MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-17 EXAMINATION
Model Answer

Subject Title: Stoichiometry
Subject code : 17315 Page 1 of $\mathbf{1 8}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer	marks
1A	Any 4	8
1A-a	Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures Mathematical Statement: $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$ where P is the total pressure of gas mixture, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are partial pressures	1 1
1A-b	Pure component volume: Pure component volume of a component gas is the volume that would be occupied by that component gas if it alone was present in the same pressure and at the same temperature as the gas mixture.	2
1A-c	$5 \mathrm{~kg} \mathrm{O} \mathrm{O}_{2}$ Molecular weight of $\mathrm{O}_{2}=32$ $\text { Moles of } \begin{aligned} \mathrm{O}_{2} & =\text { weight } / \text { molecular weight } \\ & =5 / 32=0.15625 \text { kmoles } \\ & =\mathbf{1 5 6 . 2 5} \text { gmoles } \end{aligned}$	2
1A-d	Law of conservation of mass: Material input $=$ material output + accumulation	2
1A-e	Block diagram for extraction	2
1A-f	Selectivity: Selectivity may be defined as the ratio of the moles of the desired	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-17 EXAMINATION
Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{3}$ of $\mathbf{1 8}$

	product to undesired or by product produced in a side reaction. -Selectivity are applicable to a set of chemical reaction-complex reaction	
1-B	Any 2	12
1-B a	Basis: 100 kmol gas sample $\begin{aligned} \text { Avg. mol.wt of air } & =\mathrm{M}_{1} \mathrm{X}_{1}+\mathrm{M}_{2} \mathrm{X}_{2}+\mathrm{M}_{3} \mathrm{X}_{3} \\ & =16 * 0.66+44 * 0.3+17 * 0.04 \\ & =\mathbf{2 4 . 4 4} \end{aligned}$ $\begin{aligned} \text { Density } & =\mathrm{P} * \mathrm{Mav} / \mathrm{RT} \\ & =304 * 24.44 / 8.314 * 303 \\ & =\mathbf{2 . 9 5} \mathbf{K g} / \mathbf{m}^{\mathbf{3}} \end{aligned}$	1 1 1 1 2
1-B b	Basis: 100 kg mixture Weight of $\mathrm{H}_{2}=11.1 \mathrm{~kg}=5.55 \mathrm{kmoles}$ Weight of $\mathrm{O}_{2}=88.9 \mathrm{~kg}=2.78 \mathrm{kmoles}$ Average molecular weight $=2 * 0.67+32 * 0.33=\mathbf{1 1 . 9}$ Partial pressure of $\mathrm{H}_{2}=$ Total pressure * mol.fraction $\begin{aligned} & =100 \mathrm{Kpa} * 0.67 \\ & =67 \mathrm{Kpa} \end{aligned}$ $\begin{aligned} \text { Partial pressure of } \mathrm{O}_{2} & =\text { Total pressure } * \text { mol.fraction } \\ & =100 \mathrm{Kpa} * 0.33 \\ & =\mathbf{3 3} \mathbf{K p a} \end{aligned}$	1 1 1 1 1 1
1-B c	Basis: $\mathrm{CO}-\mathrm{N}_{2}$ mixture Weight of $\mathrm{CO}=\mathrm{N}_{2}=100 \mathrm{~kg}$. Kg. moles of $\mathrm{CO}=100 / 28=3.57$ Kg . moles of $\mathrm{N}_{2}=100 / 28=3.57$ Mole fraction of $\mathrm{N}_{2}=0.5$ Total pressure $=405.3 \mathrm{KPa}$	1 1 1 1

Subject Title: Stoichiometry

Subject code :
17315
Page 4 of 18

\begin{tabular}{|c|c|c|}
\hline \& \& 1

1
1
1
1

\hline 2-c \& | 1)Stoichiometric Equation : |
| :--- |
| The stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactant and products that take part in the reaction. |
| For example, the stoichiometric equation $\mathrm{CO}+\mathrm{H}_{2}-----\rightarrow \mathrm{CH}_{3} \mathrm{OH}$ |
| Indicates that one molecule of CO react with two molecules of hydrogen to produce one molecule of methanol |
| 2) Stoichiometric Coefficient : |
| It is the number that precedes the formula of each component involved in a chemical reaction. |
| For example, the stoichiometric equation $\mathrm{CO}+\mathrm{H}_{2}-----\rightarrow \mathrm{CH}_{3} \mathrm{OH}$ | \& 1

1
1
1
1
1

\hline
\end{tabular}

	In above example Stoichiometric Coefficient of H_{2} is Two and Stoich (Students may write other suitabl	oefficient of CO is one, Stoichiometric metric Coefficient of methanol is one xample)	
2-d	$\left.\begin{array}{rl} \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3} \\ \mathrm{SO}_{2} \text { fed }=100 \mathrm{~kg} . \text { moles } \end{array}\right] \begin{aligned} & \mathrm{SO}_{3} \text { formed }=80 \mathrm{~kg} . \text { moles } \\ & 1 \mathrm{~kg} . \text { mole } \mathrm{SO}_{2} \text { reacted }=1 \mathrm{~kg} . \text { mole } \\ & ?=80 \mathrm{~kg} . \mathrm{mo} \\ & \text { kg. mole } \mathrm{SO}_{2} \text { reacted }=80 \\ & \% \text { conversion of } \begin{aligned} \mathrm{SO}_{2} & =\left(\mathrm{SO}_{2}\right. \text { reac } \\ & =80 * 100 / 10 \end{aligned} \end{aligned}$	O_{3} formed SO_{3} formed $\begin{aligned} & \left.\mathrm{d} / \mathrm{SO}_{2} \mathrm{fed}\right)^{*} 100 \\ & =\mathbf{8 0 \%} \end{aligned}$	1 1 1 1 1
2-e	Differentiate Conversion and Yiel amount of reactant reacted to the initial amount of the reactant 2. Conversion gives us idea regarding how efficient a given chemical process is from the point of view of utilization of the starting materials. 3. Higher values of Conversion is the indication of minimum amount of the limiting reactant left unreacted.	Yield 1. Yield of a desired product is the ratio of the quantity of the desired product actually obtained to its quantity maximally obtainable. 2. The Yield of a desired product tell us how efficient is a given chemical process is in terms of the reaction product. 3. Higher values of Yield is the indication of minimum occurrence of side reactions.	1 mark each

Subject Title: Stoichiometry

Subject code :
17315

	4. Conversion is applicable to 4. Yield is applicable to Complex single reactions as well as to reaction Complex reaction.	
2-f	$\begin{aligned} & \mathrm{C}_{\mathrm{pm}}^{0}=29.3955 \mathrm{KJ} /(\mathrm{K} \text { mol. } \mathrm{K}) \\ & \text { Moles of air }(\mathrm{n})=3 \\ & \mathrm{~T}=473 \mathrm{~K} \quad \mathrm{~T}_{0}=298 \\ & \text { Heat added } \mathrm{Q}=\mathrm{n}^{*} \mathrm{C}^{0}{ }_{\mathrm{pm}}\left(\mathrm{~T}-\mathrm{T}_{0}\right) \\ & \\ & =3 * 29.3955(473-298) \\ & \\ & =\mathbf{1 5 4 3 2 . 6 4} \mathbf{~ K J} \end{aligned}$	1 1 2
3	Any 2	16
3-a	Solution: Basis: 3000 kg of monochloroacetic acid production per batch. Mol. Wt. of $\mathrm{CH}_{2} \mathrm{ClCOOH}=94.5$ Moles of $\mathrm{CH}_{2} \mathrm{ClCOOH}$ produced per batch $=\frac{3000}{94.5}=31.75 \mathrm{kmol}$ Reaction: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{ClCOOH}+\mathrm{HCl}$ From the reaction, $1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH} \equiv 1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}$ i.e., for producing $1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}, 1 \mathrm{kmol}$ acetic acid is consumed. $\mathrm{CH}_{3} \mathrm{COOH}$ reacted for $31.75 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}$ production $=31.75 \times \frac{1}{1}=31.75 \mathrm{kmol}$ Given : The reaction is 95% complete, i.e., conversion of acetic acid is 95%. $\therefore \mathrm{CH}_{3} \mathrm{COOH} \text { charged }=\frac{\mathrm{CH}_{3} \mathrm{COOH} \text { reacted } \times 100}{\% \text { conversion }}$	1 1 1 1 1 1 1

WINTER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry

Subject code :
17315
Page 8 of $\mathbf{1 8}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
=\frac{31.75}{0.95}=33.42 \mathrm{kmol}
\] \\
From the reaction, \(1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH} \equiv 1 \mathrm{kmol} \mathrm{Cl}_{2}\) \\
i.e., for \(1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH}\), theoretical \(\mathrm{Cl}_{2}\) required is 1 kmol . Therefore, \\
Theoretical requirement of \(\mathrm{Cl}_{2}\) \\
For \(33.42 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{1} \times 33.42=33.42 \mathrm{kmol}\) \\
Given : \(15 \%\) excess \(\mathrm{Cl}_{2}\) is used. Therefore, \\
\(\mathrm{Cl}_{2}\) fed/supplied \(=33.42 \times\left(1+\frac{15}{100}\right)=38.43 \mathrm{kmol}\) \\
\(\therefore\) Amount of \(\mathrm{Cl}_{2}\) required per batch \(=38.43 \times 71=\mathbf{2 7 2 8 . 5} \mathbf{~ k g}\) \\
Amount of \(\mathrm{CH}_{3} \mathrm{COOH}\) required per batch \(=33.42 \times 60=\mathbf{2 0 0 5 . 2} \mathbf{~ k g}\)
\end{tabular} \& 1

1
1
1
1
1

\hline 3-b \& | BASIS: 1000 kg of final solution. |
| :--- |
| Let kg of $\mathrm{A}=\mathrm{x}$ |
| Let kg of $\mathrm{B}=\mathrm{y}$ |
| Therefore overall balance $\begin{equation*} X+y=1000 \tag{1} \end{equation*}$ |
| Salt balance $0.1 x+0.5 y=1000 * 0.35$ | \& 1

\hline
\end{tabular}

Subject Title: Stoichiometry \quad Subject code : 17315 Page 9 of 18

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(0.1 \mathrm{x}+0.5 \mathrm{y}=350\) \\
Multiplying equation (1) by 0.1
\[
\begin{equation*}
0.1 x+0.1 y=100 \tag{3}
\end{equation*}
\] \\
From equation (2) and (3)
\[
4 y=250
\] \\
Therefore \(\mathrm{y}=250 / 4\)
\[
\begin{aligned}
\& =625 \mathrm{~kg} \\
\& \mathrm{X}=375 \mathrm{~kg}
\end{aligned}
\] \\
Wt of \(\mathbf{1 0 \%}\) solution= \(\mathbf{3 7 5} \mathbf{~ k g}\) \\
Wt of \(50 \%\) solution \(=625 \mathrm{~kg}\)
\end{tabular} \& 1

3
1

\hline 3-c \& | Basis: $10000 \mathrm{~kg} / \mathrm{hr}$ of feed |
| :--- |
| Overall balance is $\begin{equation*} 10000=X+Y \tag{1} \end{equation*}$ |
| Individual balance for $\mathrm{CH}_{3} \mathrm{OH}$ is $\begin{equation*} 0.2 * 10000=0.98 \mathrm{X}+0.01 * \mathrm{Y} \tag{2} \end{equation*}$ |
| Solving the equations $\begin{aligned} & X=1958.76 \mathrm{Kg} / \mathrm{hr} \\ & Y=8041.24 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ |
| Mass flow rate of distillate $=1958.76 \mathrm{Kg} / \mathrm{hr}$ |
| Mass flow rate of bottom product $=\mathbf{8 0 4 1 . 2 4} \mathbf{~ k g} / \mathbf{h r}$ | \& 1

2
1
1
1
3

\hline 4 \& Any 2 \& 16

\hline
\end{tabular}

Subject Title: Stoichiometry

Subject code :
17315
Page 10 of 18

WINTER-17 EXAMINATION

Model Answer
Subject Title: Stoichiometry \quad Subject code : 17315 Page 11 of $\mathbf{1 8}$

Basis 5000 kg of feed.
$\mathrm{xF}=50 \%$
$\mathrm{xD}=95 \%$
$\mathrm{xW}=8 \%$
Weight of Benzene in feed $=5000 \times 0.5$
$=2500 \mathrm{~kg}$
Overall balance
$x+y=5000$
Material balance of benzene
$0.95 x+0.08 y=5000 \times .5$
$.95 \mathrm{x}+0.08 \mathrm{y}=2500$
Solving for $\mathrm{x} \& \mathrm{y}$
(x) Flow rate of top product $=\mathbf{2 4 1 3 . 7 9} \mathbf{~ k g}$
(y) Flow rate of bottom product $=\mathbf{2 5 8 6 . 2 1} \mathbf{~ k g}$
\% Recovery of Benzene
$=\frac{2293.10}{2500} \times 100$

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 12 of 18

	= 91.72\%	
5	Any 2	16
5-a	Basis : $15000 \mathrm{~kg} / \mathrm{hr}$ of weak solution fed to the evaporator. Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be the $\mathrm{kg} / \mathrm{hr}$ of water evaporated thick liquor \& Nacl precipitated respectively. Overall Material Balance : Σ Input stream $=\Sigma$ Output stream $15000=X+Y+Z$ Material balance of NaOH NaOH in feed $=\mathrm{NaOH}$ in thick liquor $\begin{gathered} 0.15 \times 15000=0.45 \times \mathrm{Y} \\ \quad \therefore \mathrm{Y}=5000 \mathrm{~kg} / \mathrm{hr} \end{gathered}$ Material balance of NaCl NaCl in feed $=\mathrm{NaCl}$ in thick liquor +NaCl precipitated $\begin{gathered} 0.10 \times 15000=0.02 \mathrm{xY}+\mathrm{Z} \\ \therefore 1500=100+Z \\ \therefore Z=1400 \frac{\mathrm{~kg}}{\mathrm{hr}} \end{gathered}$	1

WINTER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry

	$\begin{aligned} & \text { We know } \mathrm{X}+\mathrm{Y}+\mathrm{Z}=15000 \\ & \therefore X=8600 \mathrm{~kg} / \mathrm{hr} \\ & \therefore \text { Water evaporated }=\mathbf{8 6 0 0} \frac{\mathbf{k g}}{\boldsymbol{h r}} \\ & \\ & \text { Thick liquor obtained }=5000 \mathbf{~ k g} / \mathbf{h r} \\ & \\ & \quad \text { NaCl crystal precipitated }=1400 \mathbf{~ k g} / \mathbf{h r} \end{aligned}$	1
5-b	Basis: 100 kmol of flue gas. It contains $13.4 \mathrm{kmol} \mathrm{CO}_{2}, 80.5 \mathrm{kmol}_{2}$ and $6.1 \mathrm{kmol} \mathrm{O}_{2}$ N_{2} in supplied air $=\mathrm{N}_{2}$ in flue gas $=80.5 \mathrm{kmol}$ Air contains $79 \% \mathrm{~N}_{2}$ by volume. Amount of air supplied $=80.5 / 0.79=101.9 \mathrm{kmol}$ Amount of O_{2} in supplied air $=0.21 \mathrm{X} 101.9=21.4 \mathrm{kmol}$ Amount of O_{2} in flue gas $=6.1 \mathrm{kmol}$ Amount of O_{2} consumed in combustion of fuel $\begin{aligned} & =21.4-6.1=15.3 \mathrm{kmol} \\ & \quad \% \text { excess air }=\% \text { excess } \mathrm{O}_{2} \end{aligned}$ Present excess air supplied $=(21.4-15.3) / 15.3 \quad$ X 100 = 39.9 \% ------ Ans.	1 1 1 1 1 1 1 1 1
5-c	Basis: 1 Kmol of methane gas $\begin{aligned} & \mathrm{Q}=\text { Heat added } \\ & \mathrm{Q}=\mathrm{n} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}^{\mathrm{o}} \mathrm{p} \mathrm{dT} \\ & \mathrm{Q}=\mathrm{n} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}}\left[19.2494+52.1135 * 10^{-3} \mathrm{~T}+11.973 * 10^{-6} \mathrm{~T}^{2}\right. \\ & \left.-11.3173 * 10^{-9} \mathrm{~T}^{3}\right] \mathrm{dT} \\ & 52.1135 * 10^{-3} \end{aligned}$	1 1 2

WINTER-17 EXAMINATION

Model Answer

| Subject Title: Stoichiometry | Subject code : 17315 | Page 14 of 18 |
| :--- | :--- | :--- | :--- |

	Where, $\mathrm{n}=1 \mathrm{Kmol}, \mathrm{T}_{2}=523 \mathrm{~K}, \mathrm{~T}_{1}=303 \mathrm{~K}$ $\begin{aligned} & \mathrm{Q}=4234.9+4735+459.9-187.8 \\ & \mathrm{Q}=\mathbf{9 2 4 2} \mathbf{K J} \end{aligned}$	2
6	Any 4	16
6-a	Hess's law of constant heat summation : It states that the enthalpy change i.e. heat evolved or absorbed in a particular reaction is the same whether the reaction takes place in one or several steps. For Example : Carbon can be converted into CO_{2} by two ways Path 1: C (s) $+\mathrm{O}_{2}(\mathrm{~g})$------> $\mathrm{CO}_{2}(\mathrm{~g}) \quad----\Delta \mathrm{H}$ Path 2 : (i) $\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}(\mathrm{g}) \quad----\Delta \mathrm{H} 1$ (ii) $2 \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})-\cdots--->\mathrm{CO}_{2}(\mathrm{~g}) \quad----\Delta \mathrm{H} 2$ (i) + (ii) $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g})$ Thus $\quad \Delta \mathrm{H}=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2$	2
6-b	Adiabatic Reaction: It is the reaction which proceeds without loss or gain of heat, When the	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
adiabatic reaction is exothermic, the temperature of the product stream rise and when the adiabatic reaction is endothermic, the temperatures of the product stream decreases \\
Adiabatic reaction temperature: Temperature of product under adiabatic condition is called adiabatic reaction temperature.
\end{tabular} \& 2

2

\hline 6-c \& ```
Basis : 100 Kg of coke
Amount of carbon in coke $=0.9 * 100=90 \mathrm{Kg}$
Amount of $\mathrm{C}=90 / 12=7.5$ katom
Reaction : $\mathrm{C}+\mathrm{O}_{2}$------> CO_{2}
From reaction,
1 katom $\mathrm{C}=1 \mathrm{kmol} \mathrm{O}_{2}$
$12 \mathrm{Kg} \mathrm{C}=32 \mathrm{Kg} \mathrm{O}_{2}$
$90 \mathrm{Kg} \mathrm{C}=(32 / 12) * 90 \mathrm{Kg} \mathrm{O}_{2}$
O_{2} theoretically required $=(32 / 12) * 90=240 \mathrm{Kg}$
O_{2} theoretically required $=240 / 32=7.5 \mathrm{kmol}$
Air theoretically required $=7.5 *(100 / 21)=35.71 \mathrm{kmol}$
$\%$ excess of air $=10 \%$
Air actually supplied $=$ Air theoretically required ($1+$------------ $)$
100
Air actually supplied $=35.71 *\left(1+\frac{10}{100}-\cdots----\right)$
Air actually supplied $=\mathbf{3 9 . 2 8 1} \mathbf{k m o l}-----------$ ans.

``` & 1 \\
\hline 6-d & \begin{tabular}{l}
\[
\mathrm{N}_{2}+3 \mathrm{H}_{2}---\rightarrow 2 \mathrm{NH}_{3}
\] \\
Assume nitrogen is the limiting component.
\end{tabular} & \\
\hline
\end{tabular}

\section*{WINTER-17 EXAMINATION}

Model Answer

\section*{Subject Title: Stoichiometry}

Subject code :
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
For 4 moles of nitrogen fed, theoretical requirement of hydrogen is 12 kmoles. But hydrogen fed is only 10 kmoles. Therefore nitrogen is not the limitinhg component. \\
Therefore Hydogen is the limiting component and Nitrogen is the excess component.
\[
\mathrm{N}_{2} \text { fed }=4 \text { kmoles }
\] \\
Theoretical requirement nitrogen corresponding to \(\mathrm{N}_{\mathbf{2}}\) fed 4 kmoles \(=3.33\)
\[
\begin{aligned}
\% \text { excess } \mathrm{N}_{2} & =\left(\text { kmoles } \mathrm{N}_{2} \text { fed- kmoles } \mathrm{N}_{2} \text { theoretical/ kmoles } \mathrm{N}_{2} \text { theoretical }\right)^{*} \\
& =(4-3.33 / 3.33) * 100 \\
& =\mathbf{2 0 . 1 2 \%}
\end{aligned}
\]
\end{tabular} & 1
1
1
1
1 \\
\hline 6-e & \begin{tabular}{l}
Basis: 1000 kg wet ONA \\
Overall balance is
\[
1000=X+Y
\] \\
Balance for solid
\[
\begin{aligned}
& 0.90 * 1000=0.995 * \mathrm{Y} \\
& \mathrm{Y}=904.52 \mathrm{~kg} \\
& \mathrm{X}=95.48 \mathrm{~kg}
\end{aligned}
\] \\
Water removed \(=95.48 \mathbf{k g}\)
\end{tabular} & 1 \\
\hline
\end{tabular}

\section*{Subject Title: Stoichiometry}

Subject code :
17315
Page 17 of 18

Subject Title: Stoichiometry
\begin{tabular}{|l|l|l|l|}
\hline & \(=\mathbf{2 6 \%}\) & Subject code : 17315 & Page 18 of 18 \\
\hline
\end{tabular}```

