WINTER- 16 EXAMINATION
 Model Answer

(Subject Code: 17319)
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
Q. 1		Attempt any SIX of following:	12-Total Marks
	a)	Draw symbol NPN and PNP transistor.	2 M
	Ans:	Symbol Of NPN and PNP BJT	(1M each)
	b)	What are different types of amplifier coupling?	2 M
	Ans:	Types of amplifier coupling: (ANY TWO) 1. Resistance - capacitance (RC) coupling. 2. Transformer coupling 3. Direct coupling	(1M each)
	c)	Define intrinsic stand of ratio for UJT.	2 M
	Ans:	Intrinsic standoff ratio: It is defined as the ratio of the $\mathrm{R}_{\mathrm{B} 1}$ (base resistance 1) to the interbase resistance $\left(\mathrm{R}_{\mathrm{BB}}\right)$. $\Pi=\frac{R_{B_{1}}}{R_{B B}}=\frac{R_{B_{1}}}{R_{B_{1}}+R_{B 2}}$	$\begin{aligned} & \text { (Definition } \\ & : 1 \mathrm{M}, \\ & \text { Equation } \\ & : 1 \mathrm{M}) \end{aligned}$

d)	List various transistor biasing methods .	2 M
Ans:	Transistor biasing methods: 1. Base bias / Fixed Bias 2. Base bias with emitter feedback 3. Voltage divider bias/ Self bias 4. Emitter bias	$\begin{aligned} & (1 / 2 \mathrm{M} \\ & \text { each }) \end{aligned}$
e)	State the effect of $\mathbf{V}_{\mathbf{G S}}$ on channel conductivity on N-channel JFET .	2 M
Ans:	As the $\mathrm{V}_{\text {GS }}$ is increased above zero the following effects are noted : 1. The value of pinch off voltage is reached at smaller value for drain current as compared to that when $\mathrm{V}_{\mathrm{GS}}=0$ 2. The value of $\mathrm{V}_{\text {DS }}$ is decreased as compared to that when VGS $=0$. i. e. Conductivity decrease when V_{GS} is increased. Conductivity increases when V_{GS} is decreased.	(1M Each point)
f)	What is thermal runaway? How it can be avoided?	2 M
Ans:	Thermal Runaway: - We know that $I_{C}=\beta I_{B}+(1+\beta)$. $I_{C O}$ Where I_{CO} is the leakage current. - I_{CO} is strongly dependent on temperature. - The flow of collector current produces heat within the transistor. - This raises the transistor temperature. - If no stabilization is done, I_{CO} further increases. - If I_{CO} increases, I_{C} increases by $(1+\beta)$. I_{CO} - The increased I_{C} will raise the temperature of the transistor which in-turn will increase the I_{C}. - This effect is cumulative and in a fraction of a second I_{c} becomes so large causing transistor to burn up. - This self-destruction of an unstabilized transistor is known as Thermal Runaway. Thermal Runaway can be avoided using: - IC should be kept constant - This is done by causing I_{B} to decrease automatically with temperature increase. - This principle is used to provide stabilization of I_{C} by designing it as biasing circuit of different types and later providing compensation technique. - And also by Heat sink.	(Thermal Runaway: 1M, Ways to avoid :1M)

	g)	State the need of regulator.	2 M
	Ans:	NEED OF VOLTAGE REGULATORS DC voltage obtained by using rectifier and filter is not constant; this DC voltage may result in an error or may damage other electronic devices or circuits e.g. 1. In oscillators it may lead to phase shift. 2. In amplifiers it may lead to change in voltage gain or power gain. 3. It may lead to calibration error in measuring instruments. 4. It may produce distortions in output of audio and video amplifiers. Hence to avoid this errors DC voltage regulators are necessary to keep the output DC voltage constant.	$\begin{aligned} & \text { (State Need } \\ & : 2 M) \end{aligned}$
	h)	State the conditions for sustained oscillations.	2 M
	Ans :	Conditions for sustained oscillations: - The total shift introduced, as the signal proceeds from input terminals through the amplifier \& amp; feedback network \& amp; back again to the input is precisely 0° or 360°. - The magnitude of the loop gain $\mathrm{A} V \beta$ must be equal to 1 at the frequency of oscillations. $\left\|A_{v} \beta\right\|=1 \& \theta=0^{\circ} \text { or } 360^{\circ} .$	(1M for each condition)
	b)	Attempt any TWO of following:	
	a)	Draw the output characteristics of common emitter configuration. What is the effect of base current I_{B} on collector current I_{C} with reference to characteristics?	
	Ans:	Output characteristics of Common Emitter configuration: Effect of Base current I_{B} on Collector current I_{C} : As I_{B} increases above $0 \mu \mathrm{~A}$; value of I_{C} also increases.	(Output Char. 2M; Label: 1M, Effect 1M)

b)	Draw the circuit diagram of voltage divider biasing method of BJT.How stabality in operating point is obtained?	4M
Ans:	Stability in operating point is obtained by As $\mathrm{I}_{\mathrm{C}}=\mathrm{V}_{\mathrm{TH}} / \mathrm{R}_{\mathrm{E}}$, the increase in collector current due to temperature will cause the voltage drop across R_{E} This in turn decreases $V_{B E}$ which cause I_{B} to decrease hence I_{C} decreases to restore its original value. Thus good stabilization of operating point is ensured for D.C. bias.	(Diagram:2 M, Stability of operating point :2M)
c)	Draw circuit diagram of transistorized series voltage regulator and explain it's working.	4M
Ans:	Transistorized Series Voltage regulator: - In above fig. since transistor is connected in series with load therefore the circuit is known as a series regulator. - The transistor behaves as variable resistances whose value is determined by the amount of base current. $\begin{gathered} \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}} \\ \mathrm{OR} \\ \mathrm{~V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{L}} \\ \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{CE}} \end{gathered}$	(Diagram: 2M, Explanatio n :2M)

		WORKING:- - Suppose that value of load resistance is increased. Because of this, the load current decreases and load voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ tend to increase. - From equation (1) that any increase in V_{L} will decrease $V_{\text {BE }}$ because V_{Z} value is fixed. - As a result of this forward bias of the transistor is reduced this reduces its level of conduction. - This increases V_{CE} of transistor which will slightly decrease the input current for the increase in the value of load resistance so that load voltage remains constant. - The output of a transistor series regulator is approximately equal to zone voltage $\left(V_{Z}\right)$ - This regulator can also be used for larger load currents. OR $\mathrm{V}_{\mathrm{L}} \uparrow \mathrm{~V}_{\mathrm{BE}} \downarrow \mathrm{I}_{\mathrm{B}} \downarrow \quad \mathrm{I}_{\mathrm{C}} \downarrow \quad \mathrm{~V}_{\mathrm{CE}} \uparrow \quad \mathrm{~V}_{\mathrm{L}} \downarrow$	
Q2		Attempt any FOUR:	16M
	a)	With the help of neat circuit diagram, Explain the working of fixed bias method for BJT.	4M
	Ans:	Fixed bias method for BJT: Consider the base-emitter loop in the above circuit, Apply KVL, $\begin{aligned} & V_{C C}-I_{B} R_{B}-V_{B E}=0 \\ & \therefore I_{B} R_{B}=V_{C C}-V_{B E} \\ & \therefore I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \end{aligned}$ Since VCC and VBE are fixed values, the selection of RB fixes the value of IB. Above equation can be simplified as, $I B \frac{V C C}{R_{B}}$ $\left[V_{B E} \ll V_{C C}\right]$ Apply KVL to collector-emitter loop, $\begin{aligned} & V_{C C}-I_{C} R_{C}-V_{C E}=0 \\ & V_{C E}=V_{C C}-I_{C} R_{C} \end{aligned}$ For common emitter configuration, $\begin{aligned} & I_{C}=\beta I_{B} \\ & I_{C}=\beta \frac{V_{C C}}{R_{B}} \\ & \hline \end{aligned}$	(Diagram: 2M, Explanatio n :2M)

	From above, collector current I_{C} is β times greater than base current and is not dependant on resistance of collector circuit $\left(\mathrm{R}_{\mathrm{C}}\right)$. I_{CE} and V_{CE} are dependent on β. But β is dependent on temperature. $\dot{=}$ It is impossible to obtain a stable ' Q ' point in a fixed bias circuit. Because of this fact, base bias is never used in amplifier circuit.	
b)	Describe the working principal of \mathbf{N} - channel JFET with diagram.	4M
Ans:	N-Channel JFET: (a) (b) Working: - The application of negative gate voltage or positive drain voltage with respect to source, reverse biases the gate- source junction of an N-channel JFET. The effect of reverse bias voltage is to form depletion regions within the channel. - When a voltage is applied between the drain \& source with dc supply voltage (V_{DD}), the electrons flows from source to drain through the narrow channel existing between the depletion regions. This constitutes the drain current (I D) \& its conventional direction is from drain to source. The value of drain current is maximum, when no external voltage is applied between the gate \& source \& is designated by the symbol $\mathrm{I}_{\text {DSS }}$. - When $V_{\text {GG }}$ is increased, the reverse bias voltage across gate-source junction is increased. As a result of this depletion regions are widened. This reduces the effective width of the channel \& therefore controls the flow of drain current through the channel. - When gate to source voltage (V_{GG}) is increased further, a stage is reached at which two depletion regions touch each other as shown in fig (b). - At this value of V GG channel is completely blocked or pinched off \& drain current is reduced to zero. The value of V Gs at which drain current becomes zero is called pinch off voltage designated by the symbol V_{P} or $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$. The value of V_{P} is negative for N -channel JFET.	$\mathbf{2 M}$

(ISO/IEC-27001-2005 Certified)

	The value of the drain current can be obtained by Shockley's equation. Thus the Q point of JFET amplifier using source biasing is given by. $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{V_{G S}}{V_{D S(o f f)}}\right)^{2} \\ & \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{D D}+\mathrm{V}_{S S}-\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{S}\right) \end{aligned}$	
c)	Draw circuit diagram of UJT Relaxation Oscillator and describe its working principle.	4M
Ans:	Circuit Diagram:- Working principle: - - When the supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ is switched ON , the capacitor charges through resistor (R), till the capacitor voltage reaches the voltage level $\left(\mathrm{V}_{\mathrm{P}}\right)$ which is called as peak point voltage. At this voltage the UJT turns ON. - As a result of this, the capacitor (C) discharges rapidly through resistor $\left(\mathrm{R}_{1}\right)$. When that capacitor voltage drops to level Vv (called valley- point voltage) the unijunction transistor switches OFF allowing the capacitor (C) to charge again. - In this way because of the charging and discharging of capacitor the exponential sweep voltage will be obtained at the emitter terminal of UJT. The voltage developed at base $1\left(\mathrm{~V}_{\mathrm{B} 1}\right)$ terminal is in the form of narrow pulses commonly known as trigger pulses. - The sweep period depends upon time constant (R.C) and the sweep frequency can be varied by changing value of either resistance (R) or capacitor (C). Due to this fact, the resistor R is shown as a variable resistor. - The sweep period is given by the relation $\begin{gathered} \mathrm{T}=\text { R.C. } \log _{e}(1 / 1-\eta) \\ \mathrm{T}=2.3 \text { R.C. } \log _{10}(1 / 1-\eta) \end{gathered}$	Each diagram:1 Description :2M

d)	Draw circuit diagram of two stage RC coupled amplifier. State the need of multistage amplifier.	4M
Ans:	Circuit Diagram:- Need of Multistage Amplifier: The output from a single stage amplifier is usually insufficient to drive an output device. So that additional amplification over two or three stages is necessary. - To achieve this, output of each amplifier stage is coupled in some way to the input of the next stage. The resulting system is referred to as multi-stage amplifier or cascade amplifier, where the output of first amplifier is fed as input to second amplifier. - To increase the overall gain of the amplifier multistage amplifier is needed.	2M
e)	Draw and describe working of Zener diode as voltage regulator.	4M
Ans:	Working: Part I:REGULATION BY VARYING INPUT VOLTAGE :- A resistance (Rs) is connected in series with the zener diode to limit current in the circuit. For proper operation, the input voltage (Vs) must be greater than the zener voltage (Vz). Where, $\mathrm{R}_{\mathrm{z}}=$ zener resistance (a) Varying input voltage. Here the load Resistance is kept fixed and input voltage is varied within the limits Case1:- WHEN INPUT VOLTAGE IS INCREASED When input voltage is increased the input current (Is) also increases. Thus current through zener diode gets increased without affecting the load current $\left(\mathrm{I}_{\mathrm{L}}\right)$. The increase in input voltage also increases the voltage drop across the resistance Rs thereby keeping the V_{L} constant. Case 2:- WHEN INPUT VOLTAGE IS DECREASED	$1 M$ $1 M$

	When input voltage is decreased, the input current gets reduced, as a result of this Iz also decreases. The voltage drop across Rs will be reduced and thus the load voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ and load current (I_{L}) remains constant. Part II: REGULATION BY VARYING LOAD RESISTANCE:- In this method the input voltage is kept constant whereas load resistance RL is varied. Case 1:- WHEN LOAD RESISTANCE IS INCREASED When load resistance is increased, the load current reduces, due to which the zener current I_{Z} increases. Thus the value of input current and voltage drop across series resistance is kept constant. Hence the load voltage remains constant. Case 2:- WHEN LOAD RESISTANCE IS REDUCED When load resistance is decreased, the load current increases. This leads to decrease in I_{Z}. Because of this the input current and the voltage drop across series resistance remains constant. Hence the load voltage is also kept constant.	1M
f)	Sketch pin diagram of IC 723. Give any four advantages of IC voltage regulator over discrete voltage regulator.	4M
Ans:	Advantages of IC voltage regulator over discrete voltage regulator are: i) Improved performance ii) High quality precise regulation. iii) Current limiting, self protection against temperature. iv) Remote control operation over a wide range of input voltages	$\longdiv { 2 M }$ 2M (1/2 M each)

	Working Principle:- Case1:- When $\mathrm{V}_{\mathrm{GS}}=0$ volt If $\mathrm{V}_{\mathrm{GS}}=0$ volt and a + ve voltage applied between its drain and source, then due to the absence of the n-type channel a zero drain current will result. Case2:- When $\mathrm{V}_{\mathrm{GS}}=$ positive and $\mathrm{V}_{\mathrm{DS}}=$ positive - The +ve potential at the gate terminal will repel the holes present in the p-type substrate. - This results in creation of a depletion region Sio_{2} insulting layer. But the minority carriers i.e the electrons in the p-type substrate will be attracted towards the gate terminal and gather near the surface of Sio_{2} layer. - As we increase the positive V_{GS}, the number of electrons gathers near Sio_{2} layer we increase. - The electron concentration near Sio2 layer increase to such an extent that it creates an induced n-channel. This connects the n-type doped region. This induced nchannel is called 'inversion layer'. The drain current then start flowing through this induced channel. And the value of V_{GS} at which this conduction begins is called as 'threshold voltage' V_{GS} (TH). Case 3:- Effect of increasing in $V_{D S}$ - The $+\mathrm{V}_{\mathrm{GS}}$ is kept constant and the V_{GS} is increased gradually .due to this, the gate terminal becomes less and less + ve with respect to drain. So less number of electrons is attracted towards gate terminal and the induced channel becomes narrow that means the channel width will be reduced to a point of pinch off and the saturation condition will occur, hence I_{D} will remains constant.	2M
d)	Explain class B push-pull amplifier with neat diagram.	4 M
Ans:	Circuit Diagram:- Operation :- - In class B amplifier transistor conduct only for half cycle of input signal.one conduct in positive half cycle and other conducts in negative half cycle. - Transformer T_{1} is called as input transformer called phase splitter and produces two signals which are 180 degree out of phase with each other. - Transformer T_{2} is called as output transformer and is required to couple the a.c signal from the collector to the load.	2M

- When there is no input signals both the transistor Q_{1} and Q_{2} are cut off hence no current is drawn from Vcc supply. Thus there is no power wasted in stand by the power dissipation in both transistor is practically zero.
- During positive half cycle $\mathrm{Q}_{1} \mathrm{ON} \mathrm{Q}_{2} \mathrm{OFF}$ and at the output half cycle is obtained during negative half cycle Q_{1} OFF and Q_{2} on hence another half cycle is obtained at the output.
- Then output transformer joins these two halves and produces a full sine wave in the load resistor.

		Circuit Operation: - Initially transistor Q_{1} is ON and Q_{2} is OFF . Therefore capacitor C_{1} is charged to V_{CC} through the diode forward resistance $\left(\mathrm{R}_{\mathrm{F}}\right)$. At this instance output voltage is zero. - When negative pulse is applied to the base of transistor Q_{1}, it turns OFF. Since Q_{2} is an emitter follower, therefore the output voltage V 0 is same as base voltage of Q_{2}. - Thus when Q_{1} turns OFF, the capacitor C_{1} starts charging this capacitor C through resistor (R). As a result of these both the base voltage of Q_{2} and output voltage begins to increase from zero. - As the output voltage increases diode D becomes reverse biased, because of the fact that the output voltage is coupled through the capacitor $\left(\mathrm{C}_{1}\right)$ to the diode. - Since the value of capacitor $\left(\mathrm{C}_{1}\right)$ is much larger than that of capacitor (C), therefore the voltage across capacitor $\left(\mathrm{C}_{1}\right)$ practically remains constant. - Thus voltage drop across resistor (R) and hence current (I_{R}) remains constant, means capacitor C is charged with constant current. - This causes voltage across capacitor C (and hence the output voltage) to increase linearly with time. - The circuit pulls itself by its own bootstrap and hence it is known as bootstrap sweep circuit.	2M
Q. 5		Attempt any FOUR :	16 M
	a)	Define α, β with respect to transistor configuration. State the relation between α and β.	4M
	Ans:	α is defined as current gain in common base configuration. It is given by $\alpha=\frac{\boldsymbol{I}_{\boldsymbol{C}}}{\boldsymbol{I}_{\boldsymbol{E}}}$ β is defined as current gain in common emitter configuration. It is given by $\beta=\frac{\boldsymbol{I}_{\boldsymbol{C}}}{\boldsymbol{I}_{\boldsymbol{E}}}$ relation between $\alpha \& \beta$	$\begin{aligned} & \text { Define:0.5 } \\ & \text { M } \end{aligned}$
		We know that ; $I_{E}=I_{B}+I_{C} \ldots \text { (1) }$ Dividing eqn (1) by I_{c}. $\begin{aligned} \frac{I_{e}}{I_{c}} & =\frac{I_{B}}{I_{c}}+\frac{I_{c}}{I_{c}} \\ \therefore \frac{1}{\alpha} & =\frac{1}{\beta}+1 \quad\left[\because \alpha=\frac{I_{e}}{I_{e}}, \beta=\frac{I_{c}}{I_{B}}\right] \\ \therefore \frac{1}{\alpha} & =\frac{1+\beta}{\beta} \\ \therefore \alpha & =\frac{\beta}{1+\beta} \end{aligned}$ $\begin{aligned} & \alpha(1+\beta)=\beta \\ & \alpha+\alpha \beta=\beta \\ & \therefore \alpha=\beta-\alpha \beta \\ & \therefore \alpha=\beta(1-\alpha) \\ & \therefore \beta=\frac{\alpha}{1-\alpha} \end{aligned}$	$1.5 \mathrm{M}$ $1.5 \mathrm{M}$

	f)	Draw Miller sweep generator and give any two applications.	4M
	Ans:	Applications : (Any Two) i) Used in CRO ii) In television iii) Application where linear output is expected iv) To convert step waveform into RAMP waveform.	$2 \mathrm{M}$ 1M each
Q. 6		Attempt any FOUR :	16 M
	a)	In CE configuration if $\beta=98$, leakage current $\left.I_{\text {CEO }}\right)=50 \mu \mathrm{~A}$. If base current is 0.5 mA . Determine I_{C} and I_{E}.	4 M
	Ans:	$\begin{aligned} I_{C} & =\beta . I_{B}+(1+\beta) I_{C E O} \\ & =(98)(0.5 \mathrm{~mA})+(1+98) 50 \mu A \\ & =0.049+4.95 \times 10^{-3} \\ & =53.95 \mathrm{~mA} \\ I_{E} & =I_{B}+I_{C} \\ & =0.5 \mathrm{~mA}+53.95 \mathrm{~mA} \\ & =54.45 \mathrm{~mA} . \end{aligned}$	1/2 M each Formula $2 \mathrm{M}$ $\mathbf{1 M}$

b)	Distinguish between series and shunt voltage regulator (any four points)			4 M
Ans:	Sr. No.	SHUNT VOLTAGE REGULATOR	SERIES VOLTAGE REGULATOR	1M each
	1	Control element is connected in shunt with load.	Control element is connected in series with load.	
	2	High Output impedance.	Low Output impedance.	
	3	It has protection against short circuit of transistor.	It does not have protection against short circuit of transistor.	
	4	Good voltage regulation even at high load current.	Not so good voltage regulation at high load current.	
	5	Poor voltage regulation.	Better voltage regulation.	
	6	Good efficiency for low load current.	Good efficiency for high load current.	
	7	The output DC voltage is constant.	The output DC voltage is not absolutely constant.	
	8	Suitable for light loads.	Suitable for heavy loads.	
	9	Control element has to bear the load voltage across it. So it is a high voltage low current device.	Control element has to bear the load current. So it is a low voltage high current device.	
	10	Supply current is higher than load current as $\mathrm{I}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\text {SH }}$	Supply current is same as load current. But input voltage is higher than output voltage as $\mathrm{V}_{\mathrm{i}}=$ $V_{O}+V_{S}$	
c)	State the effect of negative feedback on following parameter i) Bandwidth, ii) Noise, iii) Gain ,iv) Distortion			4 M
Ans:	i) Bandwidth increases. ii) Distortion reduces. iii)Noise decreases iv) Gain decreases.			1M each
d)	Draw circuit diagram of two stage transformer coupled amplifier. Draw its frequency response.			4 M
Ans:	$\frac{\text { CIRCUII }}{\text { Two stag }}$	DIAGRAM: e transformer coupled amplifier		2M

PRACTICAL COMMON EMITTER AMPLIFIER:

Function of components:

- The input a.c. signal is applied across the base emitter terminals of the transistor \& output is taken across collector emitter terminals of the transistor. V_{BB} supply forward biases the emitter base junction \& V_{CC} supply reverse biases the output junction.
- The Q point is determined by the V_{CC} supply along with the resistance R_{C}. The resistances $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathrm{E}}$ form the biasing $\&$ stabilization circuit $\&$ thus establishes proper operating point.
- Input capacitor $\left(\mathrm{C}_{\mathrm{in}} \approx 10 \mu F\right)$: It blocks DC voltage to the base, if it is not provided the source resistance comes across R_{2},so that transistor gets unbiased. It allows a.c. to pass \& isolates source resistance from R_{2}.
- Emitter bypass capacitor $\left(\mathrm{C}_{\mathrm{E}}\right): \mathrm{C}_{\mathrm{E}}$ acts as open for D.C so R_{E} offers very high value resistance hence stabilization of Q -point is achieved due its negative feedback. Where C_{E} acts as short for A.C input signal hence it bypasses R_{E} so it provides very high gain due to its low value. And amplification of signal is more due to high gain.

