitor (C_E): C_E acts as open for D.C so R_E offers very high value resistance hence stabilization of Q-point is achieved due its negative feedback. Where C_E acts as short for A.C input signal hence it bypasses R_E so it provides very high gain due to its low value. And amplification of signal is more due to high gain.

2M